Numerical evaluation of QCD virtual corrections with top quarks in $e^{+} e^{-}$collisions

Long Chen

School of Physics, Shandong University
Precision calculations for future $e^{+} e^{-}$colliders: targets and tools 15 June 2022

In collaboration with M.Czakon, M.Niggetiedt, R.Poncelet
Based on: [LC, M.Czakon 2201.01797, 2112.03795]
[LC, M.Czakon, M.Niggetiedt 2109.01917]
[M.Czakon, M.Niggetiedt 2001.03008]
[LC, M.Czakon, R.Poncelet 1712.08075]

(1) Introduction: Motivation and Background
(2) The full top-mass dependence of singlet contributions to massless quark FFs
(3) 3-loop QCD corrections to massive quark form factors (the non-singlet part)
(4) Summary and Outlook

Motivation and Background

One of the take-home messages from the week-1

$e^{+} e^{-}$collisions offer a clean environment for studying properties of heavy quarks; A few \% to \% precision on cross sections and asymmetries of top-quark pair production above threshold at the on-going future $e^{+} e^{-}$colliders are possible.
[\rightarrow Talk by Simon]
Concerning precision QCD corrections for massive $Q \bar{Q}$ at lepton colliders:
$e^{+} e^{-} \rightarrow t \bar{t}$ near-threshold @ NNNLO
[Beneke et al., 15-17]
[\rightarrow Talk by Beneke]
$e^{+} e^{-} \rightarrow t \bar{t} @$ NNLO [Gao, Zhu 14; LC et al. 17] and for $b \bar{b} @$ NNLO [Bernreuther etal. 17]
Recently re-computed purely numerically using the Local-Unitarity method [Capatti etal. 22] $[\rightarrow$ Talk by Hirschi]

$\sqrt{s}[\mathrm{GeV}]$	360	381.3	400	500
Δ_{1}	0.627	0.352	0.266	0.127
Δ_{2}	0.281	0.110	0.070	0.020

The QCD correction factors to LO $A_{F B}^{b}$ at Z-pole ($\mu_{R}=m_{z}$) [Berreuther et al. 17]

	$1+A_{1}$	$1+A_{1}+A_{2}$	A_{1}	A_{2}
thrust axis:	0.9713	0.9608	-0.0287	-0.0105

Focus: Virtual QCD corrections to quark FFs

- Quark form-factors (FFs) couple an external color-neutral boson to a pair of quarks
- $e^{+} e^{-} \rightarrow Z / \gamma^{*} \rightarrow Q \bar{Q}+X, H / Z \rightarrow Q \bar{Q}+X$, Drell-Yan process, DIS etc
- simplest object to extract certain universal QCD quantities
- Massless quark FFs
- Purely massless QCD corrections analytically to 3-loop [Moch, Vermaseren, Vogt 05;

Baikov, Chetyrkin,Lee, Smirnov, Smirnov,Steinhauser 09-10; Gehrmann, Glover, Huber, Ikizlerli, Studerus 10; Gehrmann, Ahmed......]

- Top-quark loop-induced contributions at 3-loop [Lc, Czakon, Niggetiedt 21]
- 4-loop analytic results [Lee, Smirnov, Smirnov, Steinhauser 19; Manteuffel, Panzer,

Schabinger..., Lee, Manteuffel, Schabinger, Smirnov, Smirnov, Steinhauser 22] [\rightarrow Talk by Manteuffel]

- Massive quark FFs
- 2-loop QCD corrections known analytically [Berrreuther, Bonciani, Gehrmann, Heinesch, Leineweber, Mastrolia, Remiddi 04-06,...]
- Partial 3-loop analytic results [Henn, Smirnov, Smirnov, Steinhauser 16-18; Ablinger, Marquard, Rana, Schneider 18; Lee, Smirnov, Smirnov, Steinhauser 18; Blümlein, Marquard, Rana, Schneider 19]
- Truncated series-expansion results at 3-loop [Fael, Lange, Schönwald, Steinhauser 22].

Analytic methods for Feynman integrals \leftrightarrow Taks by Manteuffe, , Weinzier $]$

Many generally-applicable (semi) numerical approaches for evaluating multi-loop integrals (maybe another book?)

- Numerical evaluation of integral representations
- Sector decomposition [Binoth, Heinrich 00-04]
$[\rightarrow$ Talk by Maheria]
- Mellin-Barnes integral representation [Smirnov; Tausk 99]
$[\rightarrow$ Talk by Gluza]
- Numerical extrapolation of Feynman parametric integrals (in ϵ and $i \rho)$ [Doncker, Yuasa, Kato, Ishikawa, Kapenga, Olagbem 05-18]
- Loop-Tree-Duality [Catani, Gleisberg, Krauss, Rodrigo, Winter 08] and Local-Unitarity representation [Capatti, Hirschi, Pelloni,Ruili 20]
$[\rightarrow$ Talk by Hirschi]
- Numerically solving differential equations (DE) of master integrals (MI)
- Pure numerical evolution of DE supplemented by deep series expansion [Boughezal, Czakon, Schutzmeier 07; Czakon 08]
- A sequence of expansions around singular/regular points (DESS, "expansion-and-matching") [Lee, Smirnov, Smirnov 17-18; Fael, Lange, Schönwald, Steinhauser 21]
- DiffExp [Moriello; Hidding 19] (extensive use of the Frobenius method for a N-th order DE)
[\rightarrow Talk by Hidding]
- Auxiliary mass flow [Liu, Ma, Wang 17] (DE w.r.t the auxiliary mass i i with boundary at $\eta \rightarrow \infty$)
[\rightarrow Talk by Liu]

Computing MIs by numerically solving DE

- With the emergence of IBP relations [Chetyrkin, Tkachov ${ }^{81]}$ (and Laporta algorithm ${ }_{[00]}$), solving DE evolves as a systematic and powerful approach to treat Feynman integrals [Kotikov 91; Remiddi 97]
- The initial applications of the strategy "pure numerical evolution of $D E$ supplemented by deep series expansion" to (physical) amplitudes
[Boughezal, Czakon, Schutzmeier 07; Czakon 08]
- Further successful applications in the past:
- 2-loop QCD virtual corrections to $t \bar{t}$ production at LHC [Bärnreuther, Czakon, Fiedler 13;

LC, Czakon, Poncelet 17]

- $B \rightarrow X_{s} \gamma$ at $O\left(\alpha_{s}^{2}\right)$ [Czakon, Fiedler, Huber, Misiak, Schutzmeier, Steinhauser 15]
- 3-loop Higgs-gluon form factor with exact top-mass dependence [Czakon, Niggetiedt 20]

Two major directions of improvements of this approach:

- Better MI basis whose DE is less stiff
- More efficient computer algorithm/tools for solving DE
(1) Introduction: Motivation and Background
(2) The full top-mass dependence of singlet contributions to massless quark FFs

(3) 3-loop QCD corrections to massive quark form factors (the non-singlet part)

(4) Summary and Outlook

We work in QCD with $n_{f}=n_{l}+1=6$ flavors and only the top quark kept massive.

$$
\left.\bar{u}\left(p_{1}\right) \Gamma^{\mu} v\left(p_{2}\right) \delta_{i j}=\bar{u}\left(p_{1}\right)\left(v_{q} F^{V} \gamma^{\mu}+a_{q} F^{A} \gamma^{\mu} \gamma_{5}\right)\right) v\left(p_{2}\right) \delta_{i j}
$$

The non-singlet and singlet part of massless quark FF:

$$
\begin{aligned}
& F^{V}=F_{n s}^{V}+F_{s}^{V}=F_{n s}^{V}+\sum_{f} \frac{v_{f}}{v_{q}} F_{s, f}^{V} \\
& F^{A}=F_{n s}^{A}+F_{s}^{A}=F_{n s}^{A}+\sum_{f} \frac{a_{f}}{a_{q}} F_{s, f}^{A},
\end{aligned}
$$

depending on whether the external Z boson couples directly to the external quarks or not.

The computational work-flow

The tool-chain:

- Generating Feynman diagrams DiaGen [Czakon] $(\mathcal{O}$ (minutes))

- Applying Feynman Rules, Dirac/Lorentz algebra and Color algebra FORM [vermaseren] (\mathcal{O} (few minutes to hours))
- IBP reduction of loop integrals by
 Laporta algorithm IdSolver [crazon] (\mathcal{O} (hours to days))
- Calculating Master integrals (by
 DE) (it depends...)

Classification of 3-loop MIs

Purely massless ones

Those dependent on m_{t} :

- A subset of ggH topologies [Czakon, Niggetied 20$]$

- A new topology arising from:

- Derive the DE in $x=\frac{s}{m_{t}^{2}}$ by IBP reducing derivatives

$$
\frac{\mathrm{d} M_{i}(\epsilon, x)}{\mathrm{d} x}=\sum_{j} A_{i j}(\epsilon, x) M_{j}(\epsilon, x) \Rightarrow \vec{M}(x)=\hat{\mathrm{P}} \exp \left[\int \hat{A}(\epsilon, x) \mathrm{d} x\right] \cdot \vec{I}_{c}(\epsilon)
$$

- Transform the DE into an ϵ-form [Henn 13] found by CANONICA [meyer 17]

$$
\begin{aligned}
\vec{M}_{o}(x) & =T(\epsilon, y) \cdot \vec{M}_{n}(y), \quad \text { with } x=2-y-\frac{1}{y} \\
\vec{M}_{n}(y) & =\hat{P} \exp \left[\epsilon \sum_{a=0, \pm} \int \frac{1}{y-a} \mathrm{~d} y\right] \cdot \vec{I}_{c}(\epsilon) \\
& \left.=\sum_{n=0}^{\infty} \epsilon^{n} *(\text { a linear combination of HPLs [Remiddi, Vemmaseren } 99]\right)
\end{aligned}
$$

- Determine the $\vec{I}_{c}(\epsilon)$ from boundary at $x=0$ (the large-mass limit) Expansion-by-Subgraph [Chetyrkin 88;Smirnov 90] \Rightarrow heavy-graphs \otimes co-graphs:
single-scale vacuum integrals to 3L; massless vertex integrals to 2 L .

Solving the ϵ-expanded DE numerically

Extract the ODE system

- Set up the DE in $x=\frac{s}{m_{t}^{2}}$ by IBP reducing derivatives

$$
\frac{\mathrm{d} M_{i}(\epsilon, x)}{\mathrm{d} x}=\sum_{j} A_{i j}(\epsilon, x) M_{j}(\epsilon, x)
$$

- Derive the ϵ-free ODE w.r.t x

$$
M_{i}(\epsilon, x)=\sum_{l=\underline{i}}^{\bar{i}} \epsilon^{l} I_{i, l}(x)
$$

$$
\frac{\mathrm{d} I_{m}(x)}{\mathrm{d} x}=\sum_{n} B_{m n}(x) I_{n}(x)
$$

(variables other than x are inserted by numbers)

- $B(x)$: matrix of rational functions with a finite set of poles in the complex x-plane.

Set of poles appearing in the ODE of ~ 200 functions (dependent on MI basis in use):

$$
\frac{s}{m_{t}^{2}}=\left\{0,1, \frac{4}{3}, 2, \frac{8}{3}, 4, \frac{16}{3}, 8,16, \infty\right\}
$$

Solving the ϵ-expanded DE numerically

Prepare high-precision initial values by solving DE with a series ansatz

$$
\frac{\mathrm{d} I_{m}(x)}{\mathrm{d} x}=\sum_{n} B_{m n}(x) I_{n}(x)
$$

- Boundary condition at $x=0$: Large-Mass Expansion (LME)

$$
I_{G}\left(\left\{q_{e}\right\}, m \rightarrow \infty\right)=\sum_{\gamma \in G} I_{G / \gamma}\left(\left\{q_{e}\right\}\right) \otimes \hat{\mathbf{T}}_{e}\left[I_{\gamma}(\{q\}, m)\right]
$$

- massless vertex integrals to 2-L; single-scale vacuum integrals to 3L
- Technical problem: not suitable as the initial point of the numerical evolution
- The $B(x)$ is singular at $x=0$
- Only first few LME terms, not accurate enough at near-by x
- Resolution: a deep series expansion by solving DE around $x=0$ [Czakon 08]

$$
I(x)=\sum_{a \in S} \sum_{b=0}^{b_{a}} x^{a} \ln ^{b}(x)\left(\sum_{n=0}^{\infty} x^{n} C_{a, b, n}\right)
$$

In practice, the series is truncated at $\mathcal{O}\left(x^{100}\right)$, with integration constants fixed by LME.

Solving the ϵ-expanded DE numerically

Evolve ODE numerically between regular points in the complex x-plane

Technical settings: [Czakon, Niggetied 20$]$

- Used the bulirsch_stoer_dense_out method
- Used multi-precision numbers of 100 decimal digits
- Required a local step-error of $\mathcal{O}\left(10^{-40}\right)$
- Collected 2×10^{5} numerical samples with at least 20 correct digits

Solving the ϵ-expanded DE numerically

Series expansion around the (genuine) singular points and match

- Pseudo singular points
- Interpolation of data within a small vicinity (~ 0.001)
- A (deep) Taylor power series expansion
- Genuine singular points (e.g. the pair threshold)
- A power-logarithm (asymptotic) series expansion

$$
\vec{I}\left(x_{0}\right)=\hat{U}\left(x_{0}, o\right) \cdot \vec{I}_{c}=\sum_{a \in S} \sum_{b=0}^{b_{a}} x_{0}{ }^{a} \ln ^{b}\left(x_{0}\right)\left(\sum_{n=\mathrm{o}}^{\infty} x_{0}{ }^{n} C_{a, b, n}\right)
$$

with \vec{I}_{c} completely determined by $\vec{I}\left(x_{0}\right)$ at the matching point.

- Self-contained: No need to appeal to any external result!

A (complete) numerical answer for master integrals

Deep series expansion around (true) singular points + High-precision numerical results on a dense grid

Successively applied in the last 15 years in Czakon’s group: [Boughezal, Czakon, Schutzmeier 07; Czakon

Mission Impossible?

Restore numerically $M(\epsilon, x)=\sum_{k=p}^{\infty} \epsilon^{k} I_{k}(x)$ at $x=o$ despite singular $I_{k}(0)$?

- Laurent ϵ-expansion does not commute with $x \rightarrow \mathrm{o}$ if $I_{k}(x=\mathrm{o})$ are singular.
- According to the Expansion-by-Region (EbR) prescription ${ }_{[B e n e k e, ~ S m i n n o v ~ 98 ; ~ S m i r n o v ~ o z]: ~}^{\text {an }}$ $M(\epsilon, x=0)=$ the leading term of the hard-region (x^{0}-scaling) contribution to $M(\epsilon, x \rightarrow \mathrm{o}){ }_{\text {[Henn, Smirnov, Sminov } 133 .}$.
- The EbR ansatz agrees with the one from applying the well-known Frobenius method [Knien, Pikeener, Vereitin 17 ; Liu, Ma, Wang 17$]$,

$$
M(\epsilon, x \rightarrow \mathrm{o})=\sum_{a=r \epsilon}^{r \in S} \sum_{b=0}^{b_{a}} x^{a} \ln ^{b}(x)\left(\sum_{n=0}^{\infty} x^{n} C_{a, b, n}(\epsilon)\right)
$$

$C_{0,0,0}(\epsilon)=M(\epsilon, x=0)$ according to EbR.

- NOT necessary to keep the full ϵ dependence, just those with $\ln (x)$ resummed.
- This (numerical) matching strategy from $M(\epsilon, x \neq 0)$ has found many impressive applications recently, e.g. [Kniehl, Pikelner, Veretin 17; Lee, Smirnov, Smirnov 17; Liu, Ma, Wang 17; Liu, Ma, Tao, Zhang 20;

Finite remainders of singlet FFs: UV-renormalization

UV renormalization for individual singlet contributions [Cheyyrki., Künn 93: LC, Czakon, Nogetied 21]

$$
\begin{aligned}
& \mathbf{F}_{s, b}^{A}\left(a_{s}, m_{t}, \mu\right)=Z_{n s} Z_{2} F_{s, b}^{A}\left(\hat{a}_{s}, \hat{m}_{t}\right)+Z_{s} Z_{2}\left(F_{n s}^{A}\left(\hat{a}_{s}, \hat{m}_{t}\right)+\sum_{i=1}^{n_{f}} F_{s, i}^{A}\left(\hat{a}_{s}, \hat{m}_{t}\right)\right), \\
& \mathbf{F}_{s, t}^{A}\left(a_{s}, m_{t}, \mu\right)=Z_{n s} Z_{2} F_{s, t}^{A}\left(\hat{a}_{s}, \hat{m}_{t}\right)+Z_{s} Z_{2}\left(F_{n s}^{A}\left(\hat{a}_{s}, \hat{m}_{t}\right)+\sum_{i=1}^{n_{f}} F_{s, i}^{A}\left(\hat{a}_{s}, \hat{m}_{t}\right)\right),
\end{aligned}
$$

- $\hat{a}_{s} S_{\epsilon}=Z_{a_{s}}\left(\mu^{2}\right) a_{s}\left(\mu^{2}\right) \mu^{2 \epsilon}$ and $\hat{m}_{t}=Z_{m} m_{t}$
 $Z_{s} \equiv \frac{1}{n_{f}}\left(Z_{S}-Z_{n s}\right)$ and $\mu^{2} \frac{\mathrm{~d} Z_{s}}{\mathrm{~d} \mu^{2}}=\gamma_{s}\left(Z_{n s}+n_{f} Z_{s}\right)$.
For the total non-anomalous combination:

$$
\mathbf{F}_{s, b}^{A}\left(a_{s}, m_{t}\right)-\mathbf{F}_{s, t}^{A}\left(a_{s}, m_{t}\right)=Z_{n s} Z_{2}\left(F_{s, b}^{A}\left(\hat{a}_{s}, \hat{m}_{t}\right)-F_{s, t}^{A}\left(\hat{a}_{s}, \hat{m}_{t}\right)\right),
$$

The finite remainders after pulling out the IR singularities:

$$
\begin{aligned}
\mathcal{F}_{s, b}^{A}\left(a_{s}, m_{t}, \mu\right) & =I_{q \bar{q}} \mathbf{F}_{s, b}^{A}\left(a_{s}, m_{t}, \mu\right) \\
& =a_{s}^{2} \mathcal{F}_{s, b}^{A, 2}(\mu)+a_{s}^{3} \mathcal{F}_{s, b}^{A, 3}\left(m_{t}, \mu\right)+\mathcal{O}\left(a_{s}^{4}\right) \\
\mathcal{F}_{s, t}^{A}\left(a_{s}, m_{t}, \mu\right) & =I_{q \bar{q}} \mathbf{F}_{s, t}^{A}\left(a_{s}, m_{t}, \mu\right) \\
& =a_{s}^{2} \mathcal{F}_{s, t}^{A, 2}\left(m_{t}, \mu\right)+a_{s}^{3} \mathcal{F}_{s, t}^{A, 3}\left(m_{t}, \mu\right)+\mathcal{O}\left(a_{s}^{4}\right)
\end{aligned}
$$

- The $I_{q \bar{q}}$ needed reads (Catani's convention [Catani 98$]$)

$$
I_{q \bar{q}}=1-2 a_{S}\left(\frac{\mu^{2}}{-S-i 0^{+}}\right)^{\epsilon} \frac{e^{\epsilon \gamma_{E}}}{\Gamma(1-\epsilon)} C_{F}\left(\frac{1}{\epsilon^{2}}+\frac{3}{2 \epsilon}\right)+\mathcal{O}\left(a_{S}^{2}\right)
$$

The alternative $\overline{\text { MS-factorization convention }[\text { Becher, Neubert } 09]}$:

$$
\mathcal{F}_{s, b}^{A}\left(a_{s}, m_{t}, \mu\right)=I_{q \bar{q}} \mathbf{F}_{s, b}^{A}\left(a_{s}, m_{t}, \mu\right)=I_{q \bar{q}} Z_{q \bar{q}} \mathcal{F}_{s, b}^{\prime} A\left(a_{s}, m_{t}, \mu\right)
$$

- Finiteness: cancellation of poles at a numerical precision better than 20 digits.

Results for the singlet FF: the axial case
The exact result for finite remainder $\mathcal{F}_{s, b / t}^{A}(x)$ at 3-loop order:

- $x=s / m_{t}^{2}$ at $\mu^{2}=s$
- $\mathcal{C}_{a}=$ the real part of the 5 -flavor massless result [Gehrmann, Pimo 21]

Results for the singlet FF: the axial case
The exact result for finite remainder $\mathcal{F}_{s, b / t}^{A}(x)$ at 3-loop order:

- Strong check: $\mathcal{F}_{s, t}^{A}\left(a_{s}, x\right) \rightarrow \mathcal{F}_{s, b}^{A}\left(a_{s}, x\right)$ [Gehrmann, Primo 21] in the high-energy limit $(x \rightarrow \infty)$
- Typical threshold behavior due to Coulomb effect (but no divergence here!)

Results for the singlet FF: the axial case
The exact result for finite remainder $\mathcal{F}_{s, b / t}^{A}(x)$ at 3-loop order:

- Strong check: $\mathcal{F}_{s, t}^{A}\left(a_{s}, x\right) \rightarrow \mathcal{F}_{s, b}^{A}\left(a_{s}, x\right)$ [Gehrmann, Primo 2 2] in the high-energy limit $(x \rightarrow \infty)$
- The axial massless quark FF diverge in $x \rightarrow \mathrm{o}$: non-decoupling m_{t}-logarithm!

Results for the singlet FF: the vector case

The exact result for UV and IR finite $\mathcal{F}_{s, t}^{V}(x)$ at 3-loop order:

- Strong check: $\left.\mathcal{F}_{s, t}^{V}\left(a_{S}, x\right)\right|_{x \rightarrow \infty} \rightarrow \mathcal{F}_{s, b}^{V}\left(a_{S}, x\right)$ [Vermaseren et al 05; Baikov et al 09; Gehrmann et al 10]
- The top-loop contribution is power-suppressed in the low-energy $x \rightarrow$ o limit.

Light quark form factors in the heavy top limit

Appearance of the non-decoupling m_{t}-logarithms [Collins, Wilczee, Zee 78; Chetyrkin, Kühn 93]

$$
\begin{aligned}
& \overline{\mathcal{F}}_{s, b}^{A, 3}\left(m_{t} \rightarrow \infty\right)=\overline{\mathcal{F}}_{s, b}^{\bar{A}_{, 3}}(\mu)+\overline{\mathcal{F}}_{s, b}^{A_{\mathrm{nDC}, 3}}\left(m_{t}, \mu\right), \\
& =\overline{\mathcal{F}}_{s, b}^{\bar{A}_{, 3}}(\mu)-\frac{85}{9} C_{F}+\frac{4}{3} C_{F} L_{\mu}-\frac{1}{4} C_{F} L_{\mu}^{2}+\mathcal{O}\left(1 / m_{t}^{2}\right)
\end{aligned}
$$

where $L_{\mu} \equiv \ln \frac{\mu^{2}}{m_{t}^{2}}$.
A Wilson coefficient function $C_{w}\left(\bar{a}_{s}, \mu / m_{t}\right)$

$$
\begin{aligned}
\mathcal{F}_{s, b}^{A}-\left.\mathcal{F}_{s, t}^{A}\right|_{m_{t} \rightarrow \infty} & =\overline{\mathcal{F}}_{s, b}^{A}\left(\bar{a}_{s}, \mu\right)+\overline{\mathcal{F}}_{s, b}^{A_{n D C}}\left(\bar{a}_{s}, m_{t}, \mu\right)-\left.\overline{\mathcal{F}}_{s, t}^{A}\left(\bar{a}_{s}, m_{t}, \mu\right)\right|_{m_{t} \rightarrow \infty} \\
& =\overline{\mathcal{F}}_{s, b}^{\bar{A}}\left(\bar{a}_{s}, \mu\right)-C_{w}\left(\bar{a}_{s}, \mu / m_{t}\right)\left(\overline{\mathcal{F}}_{n s}^{A}\left(\bar{a}_{s}, \mu\right)+\sum_{i=1}^{n_{l}} \overline{\mathcal{F}}_{s, i}^{\bar{A}}\left(\bar{a}_{s}, \mu\right)\right)+\mathcal{O}\left(1 / m_{t}^{2}\right) .
\end{aligned}
$$

The renormalized low-energy effective Lagrangian [Cheeyrkn, Kän 93: Lc, Czakon. Nggetiedt 21$]$

$$
\begin{aligned}
\delta \mathcal{L}_{\mathrm{eff}}^{R}= & \left(Z_{n s} \sum_{i=1}^{n_{l}} a_{i} \bar{\psi}_{i}^{B} \gamma^{\mu} \gamma_{5} \psi_{i}^{B}+a_{b} Z_{s}\left[J_{5}^{\mu}\right]_{B} \longrightarrow n_{l}\right. \text {-flavor massless part } \\
& \left.+a_{t} C_{w}\left(a_{s}, \mu / m_{t}\right)\left(Z_{n s}+n_{l} Z_{s}\right)\left[J_{5}^{\mu}\right]_{B}\right) Z_{\mu}
\end{aligned}
$$

with $J_{5}^{\mu}=\sum_{i=1}^{n_{l}} \bar{\psi}_{i} \gamma^{\mu} \gamma_{5} \psi_{i}$.

RG equation of the Wilson coefficient $C_{w}\left(\bar{a}_{s}, \mu / m_{t}\right)$ |cheyeyrkin, Kühn 93: LC, Czakon, Niggetied 21]

$$
\mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} C_{w}\left(\bar{a}_{s}, \mu / m_{t}\right)=\bar{\gamma}_{s}-n_{l} \bar{\gamma}_{s} C_{w}\left(\bar{a}_{s}, \mu / m_{t}\right)
$$

$\mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}}\left[J_{5, q}^{\mu}\right]_{R}=\bar{\gamma}_{s}\left[J_{5}^{\mu}\right]_{R}$ with $J_{5}^{\mu}=\sum_{i=1}^{n_{l}}=\bar{\psi}_{i} \gamma^{\mu} \gamma_{5} \psi_{i}$ and $\mu^{2} \frac{\mathrm{~d} Z_{s}}{\mathrm{~d} \mu^{2}}=\bar{\gamma}_{s}\left(Z_{n s}+n_{l} Z_{s}\right)$.

The solution for $C_{t} \equiv-1 / n_{l}+C_{w}$

$$
\begin{aligned}
\mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} C_{t}\left(\bar{a}_{s}, \mu / m_{t}\right) & =n_{l} \bar{\gamma}_{s} C_{t}\left(\bar{a}_{s}, \mu / m_{t}\right), \\
C_{t}\left(\bar{a}_{s}(\mu), \mu / m_{t}\right) & =C_{t}\left(\bar{a}_{s}\left(m_{t}\right), 1\right) \exp \left(\int_{\bar{a}_{s}\left(m_{t}\right)}^{\bar{a}_{s}(\mu)} \frac{-n_{l} \bar{\gamma}_{s}\left(a_{s}\right)}{\beta\left(a_{s}\right)} \frac{\mathrm{d} a_{s}}{a_{s}}\right),
\end{aligned}
$$

in Larin's scheme.
The solution can also be done by numerically solving the RGE.

The Adler-Bell-Jackiw (ABJ) equation in terms of renormalized operators:

$$
\begin{aligned}
{\left[\partial_{\mu} J_{5, S}^{\mu}\right]_{R} } & =a_{s} n_{f} \mathrm{~T}_{F}[F \tilde{F}]_{R} \\
Z_{S}\left[\partial_{\mu} J_{5, S}^{\mu}\right]_{B} & =a_{S} n_{f} \mathrm{~T}_{F}\left(Z_{F J}\left[\partial_{\mu} \mu_{5, S}^{\mu}\right]_{B}+Z_{F \tilde{F}}[F \tilde{F}]_{B}\right)
\end{aligned}
$$

with $Z_{s} \equiv Z_{s}^{f} Z_{s}^{m s}$.
Results for $Z_{s}^{m s}$:

- $\mathcal{O}\left(a_{s}^{3}\right)$ from UV-poles in $Z q q$-vertex $\left(Z_{s}^{f}\right.$ at $\mathcal{O}\left(a_{s}^{2}\right)$ from 3L $A V V$-amplitude) [Larin 93]
- $\mathcal{O}\left(a_{s}^{4}\right)$ in the calculation of Ellis-Jaffe sum rule [Larin, Ritbergen, vermaseren 97]
- $\mathcal{O}\left(a_{s}^{5}\right)$ from 4-loop calculations by combining [Lc, Czakon 22]
- The anomalous Ward-Takahashi identity (with a NAC- γ_{5}):

- Consequence of the ABJ equation with the proved $Z_{\tilde{F} \tilde{F}}=Z_{a_{s}}$:

$$
\gamma_{s}^{m s} \equiv \frac{\mathrm{~d} \ln Z_{s}^{m s}}{\mathrm{~d} \ln \mu^{2}}=a_{s} n_{f} \mathrm{~T}_{F} \gamma_{F J}-\beta \frac{\mathrm{d} \ln Z_{s}^{f}}{\mathrm{~d} \ln a_{s}} .
$$

Outline

(1) Introduction: Motivation and Background
(2) The full top-mass dependence of singlet contributions to massless quark FFs
(3) 3-loop QCD corrections to massive quark form factors (the non-singlet part)

- Two-loop QCD corrections fully known analytically [Berreuther, Bonciani, Gehrman, Heinesch,

Leineweber, Mastrolia, Remiddi 04-06]

- Feynman diagrams at 3-loop order: 227 non-singlet, 114 singlet
- Partial 3-loop analytic results
- Non-singlet contribution at the large-Nc limit [Henn, Smirnov, Smirnov, Steinhauser 16-18; Ablinger, Marquard, Rana, Schneider 18]
- those with closed fermion loops [Lee, Smirnov, Smirnov, Steinhauser 18; Blümlein, Marquard, Rana, Schneider 19]
- The full set of 3-loop non-singlet master integrals were evaluated recently in [Fael, Lange, Schörwal, Steinhauser 22] by solving DE in terms of a sequence of series expansions.

Basis of Mls and their DE w.r.t s

- 427 non-singlet MIs from IdSolver [Czakon]

A D-factorizing basis [Simirnov, Simirnov 20; Usovitsch 20] found using ImproveMasters.m [Simirnov, Simirnov 20]

- Derive the DE in $x=s$ (with $m_{t}=1$)

$$
\frac{\mathrm{d} M_{i}(\epsilon, x)}{\mathrm{d} x}=\sum_{j} A_{i j}(\epsilon, x) M_{j}(\epsilon, x)
$$

$A_{i j}$: no irreducible denominator factors mixing D with s.

- Insert $M_{i}(\epsilon, x)=\sum_{l=\underline{i}}^{\bar{i}} \epsilon^{l} I_{i, l}(x)$, and obtain

$$
\frac{\mathrm{d} I_{m}(x)}{\mathrm{d} x}=\sum_{n} B_{m n}(x) I_{n}(x)
$$

for $2166 I_{n}$.

- Set of poles appearing (dependent on MI basis in use):

$$
\frac{s}{m_{t}^{2}}=\left\{-4,-2,-\frac{1}{2}, 0,1,2,3,4, \frac{9}{2} \pm \frac{3}{2} \sqrt{3}, \frac{16}{3}, 16, \infty\right\}
$$

Solving the ϵ-expanded DE in s

Boundary condition taken at $s=o$ where all non-singlet Mls are regular!

- Using asy.m ${ }_{[P a k, ~ S i m i r n o v ~}^{10]} \Rightarrow$ non-singlet MIs have only the hard-region in $s \rightarrow 0$.
- 3-point Vertex \Rightarrow Quark Propagator

- All masters in massive quark propagators known in QCD to 3-loop [Lee, Simimov 10]:
\otimes
G_{8}

G_{3}

G_{7}

Solving the ϵ-expanded DE in s

Evolving numerically DE and deep-series expansion around (physical) singularities.
Two choices of integration contours:
-

0

Technical settings:

- Used multi-precision numbers of 500 decimal digits
- Required a local step-error of $\mathcal{O}\left(10^{-40}\right)$
- Collected $\sim 10^{5}$ numerical samples with at least 20 correct digits

A sample of the high-precision numerical results

At $\frac{s}{m_{t}^{2}}=20$ (above the four-top threshold):
-

$$
\begin{aligned}
& \mathrm{PR} 486[1,1,1,1,1,1,1,1,1,0,0,0]= \\
& \frac{1}{\epsilon}(-0.020647440796693996305+ \\
& 0.015082900459951443810 i)+ \\
& (0.62590765632704470189- \\
& 0.61859104529847674513 i)+ \\
& \epsilon(1.5919548374820074115+ \\
& 3.7600381842246118352 i)
\end{aligned}
$$

$$
\begin{aligned}
& \text { PR453[1, 1, 1, 1, 1, 1, 1, 1, 1, 0, o, o }]= \\
& \frac{1}{\epsilon}(0.09570626114959267810+ \\
& 0.33537685751829638912 i)+ \\
& (0.62590765632704470189- \\
& 0.61859104529847674513 i)
\end{aligned}
$$

Precision: ~ 20 correct digits

- Validate the numerical results for the non-singlet contributions at hand
- Provide deep-series expansions around a set of (singular) points to encode the (full) result, alternative to an interpolation table
- Transforming into the normalized Fuchsian form [Lee, 15] could help to make the DE less stiff when approaching singular points
- A better control of the precision on amplitudes/form-factors
- Singlet contributions? $\mathcal{O}\left(\alpha \alpha_{s}^{2}\right)$ corrections?

Outline

(1) Introduction: Motivation and Background
(2) The full top-mass dependence of singlet contributions to massless quark FFs
(3) 3-loop QCD corrections to massive quark form factors (the non-singlet part)
4. Summary and Outlook

- A brief description of an efficient high-precision numerical method for computing loop integrals :"numerically solving DE supplemented by deep series expansion around singular points", and its successful applications.
- Massless quark FFs: the 3-loop QCD corrections with exact quark-mass dependence + the resummation of non-decoupling top-mass logarithms.
- 3-loop non-singlet contributions to massive quark FFs are now known numerically (by two groups).
- These are among the ingredients needed for computing N3 ${ }^{3}$ LO QCD corrections to heavy-quark pair productions in $e^{+} e^{-}$collisions.
- Further improvements to the approach are to be undertaken, applicable to other multi-loop corrections to processes at $e^{+} e^{-}$colliders.

Summary and Outlook

$$
\mathscr{T} \mathscr{H} \mathscr{A} \mathscr{N} \mathscr{K} \quad \mathscr{Y} \mathscr{O} \mathscr{U}
$$

Backup Slides

From [Baikov, Chetyrkin, Kühn, Rittinger, arXiv:1201.5804]

The decay rate of the Z-boson into hadrons in massless QCD up to $\mathcal{O}\left(\alpha_{s}^{4}\right)$:

$$
\begin{aligned}
\Gamma_{Z}= & \Gamma_{0} R^{\mathrm{nc}}=\frac{G_{F} M_{Z}^{3}}{24 \pi \sqrt{2}} R^{\mathrm{nc}} \\
R^{\mathrm{nc}}= & 20.1945+20.1945 \alpha_{s} \\
& +(28.4587-13.0575+\mathrm{o}) \alpha_{s}^{2} \\
& +(-257.825-52.8736-2.12068) \alpha_{s}^{3} \\
& +(-1615.17+262.656-25.5814) \alpha_{s}^{4},
\end{aligned}
$$

The three terms in the brackets display separately non-singlet, axial singlet and vector singlet contributions.

