Numerical evaluation of QCD virtual corrections with top quarks in e^+e^- collisions

Long Chen

School of Physics, Shandong University

Precision calculations for future e^+e^- colliders: targets and tools 15 June 2022

In collaboration with M.Czakon, M.Niggetiedt, R.Poncelet

Based on: [LC, M.Czakon 2201.01797, 2112.03795]

[LC, M.Czakon, M.Niggetiedt 2109.01917]

[M.Czakon, M.Niggetiedt 2001.03008]

[LC, M.Czakon, R.Poncelet 1712.08075]

Outline

1 Introduction: Motivation and Background

2 The full top-mass dependence of singlet contributions to massless quark FFs

3-loop QCD corrections to massive quark form factors (the non-singlet part)

Motivation and Background

One of the take-home messages from the week-1

 e^+e^- collisions offer a clean environment for studying properties of heavy quarks; A few ‰ to % precision on cross sections and asymmetries of top-quark pair production above threshold at the on-going future e^+e^- colliders are possible.

 $[\to \text{Talk by Simon}]$

Concerning precision \boldsymbol{QCD} corrections for massive $Q\bar{Q}$ at lepton colliders:

$$e^+e^-
ightarrow t ar{t}$$
 near-threshold @ $NNNLO$ [Beneke *et al.*, 15-17]

 $[\to \mathsf{Talk}\;\mathsf{by}\;\mathsf{Beneke}]$

$$e^+e^- o tar t$$
 @ $NNLO$ [Gao, Zhu 14; LC et al. 17] and for $bar b$ @ $NNLO$ [Bernreuther et al. 17]

Recently re-computed purely numerically using the Local-Unitarity method [Capatti et al. 22] [\rightarrow Talk by Hirschil]

$$\sigma_{\mbox{NNLO}}^{t\bar{t}}=\sigma_{\mbox{LO}}^{t\bar{t}}\left(\imath+\Delta_{\mbox{\scriptsize 1}}+\Delta_{\mbox{\scriptsize 2}}\right)$$
 :

\sqrt{s} [GeV]	360	381.3	400	500
Δ_1	0.627	0.352	0.266	0.127
Δ_2	0.281	0.110	0.070	0.020

The QCD correction factors to LO A_{FB}^b at Z-pole ($\mu_R=m_z$) [Bernreuther *et al.* 17]

	$1 + A_1$	$1 + A_1 + A_2$	A_1	A ₂
thrust axis:	0.9713	0.9608	-0.0287	-0.0105

Focus: Virtual QCD corrections to quark FFs

- Quark form-factors (FFs) couple an external color-neutral boson to a pair of quarks
 - $e^+e^- o Z/\gamma^* o Q\bar{Q} + X, \; H/Z o Q\bar{Q} + X$, Drell-Yan process, DIS etc
 - simplest object to extract certain universal QCD quantities
- Massless quark FFs
 - Purely massless QCD corrections analytically to 3-loop [Moch, Vermaseren, Vogt 05; Baikov, Chetyrkin, Lee, Smirnov, Smirnov, Steinhauser 09-10; Gehrmann, Glover, Huber, Ikizlerli, Studerus 10; Gehrmann, Ahmed......]
 - ► Top-quark loop-induced contributions at 3-loop [LC, Czakon, Niggetiedt 21]
 - ▶ 4-loop analytic results [Lee, Smirnov, Smirnov, Steinhauser 19; Manteuffel, Panzer, Schabinger..., Lee, Manteuffel, Schabinger, Smirnov, Smirnov, Steinhauser 22]
 [→ Talk by Manteuffel]
- Massive quark FFs
 - 2-loop QCD corrections known analytically [Bernreuther, Bonciani, Gehrmann, Heinesch, Leineweber, Mastrolia, Remiddi 04-06,...]
 - Partial 3-loop analytic results [Henn, Smirnov, Smirnov, Steinhauser 16-18; Ablinger, Marquard, Rana, Schneider 18; Lee,
 Smirnov, Smirnov, Steinhauser 18; Blümlein, Marquard, Rana, Schneider 19]
 - Truncated series-expansion results at 3-loop [Fael, Lange, Schönwald, Steinhauser 22].

Various (numerical) methods for multi-loop integrals

Analytic methods for Feynman integrals $[\rightarrow Talks by Manteuffel, Weinzierl]$

Many generally-applicable (semi) **numerical** approaches for evaluating multi-loop integrals (maybe another book?)

- Numerical evaluation of integral representations
 - ► Sector decomposition [Binoth, Heinrich 00-04]

[→ Talk by Maheria] [→ Talk by Gluza]

- ► Mellin-Barnes integral representation [Smirnov; Tausk 99]
- Numerical extrapolation of Feynman parametric integrals (in ε and iρ) [Doncker, Yuasa, Kato, Ishikawa, Kapenga, Olagbem 05-18]
- Loop-Tree-Duality [Catani, Gleisberg, Krauss, Rodrigo, Winter 08] and Local-Unitarity representation [Capatti, Hirschi, Pelloni,Ruijl 20] [→ Talk by Hirschi]
- . . .
- Numerically solving differential equations (DE) of master integrals (MI)
 - Pure numerical evolution of DE supplemented by deep series expansion [Boughezal, Czakon, Schutzmeier 07; Czakon 08]
 - A sequence of expansions around singular/regular points
 (DESS, "expansion-and-matching") [Lee, Smirnov, Smirnov 17-18; Fael, Lange, Schönwald, Steinhauser 21]
 - ▶ DiffExp [Moriello; Hidding 19] (extensive use of the Frobenius method for a *N*-th order DE)
 - Auxiliary mass flow [Liu, Ma, Wang 17] (DE w.r.t the auxiliary mass $i\eta$ with boundary at $\eta \to \infty$)

Computing MIs by numerically solving DE

- With the emergence of IBP relations [Chetyrkin, Tkachov 81] (and Laporta algorithm [00]), solving DE evolves as a systematic and powerful approach to treat Feynman integrals [Kotikov 91; Remiddi 97]
- The initial applications of the strategy "pure numerical evolution of DE supplemented by deep series expansion" to (physical) amplitudes

[Boughezal, Czakon, Schutzmeier 07; Czakon 08]

- Further successful applications in the past:
 - 2-loop QCD virtual corrections to tt production at LHC [Barnreuther, Czakon, Fiedler 13; LC, Czakon, Poncelet 17]
 - ullet $B o X_{
 m S}\gamma$ at $O(lpha_{
 m S}^2)$ [Czakon, Fiedler, Huber, Misiak, Schutzmeier, Steinhauser 15]
 - 3-loop Higgs-gluon form factor with exact top-mass dependence [Czakon, Niggetiedt 20]

Two major directions of improvements of this approach:

- Better MI basis whose DE is less stiff
- More efficient computer algorithm/tools for solving DE

Outline

Introduction: Motivation and	D I
in introduction: Mativation and	Backaralina

The full top-mass dependence of singlet contributions to massless quark FFs

3-loop QCD corrections to massive quark form factors (the non-singlet part)

Singlet contributions to the massless quark FFs

We work in QCD with $n_f = n_l + 1 = 6$ flavors and only the top quark kept massive.

$$\bar{u}(p_1) \Gamma^{\mu} v(p_2) \, \delta_{ij} = \bar{u}(p_1) \left(v_q \, F^V \gamma^{\mu} \, + \, a_q \, F^A \gamma^{\mu} \gamma_5 \right)) \, v(p_2) \, \delta_{ij}$$

The non-singlet and singlet part of massless quark FF:

$$F^{V} = F_{ns}^{V} + F_{s}^{V} = F_{ns}^{V} + \sum_{f} \frac{v_{f}}{v_{q}} F_{s,f}^{V},$$

$$F^{A} = F_{ns}^{A} + F_{s}^{A} = F_{ns}^{A} + \sum_{f} \frac{a_{f}}{a_{q}} F_{s,f}^{A},$$

depending on whether the external Z boson couples directly to the external quarks or not.

The computational work-flow

The tool-chain:

- Generating Feynman diagrams
 DiaGen [Czakon] (O(minutes))
- Applying Feynman Rules, Dirac/Lorentz algebra and Color algebra FORM [Vermaseren] (O(few minutes to hours))
- IBP reduction of loop integrals by Laporta algorithm
 IdSolver [Czakon] (O(hours to days))
- Calculating Master integrals (by DE) (it depends...)

Classification of 3-loop MIs

Purely massless ones [Gehrmann, et al 10]:

Those dependent on m_t :

► A subset of *ggH* topologies [Czakon, Niggetiedt 20]

A new topology arising from:

Solving the ϵ -form DE of MIs analytically

• Derive the DE in $x = \frac{s}{m_t^2}$ by IBP reducing derivatives

$$\frac{\mathrm{d} M_i(\epsilon, x)}{\mathrm{d} x} = \sum_j A_{ij}(\epsilon, x) M_j(\epsilon, x) \quad \Rightarrow \quad \vec{M}(x) = \hat{P} \exp\left[\int \hat{A}(\epsilon, x) \, \mathrm{d} x\right] \cdot \vec{I}_c(\epsilon)$$

ullet Transform the DE into an ϵ -form [Henn 13] found by **CANONICA** [Meyer 17]

$$ec{M}_o(x) = T(\epsilon,y) \cdot ec{M}_n(y)$$
, with $x = 2 - y - rac{1}{y}$ $ec{M}_n(y) = \hat{\mathbb{P}} \exp\left[\epsilon \sum_{a=o,\pm} \int rac{1}{y-a} \, \mathrm{d}y\right] \cdot ec{I}_c(\epsilon)$
$$= \sum_{n=o}^{\infty} \epsilon^n * (\text{a linear combination of HPLs}_{\text{[Remiddi, Vermaseren 99]}})$$

• Determine the $\vec{l}_{\mathcal{C}}(\varepsilon)$ from boundary at x=0 (the large-mass limit) **Expansion-by-Subgraph** [Chetyrkin 88;Smirnov 90] \Rightarrow heavy-graphs \otimes co-graphs:

single-scale vacuum integrals to 3L; massless vertex integrals to 2L.

Extract the ODE system

• Set up the DE in $x = \frac{s}{m_t^2}$ by IBP reducing derivatives

$$\frac{\mathrm{d} M_i(\epsilon, x)}{\mathrm{d} x} = \sum_j A_{ij}(\epsilon, x) M_j(\epsilon, x) ,$$

• Derive the ϵ -free ODE w.r.t x

$$M_i(\epsilon, x) = \sum_{l=\underline{i}}^{\overline{i}} \epsilon^l I_{i,l}(x)$$

$$\frac{\mathrm{d}\,I_m(x)}{\mathrm{d}\,x} = \sum_n B_{mn}(x)\,I_n(x)$$

(variables other than *x* are inserted by numbers)

 \bullet B(x): matrix of *rational* functions with a finite set of poles in the complex x-plane.

Set of poles appearing in the ODE of \sim 200 functions (dependent on MI basis in use):

$$\frac{s}{m_t^2} = \left\{ 0, \ 1, \ \frac{4}{3}, \ 2, \ \frac{8}{3}, \ 4, \ \frac{16}{3}, \ 8, \ 16, \ \infty \right\}$$

Prepare high-precision initial values by solving DE with a series ansatz

$$\frac{\mathrm{d}\,I_m(x)}{\mathrm{d}\,x} = \sum_n B_{mn}(x)\,I_n(x)$$

• Boundary condition at x = 0: Large-Mass Expansion (LME)

$$I_G(\lbrace q_e \rbrace, m \to \infty) = \sum_{\gamma \in G} I_{G/\gamma}(\lbrace q_e \rbrace) \otimes \mathbf{\hat{T}}_e \big[I_{\gamma}(\lbrace q \rbrace, m) \big]$$

- massless vertex integrals to 2-L; single-scale vacuum integrals to 3L
- Technical problem: not suitable as the initial point of the numerical evolution
 - ▶ The B(x) is singular at x = 0
 - Only first few LME terms, not accurate enough at near-by x
- Resolution: a deep series expansion by solving DE around x = 0 [Czakon 08]

$$I(x) = \sum_{a \in S} \sum_{b=0}^{b_a} x^a \ln^b(x) \left(\sum_{n=0}^{\infty} x^n C_{a,b,n} \right)$$

In practice, the series is truncated at $\mathcal{O}(x^{100})$, with integration constants fixed by LME.

Evolve ODE numerically between regular points in the *complex x-plane*

Technical settings: [Czakon, Niggetiedt 20]

- Used the bulirsch_stoer_dense_out method
- Used multi-precision numbers of 100 decimal digits
- ► Required a *local* step-error of O(10⁻⁴⁰)
- ► Collected 2 × 10⁵ numerical samples with at least 20 correct digits

Use the odeint C++ library:

[Ahnert,Mulansky' 2011]

Series expansion around the (genuine) singular points and match

- Pseudo singular points
 - ▶ Interpolation of data within a small vicinity (\sim 0.001)
 - ► A (deep) Taylor power series expansion
- Genuine singular points (e.g. the pair threshold)
 - A power-logarithm (asymptotic) series expansion

$$\vec{I}(x_0) = \hat{U}(x_0, \mathbf{0}) \cdot \vec{I}_c = \sum_{a \in S} \sum_{b=0}^{b_a} x_0^a \ln^b(x_0) \left(\sum_{n=0}^{\infty} x_0^n C_{a,b,n} \right)$$

with \vec{I}_c completely determined by $\vec{I}(x_0)$ at the *matching* point.

► Self-contained: **No** need to appeal to any external result!

A (complete) numerical answer for master integrals

Deep series expansion around (true) singular points

+ High-precision numerical results on a dense grid

Successively applied in the last 15 years in Czakon's group: [Boughezal, Czakon, Schutzmeier 07; Czakon

08; Bärnreuther, Czakon, Fiedler 13; LC, Czakon, Poncelet 17; Czakon, Niggetiedt 20]

Mission Impossible?

Restore numerically $M(\epsilon,x) = \sum_{k=p}^{\infty} \epsilon^k I_k(x)$ at x = 0 despite singular $I_k(0)$?

- Laurent ϵ -expansion does not commute with $x \to o$ if $I_k(x = o)$ are singular.
- According to the *Expansion-by-Region* (EbR) prescription [Beneke, Smirnov 98; Smirnov 02]: $M(\varepsilon, x=0)$ = the **leading** term of the **hard-region** (x^0 -scaling) contribution to $M(\varepsilon, x\to 0)$ [Henn, Smirnov, Smirnov 13].
- The EbR ansatz agrees with the one from applying the well-known Frobenius method [Kniehl, Pikelner, Veretin 17; Liu, Ma, Wang 17],

$$M(\boldsymbol{\epsilon}, x \to 0) = \sum_{a=r \boldsymbol{\epsilon}}^{r \in S} \sum_{b=0}^{b_a} x^a \ln^b(x) \left(\sum_{n=0}^{\infty} x^n C_{a,b,n}(\boldsymbol{\epsilon}) \right)$$

 $C_{0,0,0}(\epsilon) = M(\epsilon, x = 0)$ according to EbR.

- ullet NOT necessary to keep the full ϵ dependence, just those with $\ln(x)$ resummed.
- This (numerical) matching strategy from $M(\varepsilon, x \neq 0)$ has found many impressive applications recently, e.g. [Kniehl, Pikelner, Veretin 17; Lee, Smirnov, Smirnov 17; Liu, Ma, Wang 17; Liu, Ma, Wang 17; Liu, Ma, Wang 17; Liu, Ma, Wang 21; Liu, Ma 22; Baranowski, Delto, Melnikov, Wang 21-22; Fael, Lange, Schönwald, Steinhauser 22; Lee, Manteuffel, Schabinger, Smirnov, Steinhauser 221

Finite remainders of singlet FFs: UV-renormalization

UV renormalization for individual singlet contributions [Ohelyrkin, Kühn 93; LC, Czakon, Niggetiedt 21]

$$\begin{split} \mathbf{F}_{s,b}^{A}(a_{s},m_{t},\mu) \; &= \; \mathbf{Z}_{ns} \, \mathbf{Z}_{2} \, \mathbf{F}_{s,b}^{A}(\hat{a}_{s},\hat{m}_{t}) \, + \, \mathbf{Z}_{s} \, \mathbf{Z}_{2} \left(\mathbf{F}_{ns}^{A}(\hat{a}_{s},\hat{m}_{t}) + \sum_{i=1}^{n_{f}} F_{s,i}^{A}(\hat{a}_{s},\hat{m}_{t}) \right), \\ \mathbf{F}_{s,t}^{A}(a_{s},m_{t},\mu) \; &= \; \mathbf{Z}_{ns} \, \mathbf{Z}_{2} \, \mathbf{F}_{s,t}^{A}(\hat{a}_{s},\hat{m}_{t}) \, + \, \mathbf{Z}_{s} \, \mathbf{Z}_{2} \left(\mathbf{F}_{ns}^{A}(\hat{a}_{s},\hat{m}_{t}) + \sum_{i=1}^{n_{f}} F_{s,i}^{A}(\hat{a}_{s},\hat{m}_{t}) \right), \end{split}$$

- \bullet $\hat{a}_s S_{\epsilon} = Z_{a_s}(\mu^2) a_s(\mu^2) \mu^{2\epsilon}$ and $\hat{m}_t = Z_m m_t$
- A non-anticommuting γ_5 [tHooft, Veltman 71; Breitenlohner, Maison 77] in Larin's prescription [Larin 93] $Z_S \equiv \frac{1}{n_f} (Z_S Z_{ns})$ and $\mu^2 \frac{\mathrm{d}Z_s}{\mathrm{d}u^2} = \gamma_s (Z_{ns} + n_f Z_s)$.

For the total non-anomalous combination:

$$\mathbf{F}_{s,b}^{A}(a_{s},m_{t}) - \mathbf{F}_{s,t}^{A}(a_{s},m_{t}) \ = \ \mathbf{Z}_{ns} \, \mathbf{Z}_{2} \, \left(\mathbf{F}_{s,b}^{A}(\hat{a}_{s},\hat{m}_{t}) - \mathbf{F}_{s,t}^{A}(\hat{a}_{s},\hat{m}_{t}) \right),$$

Finite remainders of singlet FFs: IR-subtraction

The **finite remainders** after pulling out the IR singularities:

$$\begin{split} \mathcal{F}_{s,b}^{A}(a_{s},m_{t},\mu) &= I_{q\bar{q}} \, \mathbf{F}_{s,b}^{A}(a_{s},m_{t},\mu) \\ &= a_{s}^{2} \, \mathcal{F}_{s,b}^{A,2}(\mu) \, + \, a_{s}^{3} \, \mathcal{F}_{s,b}^{A,3}(m_{t},\mu) \, + \, \mathcal{O}(a_{s}^{4}) \, , \\ \mathcal{F}_{s,t}^{A}(a_{s},m_{t},\mu) &= I_{q\bar{q}} \, \mathbf{F}_{s,t}^{A}(a_{s},m_{t},\mu) \\ &= a_{s}^{2} \, \mathcal{F}_{s,t}^{A,2}(m_{t},\mu) \, + \, a_{s}^{3} \, \mathcal{F}_{s,t}^{A,3}(m_{t},\mu) \, + \, \mathcal{O}(a_{s}^{4}) \, . \end{split}$$

• The $I_{q\bar{q}}$ needed reads (Catani's convention [Catani 98])

$$I_{q\bar{q}} = 1 - 2 a_s \left(\frac{\mu^2}{-s - i o^+} \right)^{\epsilon} \frac{e^{\epsilon \gamma_E}}{\Gamma(1 - \epsilon)} C_F \left(\frac{1}{\epsilon^2} + \frac{3}{2\epsilon} \right) + \mathcal{O}(a_s^2).$$

The alternative \overline{MS} -factorization convention [Becher, Neubert 09]:

$$\mathcal{F}_{s,b}^{A}(a_{s},m_{t},\mu) \, = \, I_{q\bar{q}} \, \mathbf{F}_{s,b}^{A}(a_{s},m_{t},\mu) = I_{q\bar{q}} \, Z_{q\bar{q}} \, \mathcal{F}_{s,b}^{'A}(a_{s},m_{t},\mu)$$

• Finiteness: cancellation of poles at a numerical precision better than 20 digits.

Results for the singlet FF: the axial case

The exact result for finite remainder $\mathcal{F}_{s,h/t}^A(x)$ at 3-loop order:

- $x = s/m_t^2$ at $\mu^2 = s$
- $ightharpoonup \mathcal{C}_a = ext{the real part of the 5-flavor massless result}$ [Gehrmann, Primo 21]

Results for the singlet FF: the axial case

The exact result for finite remainder $\mathcal{F}_{s,h/t}^A(x)$ at 3-loop order:

- ▶ Strong check: $\mathcal{F}_{s,t}^A(a_s,x) \to \mathcal{F}_{s,b}^A(a_s,x)$ [Gehrmann, Primo 21] in the high-energy limit $(x \to \infty)$
- ► Typical threshold behavior due to Coulomb effect (but no divergence here!)

Results for the singlet FF: the axial case

The exact result for finite remainder $\mathcal{F}_{s,h/t}^A(x)$ at 3-loop order:

- ▶ Strong check: $\mathcal{F}_{s,t}^A(a_s,x) \to \mathcal{F}_{s,h}^A(a_s,x)$ [Gehrmann, Primo 21] in the high-energy limit $(x \to \infty)$
- ▶ The axial massless quark FF diverge in $x \to 0$: non-decoupling m_t -logarithm!

15/26

Results for the singlet FF: the vector case

The exact result for UV and IR finite $\mathcal{F}_{s,t}^{V}(x)$ at 3-loop order:

- ▶ Strong check: $\mathcal{F}^V_{s,t}(a_s,x)\big|_{x\to\infty}\to \mathcal{F}^V_{s,b}(a_s,x)$ [Vermaseren et al 05; Baikov et al 09; Gehrmann et al 10] ▶ The top-loop contribution is power-suppressed in the low-energy $x\to 0$ limit.

Light quark form factors in the heavy top limit

Appearance of the non-decoupling m_t -logarithms [Collins, Wilczek, Zee 78; Chetyrkin, Kühn 93]

$$\begin{split} \bar{\mathcal{F}}_{s,b}^{A,3}(m_t \to \infty) &= \bar{\mathcal{F}}_{s,b}^{\bar{A},3}(\mu) \, + \, \bar{\mathcal{F}}_{s,b}^{A_{\mathsf{DDC},3}}(m_t,\mu) \, , \\ &= \bar{\mathcal{F}}_{s,b}^{\bar{A},3}(\mu) - \frac{85}{9}C_F + \frac{4}{3}C_F L_\mu - \frac{1}{4}C_F L_\mu^2 \, + \, \mathcal{O}(1/m_t^2) \\ \text{where } L_\mu &\equiv \ln \frac{\mu^2}{m^2}. \end{split}$$

A Wilson coefficient function $C_w(\bar{a}_s, \mu/m_t)$

$$\begin{split} \left. \mathcal{F}_{s,b}^{A} - \left. \mathcal{F}_{s,t}^{A} \right|_{m_{t} \to \infty} &= \left. \bar{\mathcal{F}}_{s,b}^{\bar{A}}(\bar{a}_{s}, \mu) + \bar{\mathcal{F}}_{s,b}^{A_{\mathsf{DDC}}}(\bar{a}_{s}, m_{t}, \mu) - \left. \bar{\mathcal{F}}_{s,t}^{A}(\bar{a}_{s}, m_{t}, \mu) \right|_{m_{t} \to \infty} \\ &= \left. \bar{\mathcal{F}}_{s,b}^{\bar{A}}(\bar{a}_{s}, \mu) - C_{w}(\bar{a}_{s}, \mu/m_{t}) \left(\bar{\mathcal{F}}_{ns}^{A}(\bar{a}_{s}, \mu) + \sum_{i=1}^{n_{l}} \bar{\mathcal{F}}_{s,i}^{\bar{A}}(\bar{a}_{s}, \mu) \right) + \mathcal{O}(1/m_{t}^{2}) \,. \end{split}$$

The renormalized low-energy effective Lagrangian [Chetyrkin, Kühn 93; LC, Czakon, Niggetiedt 21]

$$\begin{split} \delta \mathcal{L}_{\mathrm{eff}}^{R} &= \left(Z_{ns} \sum_{i=1}^{n_{l}} a_{i} \, \bar{\psi}_{i}^{B} \, \gamma^{\mu} \gamma_{5} \, \psi_{i}^{B} \, + \, a_{b} \, Z_{s} \, \big[J_{5}^{\mu} \big]_{B} \, \longrightarrow n_{l} \text{-flavor massless part} \\ &+ a_{t} \, \mathsf{C}_{w} \big(a_{s}, \mu / m_{t} \big) \, \big(Z_{ns} + n_{l} \, Z_{s} \big) \, \big[J_{5}^{\mu} \big]_{B} \Big) \mathsf{Z}_{\mu} \, , \end{split}$$

with
$$J_5^{\mu} = \sum_{i=1}^{n_l} \bar{\psi}_i \gamma^{\mu} \gamma_5 \psi_i$$
.

Resuming the non-decoupling m_t logarithms

RG equation of the Wilson coefficient $C_w(\bar{a}_s,\mu/m_t)$ [Chetyrkin, Kühn 93; LC, Czakon, Niggetiedt 21]

$$\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} C_w(\bar{a}_s, \mu/m_t) = \bar{\gamma}_s - n_t \bar{\gamma}_s C_w(\bar{a}_s, \mu/m_t),$$

$$\mu^2 \tfrac{\mathrm{d}}{\mathrm{d}\mu^2} \big[J_{5,q}^\mu \big]_R = \underline{\tilde{\gamma}}_{\mathrm{s}} \left[J_5^\mu \right]_R \text{ with } J_5^\mu = \sum_{i=1}^{n_l} = \bar{\psi}_i \gamma^\mu \gamma_5 \psi_i \text{ and } \mu^2 \tfrac{\mathrm{d}Z_{\mathrm{s}}}{\mathrm{d}\mu^2} = \underline{\tilde{\gamma}}_{\mathrm{s}} \big(Z_{n\mathrm{s}} + n_l \, Z_{\mathrm{s}} \big).$$

The solution for $C_t \equiv -1/n_l + C_w$

$$\mu^{2} \frac{\mathrm{d}}{\mathrm{d}\mu^{2}} C_{t}(\bar{a}_{s}, \mu/m_{t}) = n_{l} \bar{\gamma}_{s} C_{t}(\bar{a}_{s}, \mu/m_{t}),$$

$$C_{t}(\bar{a}_{s}(\mu), \mu/m_{t}) = C_{t}(\bar{a}_{s}(m_{t}), 1) \exp\left(\int_{\bar{a}_{s}(m_{t})}^{\bar{a}_{s}(\mu)} \frac{-n_{l} \bar{\gamma}_{s}(a_{s})}{\beta(a_{s})} \frac{\mathrm{d}a_{s}}{a_{s}}\right),$$

in Larin's scheme.

The solution can also be done by numerically solving the RGE.

The γ_s at $\mathcal{O}(a_s^5)$ in $\overline{\text{MS}}$ -scheme

The Adler-Bell-Jackiw (ABJ) equation in terms of renormalized operators:

$$\begin{aligned} \left[\partial_{\mu}J_{5,s}^{\mu}\right]_{R} &= a_{s} \, n_{f} \, \mathrm{T}_{F} \left[F\tilde{F}\right]_{R} \\ Z_{s} \left[\partial_{\mu}J_{5,s}^{\mu}\right]_{B} &= a_{s} \, n_{f} \, \mathrm{T}_{F} \left(Z_{FJ} \left[\partial_{\mu}J_{5,s}^{\mu}\right]_{B} + Z_{F\tilde{F}} \left[F\tilde{F}\right]_{B}\right) \end{aligned}$$

with $Z_s \equiv Z_s^f Z_s^{ms}$. Results for Z_s^{ms} :

- $\mathcal{O}(a_s^3)$ from UV-poles in Zqq-vertex (Z_s^f at $\mathcal{O}(a_s^2)$ from 3L AVV-amplitude) [Larin 93]
- ullet $\mathcal{O}(a_s^4)$ in the calculation of Ellis-Jaffe sum rule [Larin, Ritbergen, Vermaseren 97]
- $\mathcal{O}(a_s^5)$ from 4-loop calculations by combining [LC, Czakon 22]
 - ► The anomalous Ward-Takahashi identity (with a NAC- γ_5):

• Consequence of the ABJ equation with the proved $Z_{F\tilde{F}} = Z_{a_s}$:

$$\gamma_s^{ms} \equiv \frac{\mathrm{d} \ln Z_s^{ms}}{\mathrm{d} \ln \mu^2} = a_s \, n_f \, \mathrm{T}_F \, \gamma_{FJ} \, - \, \beta \, \frac{\mathrm{d} \, \ln Z_s^f}{\mathrm{d} \, \ln a_s} \, .$$

Outline

IIIII OUUGUUI.	iviulivaliuli	and Background

The full top-mass dependence of singlet contributions to massless quark FFs

3-loop QCD corrections to massive quark form factors (the non-singlet part)

Non-singlet QCD corrections to massive FFs

- Two-loop QCD corrections fully known analytically [Bernreuther, Bonciani, Gehrmann, Heinesch, Leineweber, Mastrolia, Remiddi 04-06]
- Feynman diagrams at 3-loop order: 227 non-singlet, 114 singlet
- Partial 3-loop analytic results
 - Non-singlet contribution at the large-Nc limit [Henn, Smirnov, Smirnov, Steinhauser 16-18; Ablinger, Marquard, Rana, Schneider 18]
 - ► those with closed fermion loops [Lee, Smirnov, Smirnov, Steinhauser 18; Blümlein, Marquard, Rana, Schneider 19]
- The full set of 3-loop non-singlet master integrals were evaluated recently in [Fael, Lange, Schönwald, Steinhauser 22] by solving DE in terms of a sequence of series expansions.

Basis of MIs and their DE w.r.t s

- 427 non-singlet MIs from IdSolver [Czakon] A D-factorizing basis [Simirnov, Simirnov 20; Usovitsch 20] found using ImproveMasters.m [Simirnov, Simirnov 20]
- Derive the DE in x = s (with $m_t = 1$)

$$\frac{\mathrm{d} M_i(\epsilon, x)}{\mathrm{d} x} = \sum_j A_{ij}(\epsilon, x) M_j(\epsilon, x) ,$$

 A_{ii} : **no** irreducible denominator factors mixing D with s.

• Insert $M_i(\epsilon,x) = \sum_{l=i}^{\overline{i}} \epsilon^l \, I_{i,l}(x)$, and obtain

$$\frac{\mathrm{d}\,I_m(x)}{\mathrm{d}\,x} = \sum_n B_{mn}(x)\,I_n(x)$$

for 2166 I_n .

Set of poles appearing (dependent on MI basis in use):

$$\frac{s}{m_t^2} = \left\{ -4, -2, -\frac{1}{2}, 0, 1, 2, 3, 4, \frac{9}{2} \pm \frac{3}{2}\sqrt{3}, \frac{16}{3}, 16, \infty \right\}$$

Solving the ϵ -expanded DE in s

Boundary condition taken at s=o where all non-singlet MIs are **regular!**

- Using **asy.m** [Pak, Simirnov 10] \Rightarrow non-singlet MIs have only the *hard-region* in $s \rightarrow o$.
- 3-point Vertex ⇒ Quark Propagator

• All masters in massive quark propagators known in QCD to 3-loop [Lee, Simirnov 10]:

Solving the ϵ -expanded DE in s

Evolving numerically DE and deep-series expansion around (physical) singularities.

Two choices of integration contours:

۵

Technical settings:

- Used multi-precision numbers of 500 decimal digits
- ▶ Required a *local* step-error of $\mathcal{O}(10^{-40})$
- $\,\blacktriangleright\,$ Collected $\sim 10^5$ numerical samples with at least 20 correct digits

A sample of the high-precision numerical results

At $\frac{s}{m^2} = 20$ (above the four-top threshold):

PR486[1,1,1,1,1,1,1,1,1,0,0,0]= $\frac{1}{\epsilon}$ (-0.020647440796693996305 + 0.015082900459951443810 i) + (0.62590765632704470189 - 0.61859104529847674513 i) + ϵ (1.5919548374820074115 + 3.7600381842246118352 i)

•

 $\begin{aligned} \mathsf{PR453}[1,1,1,1,1,1,1,1,0,0,0] &= \frac{1}{\varepsilon} \left(0.09570626114959267810 + 0.33537685751829638912 \, i \right) + \\ \left(0.62590765632704470189 - 0.61859104529847674513 \, i \right) \end{aligned}$

Precision: \sim 20 correct digits

The next step(s) ...

- Validate the numerical results for the non-singlet contributions at hand
- Provide deep-series expansions around a set of (singular) points to encode the (full) result, alternative to an interpolation table
- Transforming into the normalized Fuchsian form [Lee, 15] could help to make the DE less stiff when approaching singular points
- A better control of the precision on amplitudes/form-factors
- Singlet contributions? $\mathcal{O}(\alpha \alpha_s^2)$ corrections?

Outline

1 Introduction: Motivation and Background

The full top-mass dependence of singlet contributions to massless quark FFs

3-loop QCD corrections to massive quark form factors (the non-singlet part)

- A brief description of an efficient high-precision numerical method for computing loop integrals: "numerically solving DE supplemented by deep series expansion around singular points", and its successful applications.
- Massless quark FFs: the 3-loop QCD corrections with exact quark-mass dependence + the resummation of non-decoupling top-mass logarithms.
- 3-loop non-singlet contributions to massive quark FFs are now known numerically (by two groups).
- These are among the ingredients needed for computing N^3LO QCD corrections to heavy-quark pair productions in e^+e^- collisions.
- Further improvements to the approach are to be undertaken, applicable to other multi-loop corrections to processes at e^+e^- colliders.

Backup Slides

From [Baikov, Chetyrkin, Kühn, Rittinger, arXiv:1201.5804]

The decay rate of the *Z*-boson into hadrons in massless QCD up to $\mathcal{O}(\alpha_s^4)$:

$$\begin{split} \Gamma_Z = & \Gamma_0 \, R^{\rm nc} = \frac{G_F \, M_Z^3}{24\pi \sqrt{2}} \, R^{\rm nc} \\ R^{\rm nc} = & 20.1945 + 20.1945 \, \alpha_s \\ & + \left(28.4587 - 13.0575 + 0\right) \, \alpha_s^2 \\ & + \left(-257.825 - 52.8736 - 2.12068\right) \alpha_s^3 \\ & + \left(-1615.17 + 262.656 - 25.5814\right) \alpha_s^4 \, , \end{split}$$

The three terms in the brackets display separately non-singlet, axial singlet and vector singlet contributions.