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© Introduction: Motivation and Background



Motivation and Background

One of the take-home messages from the week-1

eTe~ collisions offer a clean environment for studying properties of heavy quarks;
A few %o to % precision on cross sections and asymmetries of top-quark pair
production above threshold at the on-going future e*e~ colliders are possible.

[ Talk by Simon]
Concerning precision QCD corrections for massive QQ at lepton colliders:
€+€7 —5 tF nearthreshold @ NNNLO [Beneke et al., 15-17] [— Talk by Beneke]

ete™ — 1T @ NNLO (Gao, znu 14; LC etal 17) and for bb @ NNLO [ernreuther et al. 17]
Recently re-computed purely numerically using the Local-Unitarity method (capati et al. 22] [ Talk by Hirschi]
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Focus: Virtual QCD corrections to quark FFs

@ Quark form-factors (FFs) couple an external color-neutral boson to a pair of
quarks
> ete” = Z/9* - QQ+ X, H/Z — QQ + X, Drell-Yan process, DIS etc
> simplest object to extract certain universal QCD quantities

» Massless quark FFs
> Purely massless QCD corrections analytically to 3-100p moch, Vermaseren, Vogt 05;

Baikov, Chetyrkin,Lee, Smirnov, Smirnov,Steinhauser 09-10; Gehrmann, Glover, Huber, Ikizlerli, Studerus 10; Gehrmann, Ahmed......]
» Top-quark loop-induced contributions at 3-100p Lc, czakon, Niggetiedt 21]
> 4-loop analytic results [Lee, Smirmov, Smirmov, Steinhauser 19; Manteuffel, Panzer,

Schabinger..., Lee, Manteuffel, Schabinger, Smirnov, Smirnov, Steinhauser 22] [~ Talk by Manteuffel]

@ Massive quark FFs
> 2-|00p QCD corrections known analytically [Bernreuther, Bonciani, Gehrmann, Heinesch, Leineweber, Mastrolia,
Remiddi 04-06,...]
» Partial 3-|00p analytic results [Henn, Smirnov, Smirnov, Steinhauser 16-18; Ablinger, Marquard, Rana, Schneider 18; Lee,
Smirnov, Smirnov, Steinhauser 18; Blimlein, Marquard, Rana, Schneider 19]

» Truncated series-expansion results at 3-l00p [Fael, Lange, Schénwald, Steinhauser 22].




Various (numerical) methods for multi-loop integrals

Analytic methods for Feynman integrals (- tais by Manteuftel, weinzierl

Vi Smior

AnalyticTools for
Feynman Integrals

Many generally-applicable (semi) numerical approaches for
evaluating multi-loop integrals (maybe another book?)

@ Numerical evaluation of integral representations
» Sector decomposition [ginoth, Heinrich 00-04] [ Talk by Maheria]
> Mellin-Barnes integral representation (smirmov; Tausk 99] [ Talk by Gluza]
> Numerical extrapolation of Feynman parametric integrals (in € and
lp) [Doncker, Yuasa, Kato, Ishikawa, Kapenga, Olagbem 05-18]
4 Loop—Tree—DuaI ity [Catani, Gleisberg, Krauss, Rodrigo, Winter 08] and LocaI—Unitarity

representation [capat, Hirschi, Pelloni, Ruijl 20] [~ Talk by Hirschi]
> ...

@ Numerically solving differential equations (DE) of master integrals (Ml)

» Pure numerical evolution of DE supplemented by deep series

expansion [Boughezal, Czakon, Schutzmeier 07; Czakon 08]

> A sequence of expansions around singular/regular points
(DESS, “expansion—and—matching”) [Lee, Smirnov, Smirnov 17-18; Fael, Lange, Schénwald, Steinhauser 21]
DiffExp (Moriello; Hiading 19] (€xtensive use of the Frobenius method for a N-th order DE)

[— Talk by Hidding]
> Auxiliary mass flow [Liu, Ma, wang 171 (DE w.r.t the auxiliary mass iy with boundary at
7 — o0) [ Talk by Liu]

v



Computing Mis by numerically solving DE

@ With the emergence of IBP relations (cretrin, Teachov e11 (@and Laporta algorithm poo)),
solving DE evolves as a systematic and powerful approach to treat Feynman
integrals [otikov 91; Remiddi 97]

@ The initial applications of the strategy “pure numerical evolution of DE
supplemented by deep series expansion” to (physical) amplitudes

[Boughezal, Czakon, Schutzmeier 07; Czakon 08]

@ Further successful applications in the past:

@ 2-loop QCD virtual corrections to # production at LHC (garnreutner, Czakon, Fiedier 13;
LC, Czakon, Poncelet 17]

e B— XS’)’ at O(Dég) [Czakon, Fiedler, Huber, Misiak, Schutzmeier, Steinhauser 15]

e 3-loop Higgs-gluon form factor with exact top-mass dependence [czakon, Niggstiedt 20]

Two major directions of improvements of this approach:

@ Better MI basis whose DE is less stiff
@ More efficient computer algorithm/tools for solving DE




Outline

® The full top-mass dependence of singlet contributions to massless quark FFs



Singlet contributions to the massless quark FFs

We work in QCD with ny = n; + 1 = 6 flavors and only the top quark kept massive.

i(p:) T v(p2) 6 = (p:) (v EVAk + iy FA'y”fy5)) v(p2) b

The non-singlet and singlet part of massless quark FF:

0,
F = F,YS+P;/=F,‘Q+ZU—fP§f,
f 1
=

A | pA _ A 9 A
Fns+Fs _Fns+;al:s,f'

depending on whether the external Z boson couples directly to the external quarks or not.



The computational work-flow

The tool-chain:

o Generating Feynman diagrams . .
DiaGen [czakon] (O(minutes)) T R

@ Applying Feynman Rules,
Dirac/Lorentz algebra and
Color algebra
FORM (vemaseren (O(few minutes to
hours))

o IBP reduction of loop integrals by

Laporta algorithm
IdSolver (czaon (O(hours to days)) ) e I

e Calculating Master integrals (by D S
DE) (it depends...)



Classification of 3-loop Mls

Purely massless ones [Gehrmann,et al 10]. Those dependent on m;:

@ _O@_ @ » A subset of ggH topologies (czakon, Niggetiedt 20)

oo O ) Po o

o 0% , Piohia
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<<
<=
4 =5

¥

A
v

7

Long Chen



Solving the e-form DE of Mis analytically

@ Derive the DE inx = mi? by IBP reducing derivatives

dM (&%) ZA,] e,x)Mj(e,x) = M(x)="Pexp [/ A(e,x) dx] 1e(e)

@ Transform the DE into an e-form renn 131 found by CANONICA peyer 17)
Mo(x) = T(e,y) - My(y), withx=2—y— :

y
|y T

[e)
) €" x (alinear combination of HPLS iremicd, vermaseren o9))
n=o

@ Determine the I.(e) from boundary at x = o (the large-mass limit)
Expansion-by-Subgraph (chetyrin ss:smimov 90 = heavy-graphs ® co-graphs:

single-scale vacuum integrals to 3L; . 4 . .
massless vertex integrals to 2L.



Solving the e-expanded DE numerically

Extract the ODE system
@ Setupthe DEinx = % by IBP reducing derivatives

dMex ZAljex ex),

@ Derive the e-free ODE w.r.t x

9 = Yy
I=i

d

Zan In (x

(variables other than x are inserted by numbers)
@ B(x): matrix of rational functions with a finite set of poles in the complex x-plane.

Set of poles appearing in the ODE of ~ 200 functions (dependent on Ml basis in use):

s 4 8 16
— =191 =,2, =, 4 —, 8,16, ©
mg { 37773 3 J



Solving the e-expanded DE numerically

Prepare high-precision initial values by solving DE with a series ansatz

dIm

Zan(x ) I (%)

@ Boundary condition at x = o:
Large-Mass Expansion (LME)

Ic({ge},m — 00) = EGIG/W({‘?@}) ® Te[I,({q},m)]
ye

» massless vertex integrals to 2-L; single-scale vacuum integrals to 3L
@ Technical problem: not suitable as the initial point of the numerical evolution

> The B(x) is singular at x = o
> Only first few LME terms, not accurate enough at near-by x

@ Resolution: a deep series expansion by solving DE around x = 0 (czakon 081

sz ln (Zx Cabn)

acSb=o

In practice, the series is truncated at O (x'°°), with integration constants fixed by LME.



Solving the e-expanded DE numerically

Evolve ODE numerically between regular points in the complex x-plane

Im(s/M?)

4/3 3/2 8/3

Technical settings: (czaron, niggetiedt 20]

» Used the bulirsch_stoer _dense out
method

» Used multi-precision numbers of 100
decimal digits

» Required a local step-error of
O(1074°)

» Collected 2 x 105 numerical samples
with at least 20 correct digits

16 Re(s/M?)

Use the odeint C++ library:

[Ahnert,Mulansky’ 2011]

odelnt

s in C++

Q
(1'\‘
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Solving the e-expanded DE numerically

Series expansion around the (genuine) singular points and match

@ Pseudo singular points
> Interpolation of data within a small vicinity ( ~ 0.001)
> A (deep) Taylor power series expansion

@ Genuine singular points (e.g. the pair threshold)
> A power-logarithm (asymptotic) series expansion

1(xo) = U(xo,0) T = Y Z %" In® (x,) ( i xo" Ca,b,n>

aeS b=o

with I, completely determined by 1(x,) at the matching point.
> Self-contained: No need to appeal to any external result!

A (complete) numerical answer for master integrals

Deep series expansion around (true) singular points
+ High-precision numerical results on a dense grid

Successively applied in the last 15 years in Czakon’s group: (soughezal, czakon, Schutzmeier 07; Gzakon

08; Barnreuther, Czakon, Fiedler 13; LC, Czakon, Poncelet 17; Czakon, Niggetiedt 20]
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Mission Impossible?

Restore numerically M(e, x) = E,‘f:p "I (x) at x = o despite singular I (0)?
@ Laurent e-expansion does not commute with x — o if I (x = o) are singular.

@ According to the Expansion-by-Region (EbR) prescription (eeneke, smimov s8; smimov 02
M(e, x=0) = the leading term of the hard-region (x°-scaling) contribution to
M(e, X — O) [Henn, Smirnov, Smirnov 13].

@ The EbR ansatz agrees with the one from applying the well-known Frobenius
method [Kniehl, Pikelner, Veretin 17; Liu, Ma, Wang 17],

reS by

M(e, x—0) ZZxaln (Zx Copnle )

a=re p=o

Co,0,0(€) = M(e,x = o) according to EbR.
@ NOT necessary to keep the full e dependence, just those with In(x) resummed.

@ This (numerical) matching strategy from M(e, x # o) has found many impressive
apphcatlons recently, eg [ Kniehl, Pikelner, Veretin 17; Lee, Smirnov, Smirnov 17; Liu, Ma, Wang 17; Liu, Ma, Tao, Zhang 20;
Liu, Ma 22; Baranowski, Delto, Melnikov, Wang 21-22; Fael, Lange, Schénwald, Steinhauser 22; Lee, Manteuffel, Schabinger, Smirnov, Smirnov,

Steinhauser 22]



Finite remainders of singlet FFs: UV-renormalization

q q
A

ns ¢

UV renormalization for singlet contributions
ng(as,mtrﬂ) = ZnsZZFsb("ISImt) + Zs Zz( +E )
A
Fslt(as/mtr]l) = ZpsZ, st(as/mt) + Zs Zz( + Z )

> A5 Se = Zo (u?) as(p?) p>¢ and iy = Zy my
> A non-ant/commut/ng Y5 [iHooft, Veltman 71; Breitenioner, Maison 7] IN LaAriN’s prescription (Lan os)
Zs (ZS — Zys) and yz dze — . (Zns + n Zs).
For the total non-anomalous combination'

ng(lls;mt) st(ﬂs/mt) = ZnsZa (Ps h(as,mt) Fst(as,mt))

Long Chen 14/26



Finite remainders of singlet FFs: IR-subtraction

The finite remainders after pulling out the IR singularities:

‘st}b (as,my, p) = Ipg Féb (as, my, p)
a2 L2 (n) + ad FLp2 (my, ) + O(ad),

fsAit(as/mt/ V) = Iqq th(as/ mi, ]4)
=a? .stt’z(mt,y) + a3 F$3(mt,y) + O0@h).

@ The I;; needed reads (Catani’s convention (catani o))

N S Rl 1,3 2
Ijg =1—2as <—s—io+) o) Cr (€2 + 26) + O(a3).

The alternative MS-factorization convention (secher, Neuvert 09]:
A A _ ‘A
Fib (as,me, ) = Igg Fs,b(asfmf' W) =l Zeg Fsib (as, my, )

@ Finiteness: cancellation of poles at a numerical precision better than 20 digits.



Results for the singlet FF: the axial case

The exact result for finite remainder ]-';“b/t(x) at 3-loop order:

--------- Im -4

Re FAS-FA2

--------- Im -F 34500

FICa

--------------- Im -Fa2

» x=s/m}atu*>=s
» C, = the real part of the 5-flavor massless result (cenrmann, primo 21]
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Results for the singlet FF: the axial case

The exact result for finite remainder ]-';“b/t(x) at 3-loop order:

A3

Im -F75;
A3_gA3

Re Fsp-Fsi

Im -FAS+FAS

FICa

Im -Fap

0 2 4 8 20 80 )

> Strong check: F24 (a5, x) — F2 (as,X) erman. primo 211 in the high-energy limit (x — o)
» Typical threshold behavior due to Coulomb effect (but no divergence here!)
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Results for the singlet FF: the axial case

The exact result for finite remainder ]-';“b/t(x) at 3-loop order:

A3

Im -F75;
A3_gA3

Re Fsp-Fsi

Im -FAS+FAS

FICa

Im -Fap

0 2 4 8 20 80 o

> Strong check: F2,(as,x) — F2(as,X) evman. primo 211 in the high-energy limit (x — o)
» The axial massless quark FF diverge in x — o: non-decoupling m;-logarithm!
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Results for the singlet FF: the vector case

The exact result for UV and IR finite FY;(x) at 3-loop order:

4

-6

-8

0 2 4 8 20 80 3

» Strong check: FY(as,x)|, .,
» The top-loop contrlbutlon is power- suppressed in the low-energy x — o limit.

— .7'- sb (ﬂs, ) [Vermaseren et al 05; Baikov et al 09; Gehrmann et al 10]
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Light quark form factors in the heavy top limit

Appearance of the non-decoupling m;-logarithms (colins, wiczek, zee 78; Chetyriin, kihn 93]
- -4, = Anpe
FLP(my — 00) = FL3 () + FLpo° (e, ),

= Fha(u) - ch + ;icFL,, - iCpL; + O(1/m)

OC (a5, my, ) — Fh(@s, me, pt)

mp—00

= Fi(as, ) = Colas u/mi) (Fibas, ) + 1 Fib@s w) + O(a/m).

The renormalized low-energy effective Lagrangian

2
e — (Zns Y i ¢P s 9P + 4y Zs [JE], — n-flavor massless part

i=1

+at Cw(ﬂs/ﬂ/mt) (Zns +ny Zs) UﬁB)ZV ’

with J5 = S firys .
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Resuming the non-decoupling m; logarithms

RG equation of the Wilson coefficient

d
Vz dpz Cuw(@s, u/mi) = s — n;¥s Co(as, p/my),

12 s (1] x = 7 8] with J§ = L, = Gy sy and p2 $ = 7 (Zus + 1 Z2).

The solution for

d
P‘zdyzct(ﬁmﬂ/mt) = m s Ce(as, u/my),

_ _ _ a(1) —ny ys(as) das
C(as(p), p/my) = Ct(lls(mt)/l)exp(/_;(mt) “Bla) Z)'

a.

in Larin’s scheme.

The solution can also be done by numerically solving the RGE.
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The v at O(a2) in MS-scheme

The Adler-Bell-Jackiw (ABJ) equation in terms of renormalized operators:
[0uJ5s1g = asny Te [FF]

Zs [ay]];,s]B = as Ny Tr (Zp] [ay]g/s]B + ZFI:" [FF]B)

with Z, = ZL 7.
Results for ZI:
@ O(ad) from UV-poles in Zgg-vertex (Z{: at O(a2) from 3L AVV-amplitude) rarines
@ O(a}) in the calculation of Ellis-Jaffe sum rule (ain, aibergen, vermaseren 97]
@ O(a2) from 4-loop calculations by combining ic, czakon 22]
> The anomalous Ward-Takahashi identity (with a NAC-s):

i3
I i3 Vs
= --- +
[ ]r anTr[FF ;
» a’

> Consequence of the ABJ equation with the proved ZFﬁ = Za,:

_dlnzrm dinZ
= asny ey ﬁdlna '

ms

s dlny
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® 3-loop QCD corrections to massive quark form factors (the non-singlet part)



Non-singlet QCD corrections to massive FFs

o TWO‘lOOp QCD COI’reCtionS fu”y knOWn analytica”y [Bernreuther, Bonciani, Gehrmann, Heinesch,

Leineweber, Mastrolia, Remiddi 04-06]

@ Feynman diagrams at 3-loop order: 227 non-singlet, 114 singlet

@ Partial 3-loop analytic results
» Non-singlet contribution at the large-Nc limit [Henn, smirmov, Smirnov, Steinhauser 16-18; Ablinger, Marquard,
Rana, Schneider 18]
» those with closed fermion |00pS [Lee, Smirnov, Smirnov, Steinhauser 18; Bliimlein, Marquard, Rana, Schneider 19]

@ The full set of 3-loop non-singlet master integrals were evaluated recently in
[Fael, Lange, Schonwald, Steinhauser 22] DY Solving DE in terms of a sequence of series
expansions.



Basis of MlIs and their DE w.r.t s

@ 427 non-singlet Mls from IdSolver (czaxon
A D—factorizing basis [Simirnov, Simirnov 20; Usovitsch 20] found USing
ImproVeMasters.m [Simirnov, Simirnov 20]

@ Derive the DE in x = s (with m; = 1)
dM (e,x) ZAII ex) ex),
Ajj: no irreducible denominator factors mixing D with s.

o Insert M;(e, x) = Z;T:l. €' I;;(x), and obtain

Zan ) Iy (%)

for 2166 I,,.

@ Set of poles appearing (dependent on Ml basis in use):

1
——{ 4,72,72,0,12,3,4, 2 ,—,1600}
t



Solving the e-expanded DE in s

Boundary condition taken at s = o where all non-singlet Mls are regular!
@ Using asy.m (pa simimov 10)=> non-singlet Mis have only the hard-regionin s — o.
@ 3-point Vertex = Quark Propagator

@ All masters in massive quark propagators known in QCD to 3-100p (e, simimov 107:

éém—p‘u
@p@@mﬂu
SLULSOO
100

[eN



Solving the e-expanded DE in s

Evolving numerically DE and deep-series expansion around (physical) singularities.

Two choices of integration contours:

Re [s/m?]

Technical settings:
» Used multi-precision numbers of 500 decimal digits
> Required a local step-error of O(1074°)

» Collected ~ 105 numerical samples with at least 20 correct digits

Long Chen



A sample of the high-precision numerical results

At m% = 20 (above the four-top threshold):
PR486[1,1,1,1,1,1,1,1,1,0,0,0]=
% (—0.020647440796693996305 +
0.015082900459951443810 ) +
(0.62590765632704470189 —
0.61859104529847674513 i) +

€ (1.5919548374820074115 +
3.7600381842246118352 1)

PR453[1,1,1,1,1,1,1,1,1,0,0,0]=
2 (0.09570626114959267810 +
0.33537685751829638912 i) +
(0.62590765632704470189 —
0.61859104529847674513 1)

Precision: ~ 20 correct digits



The next step(s) ...

@ Validate the numerical results for the non-singlet contributions at hand

@ Provide deep-series expansions around a set of (singular) points to encode the
(full) result, alternative to an interpolation table

@ Transforming into the normalized Fuchsian form (e, 15) could help to make the DE
less stiff when approaching singular points

@ A better control of the precision on amplitudes/form-factors

@ Singlet contributions? O(x a2) corrections? ......
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Summary and Outlook

@ A brief description of an efficient high-precision numerical method for computing
loop integrals :“numerically solving DE supplemented by deep series expansion
around singular points”, and its successful applications.

@ Massless quark FFs: the 3-loop QCD corrections with exact quark-mass
dependence + the resummation of non-decoupling top-mass logarithms.

@ 3-loop non-singlet contributions to massive quark FFs are now known
numerically (by two groups).

@ These are among the ingredients needed for computing N3LO QCD corrections to
heavy-quark pair productions in e*e~ collisions.

@ Further improvements to the approach are to be undertaken, applicable to other
multi-loop corrections to processes at e*e~ colliders.



Summary and Outlook

THAN T HOU
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From [Baikov, Chetyrkin, Kiihn, Rittinger, arXiv:1201.5804]
The decay rate of the Z-boson into hadrons in massless QCD up to O(a?):
GrM;,
24704/2
R™ =20.1945 + 20.1945 &g

+ (28.4587 — 13.0575 4 0) a?

nc

Iz =T R =

+ (—257.825 — 52.8736 — 2.12068) a2
+ (—1615.17 + 262.656 — 25.5814) af ,

The three terms in the brackets display separately non-singlet, axial singlet and vector
singlet contributions.
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