
Mixed QCD-EW corrections to NC Drell-Yan

Narayan Rana
Indian Institute of Technology Kanpur

in collaboration with T. Armadillo, R. Bonciani, S. Devoto, A. Vicini

Precision calculations for future e+e– colliders: targets and tools

CERN, 16th June 2022



Goal of this talk

In this talk we discuss the technology we used to obtain the mixed QCD-EW
corrections to Drell-Yan and how they can be exploited to obtain precise predictions

for FCC-ee processes.
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DRELL-YANa
l

l̄

Standard model precision studies
Precise measurement ofmW (< 10 MeV)!

Determination of sin2 θW is becoming competi-
tive with LEP result.

BSM studies
Precise determination of the SM background is
crucial for BSM studies!
Requires control of the SM prediction at the
O(0.5%) level in the TeV region.
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Perturbative expansion

Parton model

σtot(z) =
∑

i,j∈q,q̄,g,γ

∫
dx1dx2 fi(x1, µF )fj(x2, µF )σij(z, ε, µF )

In the full QCD-EW SM, we have a double series expansion of the partonic cross
sections in the electromagnetic and strong coupling constants, α and αs , respectively:
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Perturbative expansion : QCD corrections

σij(z) = σ
(0)
ij

[
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(0,3)
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]
NLO
Altarelli, Ellis, Martinelli (1979);

NNLO
Hamberg, Matsuura, van Neerven (1991);
Anastasiou, Dixon, Melnikov, Petriello (2003);
Catani, Cieri, Ferrera, de Florian, Grazzini (2009);

N3LO
Duhr, Dulat, Mistlberger (2020); Chen, Gehrmann, Glover, Huss, Yang, Zhu (2021); Camarda, Cieri,
Ferrera (2021); Chen, Gehrmann, Glover, Huss, Monni, Re, Rottoli, Torrielli (2022)
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Perturbative expansion : EW corrections

σij(z) = σ
(0)
ij
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]

NLO
Baur, Brein, Hollik, Schappacher, Wackeroth (2002);
Carloni Calame, Montagna, Nicrosini, Vicini (2007);
Dittmaier, Huber (2010);

NNLO (approximated)
Jantzen, Kühn, Penin, Smirnov (2005);
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Perturbative expansion : mixed corrections

σij(z) = σ
(0)
ij

[
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NLO QCD and NLO EW corrections are separately large. What about the mixed
corrections, particularly σ(1,1)

ij (z)?
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Recent progress in the NNLO mixed QCDxEW corrections

On-shell Z/W production
• Pole approximation : Dittmaier, Huss, Schwinn;
• Analytic QCDxQED corrections : de Florian, Der, Fabre;
• pZ

T distribution in QCDxQED including pT resummation : Cieri, Ferrera, Sborlini;
• Differential on-shell Z production including QCDxQED : Delto, Jaquier, Melnikov, Roentsch;
• Total QCDxEW corrections to Z production (fully analytic):
Bonciani, Buccioni, NR, Triscari, Vicini; Bonciani, Buccioni, NR, Vicini;
• Differential on-shell Z/W production including QCDxEW :
Behring, Buccioni, Caola, Delto, Jaquier, Melnikov, Roentsch;

Technical developments
• Master integrals : Aglietti, Bonciani; Bonciani, Di Vita, Mastrolia, Schubert; Heller, von Manteuffel,
Schabinger; Long, Zhang, Ma, Jiang, Han, Li, Wang; Liu, Ma;
• Mixed QCD-QED splitting functions : de Florian, Sborlini, Rodrigo;
• Renormalisation : Degrassi, Vicini; Dittmaier, Schmidt, Schwarz; Dittmaier;

Complete Drell-Yan
• neutrino pair production in QCDxQED : Cieri, de Florian, Der, Mazzitelli;
• pp → lνl + X in QCDxEW : Buonocore, Grazzini, Kallweit, Savoini, Tramontano;
• two-loop amplitudes: Heller, von Manteuffel, Schabinger; ⇐= Talk by A. von Manteuffel
Armadillo, Bonciani, Devoto, NR, Vicini; ⇐= This Talk
• Complete NNLO QCDxEW corrections to neutral current Drell-Yan:
Bonciani, Buonocore, Grazzini, Kallweit, NR, Tramontano, Vicini;
Buccioni, Caola, Chawdhry, Devoto, Heller, von Manteuffel, Melnikov, Röntsch, Signorile-Signorile;
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Why σ(1,1)
ij (z) is important?
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αs(mZ ) ≃ 0.118 α(mZ ) ≃ 0.0078 αs(mZ )
α(mZ )

≃ 15.1
α2s(mZ )

α(mZ )
≃ 1.8

1. From naive argument of coupling strength, N3LO QCD ∼ mixed NNLO QCD⊗EW.
2. However, in specific phase-space points, fixed order EW corrections can become
very large because of logarithmic (weak and QED Sudakov type) enhancement.
These effects are large forW mass measurements. On the other hand, these
corrections suffer from large uncertainties coming from unphysical scales.

3. N3LO QCD corrections control the uncertainties arising from the unphysical
scales, but they lack the large EW effects.

4. The appearance of photon induced processes⇒ photon PDFs.

The NNLO mixed QCD-EW corrections
• have similar magnitude as N3LO QCD,
• contain the large EW effects,
• reduce the theoretical uncertainties.

NNLO QCD⊗EW corrections extremely important for high (O(10−4)) precision pheno.

9



Another motivation : Electroweak scheme dependence

The Lagrangian has 3 inputs (g, g′, v). More observables (like Gµ, α,mW ,mZ , sin θW ) are
experimentally measured and can be considered as input parameters in different schemes. Such
two schemes are

1. Gµ-scheme : where (Gµ,mW ,mZ ) are considered as input
2. α(0)-scheme : where (α,mW ,mZ ) are considered as input

The relation between Gµ and α gets EW and mixed QCD⊗EW corrections.

Gµ√
2

=
πα

2 sin2 θW cos2 θWm2
Z

(1+ ∆r)

At LO, α(Gµ) and α(0) differs by 3.53%. Example for onshell Z production

order Gµ-scheme α(0)-scheme δGµ−α(0) (%)
LO 48882 47215 3.53
NLO QCD (LO +∆10) 55732 53831 3.53
NNLO QCD (LO +∆10 +∆20) 55651 53753 3.53
NLO EW (LO +∆01) 48732 48477 0.53
LO +∆10 +∆01 55582 55093 0.89
LO +∆10 +∆20 +∆01 +∆11 55469 55340 0.23
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NNLO contributions to neutral current Drell-Yan

Pure Virtual

+ · · ·+

Real-Virtual

+ · · ·+

Double Real

+ · · ·+

Each individual contribution is divergent : 1
ϵ
in dimensional regularization
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NNLO contributions to neutral current Drell-Yan

Pure Virtual

+ · · ·+ - S(1,1)

Real-Virtual

+ · · ·+

Double Real

+ · · ·+

} + dσ(1,1)
CT

Subtraction : S(1,1) ∼
∫
dσ

(1,1)
CT ⇒ The two sets are separately finite!
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NNLO contributions to neutral current Drell-Yan

Pure Virtual

+ · · ·+

The two-loop virtual amplitudes contain divergences of two types

(a) Ultraviolet divergences : UV renormalization of fields and couplings
(b) Infrared divergences : Soft (soft gluons & photons) & collinear (collinear partons)

p⃗

k⃗

1
(k + p)2

=
1

2k.p
=

1
2k0p0(1− cos θ)

k0 → 0 Soft divergence
θ → 0 Collinear divergence

The infrared structure of scattering amplitudes is universal!
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Ultraviolet renormalization

⊛ The Born contribution is zeroth order in αs , hence no αs renormalization is needed.

⊛ Renormalization of quark wave function receives one-loop EW and two-loop mixed QCD⊗EW
contributions in the on-shell scheme.

+

⊗
+ ⊗ ⇒ UV finite

⊛ Renormalization of lepton wave function receives one-loop EW contributions.

+

⊗
+ ⊗ ⇒ UV finite
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Ultraviolet renormalization

⊛ The Born contribution is zeroth order in αs , hence no αs renormalization is needed.

⊛ Renormalization of quark wave function receives one-loop EW and two-loop mixed QCD⊗EW
contributions in the on-shell scheme.

+

⊗
+ ⊗ ⇒ UV finite

⊛ Renormalization of lepton wave function receives one-loop EW contributions.

+

⊗
+ ⊗ ⇒ UV finite

We consider massive leptons, but small mass limit. In that case, the QED part of the
renormalization constant is with massive lepton. On the other hand, the weak part can be
computed using massless lepton.
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Ultraviolet renormalization

⊛ The Born contribution is zeroth order in αs , hence no αs renormalization is needed.

⊛ Renormalization of quark wave function receives one-loop EW and two-loop mixed QCD⊗EW
contributions in the on-shell scheme.

+

⊗
+ ⊗ ⇒ UV finite

⊛ Renormalization of lepton wave function receives one-loop EW contributions.

+

⊗
+ ⊗ ⇒ UV finite

⊛ The computation is performed in background field gauge, with the advantage that the vertex
and propagator contributions are separately UV finite.

+
⊗

+
⊗ • ⇒ UV finite
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The infrared divergences and lepton mass

The infrared structure of scattering amplitudes is universal!

M(1,1)
fin = M(1,1) − I(1,1)M(0) − I(0,1)M(1,0)

fin − I(1,0)M(0,1)
fin

The qT subtraction requires the final state emitters (leptons) to be massive!
The full computation with lepton mass is extremely difficult!

Divergence regulator massless lepton : 1
ϵ

massive lepton : logml
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The infrared divergences and lepton mass

The infrared structure of scattering amplitudes is universal!

M(1,1)
fin = M(1,1) − I(1,1)M(0) − I(0,1)M(1,0)

fin − I(1,0)M(0,1)
fin

The qT subtraction requires the final state emitters (leptons) to be massive!
The full computation with lepton mass is extremely difficult!

Divergence regulator massless lepton : 1
ϵ

massive lepton : logml

(a) When the lepton is attached to a massive boson, it does not generate any collinear divergence.
Hence, in all such cases, we can safely assume a massless lepton.

Z ≡ Z + O(
m2

l
s
)
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The infrared divergences and lepton mass

The infrared structure of scattering amplitudes is universal!

M(1,1)
fin = M(1,1) − I(1,1)M(0) − I(0,1)M(1,0)

fin − I(1,0)M(0,1)
fin

The qT subtraction requires the final state emitters (leptons) to be massive!
The full computation with lepton mass is extremely difficult!

Divergence regulator massless lepton : 1
ϵ

massive lepton : logml

(a) When the lepton is attached to a massive boson, it does not generate any collinear divergence.
Hence, in all such cases, we can safely assume a massless lepton.

(b) In a single box diagram, where lepton is attached to one photon and one Z boson, it generates
a collinear singularity. However, thanks to [Frenkel, Taylor], once all diagrams are summed up, the
collinear divergences cancel.

Z ≡ Z + Cl log
(m2

l
s

)
+O(

m2
l

s
)

It is
also reflected in the subtraction formula e.g. for the QED box part[

H(−1, yl) − H(−1, zl)
]
|ml→0 ≡ log(t/u)
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The infrared divergences and lepton mass

The infrared structure of scattering amplitudes is universal!

M(1,1)
fin = M(1,1) − I(1,1)M(0) − I(0,1)M(1,0)

fin − I(1,0)M(0,1)
fin

The qT subtraction requires the final state emitters (leptons) to be massive!
The full computation with lepton mass is extremely difficult!

Divergence regulator massless lepton : 1
ϵ

massive lepton : logml

(a) When the lepton is attached to a massive boson, it does not generate any collinear divergence.
Hence, in all such cases, we can safely assume a massless lepton.

(b) In a single box diagram, where lepton is attached to one photon and one Z boson, it generates
a collinear singularity. However, thanks to [Frenkel, Taylor], once all diagrams are summed up, the
collinear divergences cancel.

(c) Hence, the collinear singularities from leptons (logml) come from only the QED-type
corrections to the lepton vertex, which we compute with full lepton mass dependence.
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Sub-grouping Feynman diagrams

To achieve IR subtraction in a smooth & efficient way, we arrange all diagrams in four
subsets : AA, AZ, ZZ, W. We further subdivide them according to the topology :
form-factor/box/factorized.

• AA : Diagrams with two photon propagators

• AZ : Diagrams with one photon and one Z propagators

• ZZ : Diagrams with two Z propagators

• W : Diagrams with at least oneW propagators

Accordingly, the subtraction term is also arranged.

I(0,1) = I(0,1)
A ,

I(1,1) = I(1,1),non−fact + I(1,1),fact

= I(1,1),non−fact
AA + I(1,1),non−fact

AZ + I(1,0) ∗ I(0,1)
A
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Sub-grouping Feynman diagrams

To achieve IR subtraction in a smooth & efficient way, we arrange all diagrams in four
subsets : AA, AZ, ZZ, W. We further subdivide them according to the topology :
form-factor/box/factorized.

• AA : Diagrams with two photon propagators

• AZ : Diagrams with one photon and one Z propagators

• ZZ : Diagrams with two Z propagators

• W : Diagrams with at least oneW propagators

For AA and AZ subsets : True non-factorizable two-loop QCD-QED IR contributions

• We compute the box contributions for AA subset with exact lepton mass, and we explicitly
show the cancellation of logml after summing t and u channel diagrams.

• We compute the box contributions for AZ subset with massless lepton. The leading collinear
pole also cancels after summing t and u channel diagrams.

For ZZ and W subsets : The IR structure is basically one-loop QCD (I(1,0))
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Sub-grouping Feynman diagrams

To achieve IR subtraction in a smooth & efficient way, we arrange all diagrams in four
subsets : AA, AZ, ZZ, W. We further subdivide them according to the topology :
form-factor/box/factorized.

• AA : Diagrams with two photon propagators

• AZ : Diagrams with one photon and one Z propagators

• ZZ : Diagrams with two Z propagators

• W : Diagrams with at least oneW propagators

The subdivision allows us to obtain the finite remainder for each subset, leading to an
efficient and smooth numerical evaluation.
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Computational procedure
d = 4− 2ϵ

• Diagrammatic approach -> QGRAF/FeynArts to generate Feynman diagrams
• In-house FORM/Mathematica routines for algebraic manipulation :

Lorentz, Dirac and Color algebra
• Decomposition of the dot products to obtain scalar integrals

2l.p
l2(l − p)2

=
l2 − (l − p)2 + p2

l2(l − p)2
=

1
(l − p)2

−
1
l2

+
p2

l2(l − p)2

• Identity relations among scalar integrals : IBPs, LIs & SRs

• Algebraic linear system of equations relating the integrals
⇓

Master integrals (MIs)

————————————————————————

• Computation of MIs : Method of differential equation & SeaSyde

• Ultraviolet renormalization

• Subtraction of the universal infrared poles (S(1,1)).

• Numerical evaluation of the hard function to prepare the grid.

16



Computational procedure : γ5

γ5 is inherently a four-dimensional object.
How can we use it in dimensional regularization?

Anti-commutation Cyclicity of the trace
{γµ, γ5} = 0

’t Hooft and Veltmann X ✓

Kreimer et al. ✓ X

For the mixed QCD-EW corrections to the NCDY, the two prescriptions yield

• Different one- and two-loop scattering amplitudes

• Same finite remainder after subtraction
[Heller, von Manteuffel, Schabinger, Spiesberger] ⇐ talk by A. von Manteuffel
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Computational procedure : γ5

γ5 is inherently a four-dimensional object.
How can we use it in dimensional regularization?

Anti-commutation Cyclicity of the trace
{γµ, γ5} = 0

’t Hooft and Veltmann X ✓

Kreimer et al. ✓ X

Our approach :

• Consider a fixed point to start the Dirac trace.

• Use anti-commutation relation, bring all γ5 at the end and use γ25 = 1.

• Use γ5 =
i
24! ϵµνρσγ

µγνγργσ for the single leftover γ5 .
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The method of differential equations
A Feynman integral is a function of spacetime dimension d and kinematic invariant x, y.

Ji ∼
∫

ddl1

(2π)d
ddl2

(2π)d
1

l21 l
2
2((l1 − l2)2 − m2)(l1 − p1 − p2)2(l2 − p3)2

≡ f(d, x, y)

The idea is to obtain differential eqns. for the integral w.r.t. x, y and solve it.

dx



J1
J2
J3
J4
.
.
.
Jn


=



• • • • · · · •
0 • • • · · · •
0 • • • · · · •
0 0 0 • · · · •
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
0 0 0 0 · · · •





J1
J2
J3
J4
.
.
.
Jn



To solve such a system, we need to perform series expansion in ϵ and to organize the matrix in
each order of ϵ in such a way that it diagonalizes, or at least it takes a block-triangular form. Now,
it can be solved using bottom-up approach.

The homogeneous solutions are in general log or Li2 . Because of the ϵ expansion, the
non-homogeneous solutions are recursive integral over the homogeneous solutions.

The results are obtained in terms of iterated integrals (GPLs).
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Iterated integrals

From Feynman integrals to iterated integrals : What do we gain?

Direct numerical integration of Feynman integrals is tedious, unstable and challenging
to obtain precise results. ⇐ talk by V. Maheria
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Iterated integrals

From Feynman integrals to iterated integrals : What do we gain?

Iterated integrals are one-dimensional. They can be computed with great precision in
a short amount of time. Besides, they have the following properties:

(a) Shuffle algebra : Allows to obtain a basis for a set of iterated integrals. Reduction to such a
basis is extremely effective to reduce the computation time by few times.

(b) Scaling invariance : Allows to convert the limit of these integrals from kinematical variables (z)
to constants (1). This makes the integration really precise.
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Iterated integrals

From Feynman integrals to iterated integrals : What do we gain?

Iterated integrals are one-dimensional. They can be computed with great precision in
a short amount of time. Besides, they have the following properties:

(a) Shuffle algebra : Allows to obtain a basis for a set of iterated integrals. Reduction to such a
basis is extremely effective to reduce the computation time by few times.

(b) Scaling invariance : Allows to convert the limit of these integrals from kinematical variables (z)
to constants (1). This makes the integration really precise.

• Form factor type MIs : Aglietti, Bonciani; Bonciani, Buccioni, NR, Vicini;
• Box type (γγ with massive lepton) : Bonciani, Ferroglia, Gehrmann, Maitre, Studerus;
• Box type (γZ & ZZ with massless lepton) :
Bonciani, Di Vita, Mastrolia, Schubert; Heller, von Manteuffel, Schabinger

Five among the 36 two-mass MIs of Bonciani et al. contain Chen iterated integrals!
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The 36 two-mass master integrals

Fully analytic

• Most MIs are solved in GPLs.
• FiveMIs are solved in terms of Chen’s iterated
integrals! Numerical evaluation possible only
in the non-physical region.

Fully numerical

• Evaluation of the MIs in physical region is de-
manding! (using Fiesta/pySecDec)
• Specially for those five MIs, achieving a sin-
gle digit precision in the physical region is ex-
tremely challenging!

Fig from Roberto et al.
Can we find a mixed approach?
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Our semi-analytic approach

What do we need for the two-loop virtual amplitudes?
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Our semi-analytic approach

What do we need for the two-loop virtual amplitudes?

(a) An analytic formula for the singular part, to perform the infrared subtraction.

(b) A formula for the finite part which should be numerically stable and precise.

(i) The universal subtraction operator indicates that the singular part of the amplitude
contains only simple GPLs.

(ii) The individual contribution from the five MIs to the single pole of the matrix
element contains the Chen iterated integrals, which cancel after summing them.

(iii) Certain internal combinations of the MIs (at the lowest order in ϵ) can be found
which can be solved in terms of simple GPLs.

So, only simple GPLs in the singular part! SOLVED!
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Our semi-analytic approach

What do we need for the two-loop virtual amplitudes?

(a) An analytic formula for the singular part, to perform the infrared subtraction.

(b) A formula for the finite part which should be numerically stable & precise.

Most of the MIs are known in terms of GPLs. Few MIs (32-36), which contain Chen
iterated integrals, we solve them using series expansion through SeaSyde.

Implemented in the Mathematica package DiffExp for real kinematic variables.
[F. Moriello (2019), M. Hidding (2020)] ⇐ talk by M. Hidding
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Our semi-analytic approach

What do we need for the two-loop virtual amplitudes?

(a) An analytic formula for the singular part, to perform the infrared subtraction.

(b) A formula for the finite part which should be numerically stable & precise.

Most of the MIs are known in terms of GPLs. Few MIs (32-36), which contain Chen
iterated integrals, we solve them using series expansion through SeaSyde.

(i) We consider the system of differential equations for all the 36 MIs. Given a boundary point, the
system can be solved using series expansion for a nearby point.
(ii) The solution in this new point can now be considered as boundary and thus we can go forward
along a path to obtain solution in any phase space point.

·
initial

· ·
·

· ·
sing

·
· ·

· · ·
· ·

· · · ·
final

· ·
·
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SEASYDE
Series Expansion Approach for SYstems of Differential Equations

We have implemented the series expansion method generalizing it with complex
variables⇒ complex plane!

• The radius of convergence of the series is limited by the presence of poles.

• Transport from one point to another needs to consider branch-cuts.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

z0

Γ0

z1

Γ1

w0

w+

w−
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• The radius of convergence of the series is limited by the presence of poles.

• Transport from one point to another needs to consider branch-cuts.
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* We transport solution along the red solid line with several steps (The corresponding circles are
not drawn.)
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SEASYDE
Series Expansion Approach for SYstems of Differential Equations

• We consider the system of diff. eqns. for the 36 MIs and solve it with SeaSyde.
• The solution can be obtained with arbitrary number of significant digits.
• 31 MIs are known analytically and their numerical evaluations using GiNaC provide a crucial
check. The results for 5 MIs are new predictions : checks with Fiesta, pySecDec, DiffExp.

• Because of using complex variable in SeaSyde, it is possible to use complex mass scheme
which smoothens the behaviour at threshold.
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The small width limit reproduces the result in real mass with Feynman prescription
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SEASYDE
Series Expansion Approach for SYstems of Differential Equations

• We consider the system of diff. eqns. for the 36 MIs and solve it with SeaSyde.
• The solution can be obtained with arbitrary number of significant digits.
• 31 MIs are known analytically and their numerical evaluations using GiNaC provide a crucial
check. The results for 5 MIs are new predictions : checks with Fiesta, pySecDec, DiffExp.

• Because of using complex variable in SeaSyde, it is possible to use complex mass scheme
which smoothens the behaviour at threshold.

Time required for transporting the boundary conditions from the Euclidean region to a test point

Number of terms Precision Execution time

50 terms 10−14 ∼ 14 min

75 terms 10−19 ∼ 26 min

100 terms 10−25 ∼ 50 min

125 terms 10−33 ∼ 75 min

150 terms 10−40 ∼ 90 min
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Finally

We obtain the two-loop virtual amplitude:
(a) The singular part is analytic and contains GPLs. This allows us to successfully
check with the universal infrared behaviour of the scattering amplitudes.

(b) The finite part after performing the infrared subtraction contains GPLs and few MIs
‘symbolically’ which have been computed using our semi-analytic approach.

Next?

We need to evaluate the subtracted finite part numerically for few thousand
phase-space points. Although evaluation of a single GPL is fast, there are ∼ 11000
GPLs in the full expression. Also the expression is extremely large.
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Numerical evaluation and the grid

To obtain a fast compilation and successful numerical evaluation, we divide the contributions
from various Feynman diagrams in a gauge invariant way by the presence of different EW vector
bosons (γ, Z,W ), and further by different topologies.

These subdivisions allow us to parallelize the computation. Production of the grid (3250 points) for
the MIs using SeaSyde required O(12h) on a 32-cores machine. Evaluation of the GPLs on a single
phase-space point, for 40 digits precision, ranges from few minutes to ∼ 20 minutes, depending
on the phase-space point. Evaluation time substantially goes down for smaller number of digits.
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Results!

σ [pb] σLO σ(1,0) σ(0,1) σ(2,0) σ(1,1)

qq̄ 809.56 191.85 −33.76 49.9 −4.8

qg — −158.08 — −74.8 8.6

q(g)γ — — −0.839 — 0.084

q(q̄)q′ — — — 6.3 0.19

gg — — — 18.1 —

γγ 1.42 — −0.0117 — —

total 810.98 33.77 −34.61 −0.5 4.0

σ(i,j)

σLO
+4.2% −4.3% ∼ 0% +0.5%

* The size of the NNLO QCD corrections depends on the chosen setup!
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Summarizing

• One of the bottleneck is the computation of two-loop virtual amplitudes. We
have computed it using small lepton mass limit in the complex mass scheme.

• Our semi-analytic approach allows us to achieve analytic cancellation of the
universal subtraction term, as well as fast and stable numerical evaluation of
the finite hard function.

• To evaluate the two-mass MIs, we wrote SeaSyde : a Mathematica package that
generalizes the series expansion method to complex variables.

• The phenomenological impact of mixed QCD-EW corrections is crucial.

• These computations are challenging! Although ingredients at several stages are
well studied, a continuous workflow is necessary to obtain the numerical grid
from the Feynman diagrams. The automation of the intermediate steps are in
progress!
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Prospects for e+e- precision predictions

• Precision corrections to FCC-ee processes will involve multi-scale loop
computation.

• Primary difficulty would be to perform the reduction to MIs & solving them.

• Progress in reduction technology looks very promising and hence, computation
of the MIs seems to be the main bottleneck.

• Any MIs can be solved in series expansion, and SeaSyde can provide the
semi-analytical solution given a boundary condition. Use of AMFlow can
substantially help in computing the boundary conditions. ⇐ talk by Xiao Liu

An immediate use of our technology could be
NNLO mixed QCD-EW corrections to e+ + e− → b+ b̄/(t+ t̄)

(considering massless electron) ⇐ talk by S. Frixione

Thank you for your attention!
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