DiffExp and Feynman parameter integration

Martijn Hidding

Uppsala University
workshop on
"Precision calculations for future e+e- colliders: targets and tools", CERN

17 June 2022

Outline of the talk

1. Introduction

- Analytic vs. numerical methods
- Differential equation method

2. Series expansion methods

- Generalized series expansions (\& DiffExp)
- Analytic continuation \& i δ-prescription
- Segmentation
- Examples \& EW-application

3. Direct integration through differential equations

- Feynman trick recursion
- Integration through differential equations
- Five-point 2-loop example

Introduction and context

Analytic methods for Feynman integrals

- Typical analytic approaches express Feynman integrals in terms of classes of iterated integrals:
- Multiple polylogarithms
- Iterated integrals over modular form
- Elliptic multiple polylogarithms
- Strengths of analytic methods:
- Branch-cuts and analytic structure is manifest (through the symbol map)
- Specialized algorithms can be developed for evaluating the relevant classes of functions
- Drawbacks of analytic methods:
- The analytic continuation may be difficult to perform
- Many Feynman integrals lie outside the known classes of functions

Numerical methods

- Prototypical example:
- Sector decomposition and numerical integration (FIESTA, pySecDec)
- Strengths of numerical methods:
- Numerical integration is fully algorithmic and general purpose
- Applicable to integrals with many scales
- Drawbacks of numerical methods:
- Numbers might not expose symmetries and/or structures underlying the integrals
- Performance can lack behind analytic methods

seni-nunericainethoos

- Semi-numerical methods perform as much as possible of the computation analytically, before resorting to numerical approximations
- We may set up differential equations in analytic form, and then solve these differential equations
- Numerically using finite difference methods
[Talk by Chen]
[Mandal, Zhao, 1812.03060]
- Semi-analytically through one-dimensional series expansions $\begin{array}{r}\text { [Lee, Smirnov, Smirnov, 1709.07525] } \\ \text { [Liu, Ma, Wang, 1711.09572, 2201.11669] }\end{array}$
[Moriello, 1907.13234]
- Strengths of series expansion methods:
- Drawbacks:
[MH, 2006.05510]
- State of the art performance on many types of Feynman integrals
- Speed improves as more points are computed
- Analytic continuation of Feynman integrals becomes simple
- Simplification of the differential equations is not fully algorithmic
- Derivation of boundary conditions requires some manual effort

Series expansions

- The main steps of the approach which we discuss in this talk is as follows:
- Set up a linear system of differential equations
- Reduce multi-scale problems to a single-scale problem by integrating along a onedimensional contour
- Split up the contour into multiple segments such that series expansions converge on each segment
- Find series solutions of the integrals along each segment, and fix boundary conditions by matching neighbouring segments
- Cross thresholds by assigning $\pm i \delta$ to logarithms and algebraic roots in the solutions

(History) Series expansions

- This strategy was demonstrated in [F. Moriello, 1907.13234] for the computation of planar integrals relevant to $\mathrm{H}+\mathrm{i}$ production in QCD at NLO

Figure 1: The four planar integral families contributing to two-loop $H+j$-production in QCD.

- Simultaneously, in a larger collaboration, we applied these methods to the computation of non-planar $\mathrm{H}+\mathrm{j}$ integrals:

```
[R. Bonciani, V. Del Duca, H. Frellesvig, J. M. Henn, MH, L. Maestri, F. Moriello, G. Salvatori, V. A. Smirnov]
```


Family F

Master integrals

- IBP-reduction:

- 73 master integrals
- Default FIRE basis: $\mathcal{O}(1 \mathrm{~GB})$

1

2

3

4,5

6,7

8,9

10,11

13

14

15,16

17

- More suitable (precanonical) basis: $\mathcal{O}(100 \mathrm{MB})$
- Possible using either FIRE or KIRA

27

Fig: Master integrals with numbering.

Elliptic sectors

Family F alphabet

- 69 letters in total

$$
\begin{array}{ll}
r_{1}=\sqrt{-p_{4}^{2}}, & r_{2}=\sqrt{-s}, \\
r_{3}=\sqrt{-t}, & r_{4}=\sqrt{t-p_{4}^{2}}, \\
r_{5}=\sqrt{s+t-p_{4}^{2}}, & r_{6}=\sqrt{4 m^{2}-p_{4}^{2}}, \\
r_{7}=\sqrt{4 m^{2}-s}, & r_{8}=\sqrt{4 m^{2}-t}, \\
r_{9}=\sqrt{4 m^{2}-p_{4}^{2}+t}, & r_{10}=\sqrt{4 m^{2}-p_{4}^{2}+s+t}, \\
r_{11}=\sqrt{4 m^{2}\left(p_{4}^{2}-s-t\right)+s t}, & r_{12}=\sqrt{4 m^{2} t+s\left(p_{4}^{2}-s-t\right)}, \\
r_{13}=\sqrt{4 m^{2} s+t\left(p_{4}^{2}-s-t\right)}, & r_{14}=\sqrt{4 m^{2} t\left(s+t-p_{4}^{2}\right)-\left(p_{4}^{2}\right)^{2} s}, \\
r_{15}=\sqrt{-4 m^{2} s t+\left(p_{4}^{2}\right)^{2}\left(s+t-p_{4}^{2}\right)}, & r_{16}=\sqrt{16 m^{2} t+\left(p_{4}^{2}-t\right)^{2}}
\end{array}
$$

- We labeled the
following roots: $\quad r_{11}=\sqrt{4 m^{2}\left(p_{4}^{2}-s-t\right)+s t}$,
- These roots appear in 10 independent combinations:

$$
\left\{r_{1} r_{6}, r_{2} r_{7}, r_{3} r_{8}, r_{4} r_{9}, r_{5} r_{10}, r_{2} r_{3} r_{11}, r_{2} r_{5} r_{12}, r_{3} r_{5} r_{13}, r_{2} r_{14}, r_{5} r_{15}\right\} .
$$

- The roots are not simultaneously rationalizable

Plots for family F

The real part of the integrals is in blue, the imaginary part is orange.

DiffExp

- A general implementation of these methods was made into the Mathematica package DiffExp, introduced in arXiv:2006.05510, (available at https://gitlab.com/hiddingm/diffexp)
- DiffExp accepts (any) system of differential equations of the form

$$
\frac{\partial}{\partial s} \vec{f}(\{S\}, \epsilon)=\mathbf{A}_{s} \vec{f}(\{S\}, \epsilon) \quad \mathbf{A}_{x}(x, \epsilon)=\sum_{k=0}^{\infty} \mathbf{A}_{x}^{(k)}(x) \epsilon^{k}
$$

for which the matrix entries are combinations of rational and algebraic functions

- It enables one to numerically integrate various multi-scale Feynman integrals at arbitrary points in phase-space, and at precisions of tens of digits (or higher)
- The Feynman integrals do not have to be in canonical form and may also be of "elliptic"-type or associated with more complicated geometries.

Series expansions

- Series expansions have been featured various times in the past literature.

- For single-scale problems, see e.g:

S. Pozzorini and E. Remiddi, Precise numerical evaluation of the two loop sunrise graph master integrals in the equal mass case, Comput. Phys. Commun. 175 (2006) 381-387, [hep-ph/0505041].
U. Aglietti, R. Bonciani, L. Grassi, and E. Remiddi, The Two loop crossed ladder vertex diagram with two massive exchanges, Nucl. Phys. B789 (2008) 45-83, [arXiv:0705.2616].
R. Mueller and D. G. Öztürk, On the computation of finite bottom-quark mass effects in Higgs boson production, JHEP 08 (2016) 055, [arXiv:1512.08570].

- For multi-scale problems, see for example:
K. Melnikov, L. Tancredi, and C. Wever, Two-loop gg \rightarrow Hg amplitude mediated by a nearly massless quark, JHEP 11 (2016) 104, [arXiv:1610.03747].
K. Melnikov, L. Tancredi, and C. Wever, Two-loop amplitudes for $q g \rightarrow H q$ and $q \bar{q} \rightarrow H g$ mediated by a nearly massless quark, Phys. Rev. D95 (2017), no. 5 054012, [arXiv:1702.00426].
R. Bonciani, G. Degrassi, P. P. Giardino, and R. Grober, Analytical Method for

Next-to-Leading-Order QCD Corrections to Double-Higgs Production, Phys. Rev. Lett. 121 (2018), no. 16 162003, [arXiv:1806.11564].
B. Mistlberger, Higgs boson production at hadron colliders at N^{3} LO in QCD, JHEP 05 (2018) 028, [arXiv:1802.00833].
R. N. Lee, A. V. Smirnov, and V. A. Smirnov, Solving differential equations for Feynman integrals by expansions near singular points, JHEP 03 (2018) 008, [arXiv:1709.07525].
R. N. Lee, A. V. Smirnov, and V. A. Smirnov, Evaluating elliptic master integrals at special kinematic values: using differential equations and their solutions via expansions near singular points, JHEP 07 (2018) 102, [arXiv: 1805.00227].
R. Bonciani, G. Degrassi, P. P. Giardino, and R. Gröber, A Numerical Routine for the Crossed Vertex Diagram with a Massive-Particle Loop, Comput. Phys. Commun. 241 (2019) 122-131, [arXiv:1812.02698].
R. Bruser, S. Caron-Huot, and J. M. Henn, Subleading Regge limit from a soft anomalous dimension, JHEP 04 (2018) 047, [arXiv: 1802.02524]
J. Davies, G. Mishima, M. Steinhauser, and D. Wellmann, Double-Higgs boson production in the high-energy limit: planar master integrals, JHEP 03 (2018) 048, [arXiv:1801.09696].
J. Davies, G. Mishima, M. Steinhauser, and D. Wellmann, Double Higgs boson production at NLO in the high-energy limit: complete analytic results, JHEP 01 (2019) 176, [arXiv:1811.05489].
B. Mistlberger, Higgs boson production at hadron colliders at $N^{3} L O$ in QCD, JHEP 05 (2018) 028 [1802.00833].

Additional literature

Samuel Abreu, Harald Ita, Francesco Moriello, Ben Page, Wladimir Tschernow, and Mao Zeng. Two-Loop Integrals for Planar Five-Point One-Mass Processes. 2020.

Xiao Liu, Yan-Qing Ma, Wei Tao, and Peng Zhang. Calculation of Feynman loop integration and phase-space integration via auxiliary mass flow. Chin. Phys. C, 45(1):013115, 2021.

Samuel Abreu, Harald Ita, Ben Page, and Wladimir Tschernow. Two-Loop Hexa-Box Integrals for Non-Planar Five-Point One-Mass Processes. 72021.

Matteo Fael, Fabian Lange, Kay Schönwald, and Matthias Steinhauser. A semi-analytic method to compute Feynman integrals applied to four-loop corrections to the $\overline{\mathrm{MS}}$-pole quark mass relation. JHEP, 09:152, 2021.

Matteo Becchetti, Francesco Moriello, and Armin Schweitzer. Two-loop amplitude for mixed QCD-EW corrections to $g g \rightarrow H g .122021$.

Tommaso Armadillo, Roberto Bonciani, Simone Devoto, Narayan Rana, and Alessandro Vicini. Two-loop mixed QCD-EW corrections to neutral current Drell-Yan. 12022.
Xiao Liu and Yan-Qing Ma. Multiloop corrections for collider processes using auxiliary mass flow. 72021.

Xiao Liu and Yan-Qing Ma. AMFlow: a Mathematica Package for Feynman integrals computation via Auxiliary Mass Flow. 12022.

Zhi-Feng Liu and Yan-Qing Ma. Automatic computation of Feynman integrals containing linear propagators via auxiliary mass flow. 12022.

Additional literature

Matteo Fael, Fabian Lange, Kay Schönwald, and Matthias Steinhauser. Massive Vector Form Factors to Three Loops. Phys. Rev. Lett., 128(17):172003, 2022.

Simon Badger, Heribertus Bayu Hartanto, and Simone Zoia. Two-Loop QCD Corrections to Wbb- Production at Hadron Colliders. Phys. Rev. Lett., 127(1):012001, 2021.

Simon Badger, Heribertus Bayu Hartanto, Jakub Kryś, and Simone Zoia. Two-loop leading-colour QCD helicity amplitudes for Higgs boson production in association with a bottom-quark pair at the LHC. JHEP, 11:012, 2021.

Simon Badger, Heribertus Bayu Hartanto, Jakub Kryś, and Simone Zoia. Two-loop leading colour helicity amplitudes for $W^{ \pm} \gamma+j$ production at the LHC. 12022.

Simon Badger, Matteo Becchetti, Ekta Chaubey, Robin Marzucca, and Francesco Sarandrea. One-loop QCD helicity amplitudes for $p p \rightarrow t \bar{t} j$ to $O\left(\epsilon^{2}\right)$. 12022.

Samuel Abreu, Matteo Becchetti, Claude Duhr, and Melih A. Ozcelik. Two-loop master integrals for pseudo-scalar quarkonium and leptonium production and decay. 62022.

Tommaso Armadillo, Roberto Bonciani, Simone Devoto, Narayan Rana, and Alessandro Vicini. Evaluation of Feynman integrals with arbitrary complex masses via series expansions. 52022.

Additional literature

- As we have already seen during this workshop, various other public programs and packages are in development, such as AMFlow and SeaSyde.
- AMFlow: very efficient + automatic determination of boundary conditions.
- SeaSyde: computations with complex masses and complex contours.

Series expansion methods

Differential equations

- We consider a family of scalar Feynman integrals:

$$
I_{a_{1}, \ldots, a_{n+m}}=\int\left(\prod_{i=1}^{l} d^{d} k_{i}\right) \frac{\prod_{i=n+1}^{n+m} N_{i}^{-a_{i}}}{\prod_{i=1}^{n} D_{i}^{a_{i}}} \quad \begin{aligned}
& d=d_{\mathrm{int}}-2 \epsilon \\
& D_{i}=-q_{i}^{2}+m_{i}^{2}-i \delta
\end{aligned}
$$

and a basis of master integrals \vec{I}. Taking derivatives on kinematic invariants and masses and performing IBP reductions, we obtain:

$$
\partial_{s_{j}} \vec{I}=\mathbf{M}_{s_{j}}\left(\left\{s_{i}\right\}, \epsilon\right) \vec{I}
$$

- We aim to solve these differential equations. Since they are of Fuchsian type, they admit convergent (generalized) power series solutions (See e.g. [1212.4389], [1411.0911] $[1702.04279])$

Canonical differential equations

- In many cases the differential equations can be brought into a canonical form:
[Henn, 2013]

$$
\frac{\partial \vec{B}}{\partial s_{i}}=\epsilon \frac{\partial \tilde{\mathbf{A}}}{\partial s_{i}} \vec{B}, \quad d \vec{B}=\epsilon d \tilde{\mathbf{A}} \vec{B}
$$

See also
[Lee, 1411.0911]
[Prausa, 1701.00725]
[Gituliar, Magerya, 1701.04269]
[Meyer, 1705.06252]
[Dlapa, Henn, Yan, 2002.02340]

- Along a one-dimensional contour we find: $\gamma:[0,1] \rightarrow \mathbb{C}^{|S|}$

$$
\begin{array}{rr}
\partial_{x} \vec{B} \equiv \varepsilon \mathbf{A}_{x} \vec{B} & x \mapsto\left(\gamma_{s_{1}}(x), \ldots, \gamma_{s_{S \mid}}(x)\right) \\
\vec{B}=\sum_{i \geq 0} \vec{B}^{(i)} \varepsilon^{i} & \vec{B}^{(i)}(x)=\int_{0}^{x} \mathbf{A}_{x^{\prime}} \vec{B}^{(i-1)}\left(x^{\prime}\right) d x^{\prime}+\vec{B}^{(i)}(x=0)
\end{array}
$$

Series expansions - canonical basis

- Let us expand the matrix as a power series:

$$
\mathbf{A}_{x}=x^{r}\left[\sum_{p=0}^{n} \mathbf{C}_{p} x^{p}+\mathcal{O}\left(x^{n+1}\right)\right]
$$

- Using integration-by-parts, we can always write:

$$
\int x^{m} \log (x)^{n}=x^{m+1} \sum_{j=1}^{n} c_{j} \log (x)^{j}
$$

- Thus, all the integrations can be performed in terms of (generalized) series expansions:

$$
B_{j}^{(k)}(x)=x^{r} \sum_{n=0}^{\infty} \sum_{m=0}^{k} c_{m n} x^{n} \log (x)^{m}, \quad c_{m n} \in \mathbb{C}, \quad 0 \geq r \in \mathbb{Q}
$$

Line segmentation

- The series solutions have a finite radius of convergence.
- Rule of thumb: radius of convergence \sim distance to nearest singularity.
- By concatenating series expansions (possibly centered at singularities) we can reach any point in phase-space. How do we choose the center-points?

Line segmentation

- Strategy:
- Choose the line segments such that each expansion is evaluated at most $1 / k$ the distance to the nearest singularity, where $k>1$.
- For example, we may choose $k=2$, and evaluate each expansion at most half the distance to the nearest singularity.
- To cross singularities, we center expansions at singularities.
- We give an illustrative example on the next slide.

Line Seqnephtationiexan e

- Suppose: $\mathrm{X}_{\text {sing }}=(\ldots,-0.095,0,4,16, \ldots)$, is the set of singularities.
- We seek to integrate from: $x_{\text {start }}=0$, to $x_{\text {end }}=6$
- Then we may pick the following partitioning into six line segments, such that each evaluation happens at most $1 / 2$ the distance to the nearest singularity:

Analytic continuation

- The series solutions centered at singularities may contain logarithms and square roots.
- Logarithms appear after integration of terms $1 / x$.
- Square roots can arise from homogeneous solutions (when the indicial equation has a halfinteger root), or from the basis definition.
- By transferring an $i \delta$-prescription to the line parameter, we can perform the analytic continuation of these functions. In particular we can let:

$$
\begin{array}{ll}
\log (x+i \delta)=\log (x), & \sqrt{x+i \delta}=\sqrt{x} \\
\log (x-i \delta)=\log (x)-2 \pi i \theta_{m}, & \sqrt{x-i \delta}=\left(\theta_{p}-\theta_{m}\right) \sqrt{x}
\end{array}
$$

Analytic continuation

- We don't like to carry theta functions around in the series expansions (for performance reasons), so we may instead use replacement rules.
- For example, if x carries $-i \delta$, and we evaluate at a point $x<0$, we let:

$$
\log (x) \rightarrow \log (x)-2 \pi i, \quad \sqrt{x} \rightarrow-\sqrt{x}
$$

- Additional comments:
- The $i \delta$-prescriptions can be determined from the Feynman prescription
- Typically, we should avoid crossing two singular regions at the same time

Examples

3-loop banana graph

- Load DiffExp:

Get[FileNameJoin[\{NotebookDirectory[], ". .", "DiffExp.m"\}]];
Loading Diffexp version 1.0.7

For questions, email: martijn.hidding@physics.uu.se
For the latest version, see: https://gitlab.com/hiddingm/diffexp

- Set the configuration options and load the matrices

```
EqualMassConfiguration = {
    DeltaPrescriptions }->\mathrm{ {t - 16 + I %},
    MatrixDirectory -> NotebookDirectory[] <> "Banana_EqualMass_Matrices/",
    UseMobius }->\mathrm{ True, UsePade }->\mathrm{ True
};
LoadConfiguration[EqualMassConfiguration];
DiffExp: Loading matrices.
DiffExp: Found files: {dt_0.m, dt_1.m, dt_2.m, dt_3.m, dt_4.m}
DiffExp: Kinematic invariants and masses: {t}
DiffExp: Getting irreducible factors..
DiffExp: Configuration updated.
```


3-loop banana graph

- Prepare the boundary conditions along an asymptotic limit:

```
EqualMassBoundaryConditions = {
    "?",
    "?",
```



```
        e 3 EulerGamma\epsilon}\mp@subsup{\epsilon}{}{3}\mathrm{ Gamma [ }\epsilon\mp@subsup{]}{}{3
    } // PrepareBoundaryConditions[#, <|t ->-1/x|>] &;
DiffExp: Integral 1: Ignoring boundary conditions.
DiffExp: Integral 2: Ignoring boundary conditions.
DiffExp: Assuming that integral 3 is exactly zero at epsilon order 0.
DiffExp: Prepared boundary conditions in asymptotic limit, of the form:
\begin{tabular}{lllll}
\(?\) & \(?\) & \(?\) & \(?\) & \(?\) \\
Diffexp: & \(?\) & \(?\) & \(?\) \\
\(0[x]^{51}\) & \(?\) & \((\ldots) x+0[x]^{3 / 2}\) & \((\ldots) x+0[x]^{3 / 2}\) & \((\ldots) x+0[x]^{3 / 2}\)
\end{tabular}\((\ldots) x+0[x]^{3 / 2}\)
```


3-loop banana graph

- Next, we transport the boundary conditions:

```
Transport1 = TransportTo[EqualMassBoundaryConditions, <|t >-1|>];
Transport2 = TransportTo[Transport1, <|t -> x|>, 32, True];
DiffExp: Transporting boundary conditions along }\langle|t->-\frac{1.}{x}|\rangle\mathrm{ from x = 0. to x = 1.
DiffExp: Preparing partial derivative matrices along current line..
DiffExp: Determining positions of singularities and branch-cuts.
DiffExp: Possible singularities along line at positions {0.}.
DiffExp: Analyzing integration segments.
DiffExp: Segments to integrate: 3.
DiffExp: Integrating segment: }\langle|t->\frac{8.(-1.+1.x)}{x}|\rangle\mathrm{ .
DiffExp: Integrated segment 1 out of 3 in 20.8565 seconds.
DiffExp: Evaluating at x = 0.0625
DiffExp: Current segment error estimate: 5.14483\times10-31
DiffExp: Total error estimate: 5.14483\times10 -31
niff[yn. Tn+nmnntina mnmmnt. |t. -1.+1. X |
```


3-loop banana graph

- Lastly, we plot the result:

```
ResultsForPlotting = ToPiecewise[Transport2];
Quiet[ReImPlot[{ResultsForPlotting[[3, 4]][x], ResultsForPlotting[[3, 5]][x]}, {x, 0, 32},
```


MaxRecursion \rightarrow 15, WorkingPrecision \rightarrow 100]]

3-loop banana graph

- Computation time typically scales quadratically with expansion order:

Exp. order	Time (s)	Abs. error	Exp. order	Time (s)	Abs. error
155	310.	6.3×10^{-68}	85	91.9	8.3×10^{-35}
145	270.	3.5×10^{-63}	75	72.3	4.2×10^{-30}
135	236.	1.9×10^{-58}	65	55.9	2.1×10^{-25}
125	200.	1.0×10^{-53}	55	39.7	1.0×10^{-20}
115	170.	5.6×10^{-49}	45	27.6	4.7×10^{-16}
105	142.	3.0×10^{-44}	35	18.6	2.2×10^{-11}
95	116.	1.6×10^{-39}	25	11.7	1.4×10^{-6}

Table 1: The computation time that was needed to transport boundary conditions from $p^{2} / m^{2}=-\infty$ to $p^{2} / m^{2}=32$, for various values of the expansion order. We used the options ChopPrecision -> 225, DivisionOrder -> 3, RadiusOfConvergence -> 4, WorkingPrecision -> 400, UseMobius -> False, UsePade -> False.

3-loop vertex topology, relevant for mixed-EW

- Let us consider the following 3-loop integral family:

[levgen Dubovyk, Ayres Freitas, Janusz Gluza, Krzysztof Grzanka, MH, Johann Usovitsch, 2201.02576]

$\mathrm{D}_{1}=m_{W}^{2}-k_{3}^{2}$	$\mathrm{D}_{2}=-k_{2}^{2}$	$\mathrm{D}_{3}=-k_{1}^{2}$	$\mathrm{D}_{4}=-\left(k_{1}-p_{1}-p_{2}\right)^{2}$
$\mathrm{D}_{5}=-\left(k_{2}-p_{1}-p_{2}\right)^{2}$	$\mathrm{D}_{6}=m_{W}^{2}-\left(k_{3}-p_{1}-p_{2}\right)^{2}$	$\mathrm{D}_{7}=-\left(k_{3}-p_{1}\right)^{2}$	$\mathrm{D}_{8}=m_{t}^{2}-\left(k_{3}-k_{2}\right)^{2}$
$\mathrm{D}_{9}=-\left(k_{2}-k_{1}\right)^{2}$	$N_{10}=-\left(k_{1}-k_{3}\right)^{2}$	$N_{11}=-\left(k_{1}-p_{2}\right)^{2}$	$N_{12}=-\left(k_{2}-p_{2}\right)^{2}$

- The finite basis consists of 77 integrals in total. We choose 19 integrals in $d=4,53$ integrals in d $=6$, and 5 integrals in $d=8$. The differential equations are $\sim 10 \mathrm{MB}$ before expanding in ϵ.

3-Loop vertex topology, relevant for mixed-EW

- In the automatic approach that DiffExp uses, the differential matrix is required to be
finite as $\epsilon \rightarrow 0$. For a general basis \vec{f} this is not the case. [levgen Dubovyk, Ayres Freitas, Janusz Gluza, Krzysztof Grzanka, MH, Johann Usovitsch,
- Let's rescale each master integral by a power of ϵ :

$$
\begin{aligned}
& \vec{g}=T \vec{f} \quad T(\epsilon)=\operatorname{diag}\left(\epsilon^{t_{1}}, \ldots, \epsilon^{t_{n}}\right) \\
& \frac{d}{d x} \vec{g}(x, \epsilon)=T(\epsilon) \hat{M}(x, \epsilon) T^{-1}(\epsilon) \vec{g}(x, \epsilon) \quad\left(T \hat{M} T^{-1}\right)_{i j}=\epsilon^{t_{i}-t_{j}} M_{i j} \quad M_{i j}=\sum_{n=-N_{i j}}^{\infty} M_{i j}^{(n)} \epsilon^{n} .
\end{aligned}
$$

- Then we obtain the following linear system:

$$
t_{i}-t_{j}-N_{i j} \geq 0, \quad \text { for all } i, j=1, \ldots, m
$$

- We don't always find a solution for the above system, but empirically we do find a solution if we choose a finite basis of master integrals.

Basis integrals

$\left(\frac{1}{\epsilon^{2}}\right) I_{4,2,2,2,2,2,0,0,0,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{3}}\right) \mathrm{I}_{3,0,2,2,2,2,}^{\mathrm{d}}, \mathbf{0}$
$\left(\frac{1}{\epsilon^{2}}\right) \mathrm{I}_{2,2,2,2,2,0}^{\mathrm{d}}, \mathbf{2}$,
$\mathrm{I}_{0}^{\mathrm{d}=6-2 \epsilon}$
$\mathrm{I}_{0,2,2,2,1,0,1,3,0,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right) \mathrm{I}_{1,2,2,2,0,0,}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{5}}\right) I_{3,0,2,0,0,0,0,3,2,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{5}}\right) \mathrm{I}_{5,0,0,2,2,}^{\mathrm{d}}$,
$\left(\frac{1}{\epsilon^{2}}\right) \mathrm{I}_{2,0,0,2,2}^{\mathrm{d}}$,
$\left(\frac{1}{\epsilon}\right) I_{1,0,1,1,0,1,0,2,1,0,0,0}^{\mathrm{d}=4-2 \epsilon}$
$\left(\frac{1}{\epsilon^{3}}\right) I_{2,0,0,2,2,0,1}^{\mathrm{d}}, \mathrm{l}$
$\left(\frac{1}{\epsilon^{2}}\right) I_{1,2,0,2,0,0,2,1,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon}\right) I_{2,0,1,1,0,}^{d}=4-2 \epsilon$
$\mathrm{I}_{1,1,1}^{\mathrm{d}=4-2 \epsilon}$
$1_{1,1,1,1,0,0,1,1,1,0,0,0}$
$\left(\frac{1}{\epsilon^{2}}\right) \mathrm{I}_{1,0,6}^{\mathrm{d}}, \mathbf{2} \epsilon$
(
$\left(\frac{1}{\epsilon^{3}}\right) I_{2,0,2,0,0,1,1,3,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon}\right) \mathrm{I}_{1,0,1,1,0,1,1,3,1,0,0,0}^{\mathrm{d}=4-2 \epsilon}$
$\left(\frac{1}{\epsilon}\right) I_{3,2,2}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{3}}\right) I_{3,0,2,2,1}^{\mathrm{d}}=6-2 \epsilon$
$\mathrm{I}=6-2 \epsilon$ $I_{2,2,2,2,1,1,0,1,0,0,0,0}^{\mathrm{E}=6-2 \epsilon}$
$\mathrm{I}_{2}^{\mathrm{d}=6-2 \epsilon}$
${ }_{2,2,2,2,1,0,1,1,0,0,0,0}$
$I_{1}^{\mathrm{d}=6-2 \epsilon}$
$\mathrm{I}=6,2,2,2,1,1,1,1,0,0,0,0$
$\left(\frac{1}{\epsilon^{5}}\right) I_{4,0,2,0,0,0,0,3,2,0,0,0}^{d=6-2 \epsilon}$
$\left(\frac{1}{4}\right) \mathrm{I}_{0,30-2 \epsilon}^{\mathrm{d}}$
(
$\left(\frac{1}{3}\right) \mathrm{I}_{2,02,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon}\right) I_{2,0,1,1,0,1,0,2,1,0,0,0}^{\mathrm{d}=4-2 \epsilon}$
$\left(\frac{1}{2}\right) \mathrm{I}_{0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{3}}\right) \mathrm{I}_{0,0,2,1,0,0,2,3,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon}\right) I_{1,0,1,1,0,0}^{\mathrm{d}=4-2 \epsilon}$
$I_{2}^{\mathrm{d}}=4-2 \epsilon$
$2,1,1,1,0,0,1,1,1,0,0,0$
$\mathrm{I}=4-2 \epsilon$
$1,0,1,1,1,0,1,1,1,0,0,0$
$\left(\frac{1}{\epsilon^{2}}\right) I_{1,2,0,2,0,1,1,1,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$I_{1,1,110,}^{\mathrm{d}=4-2 \epsilon}$
$\mathrm{I}_{1,1,1,1,0,1,1,1,1,0,0,0}^{\mathrm{d}=4-2 \epsilon}$
$\left(\frac{1}{6}\right) \mathrm{I}_{2=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{3}}\right) I_{2,0,2,2,2,0,0,3,0,0,0,0}^{\mathrm{d}=6}$
$\left(\frac{1}{\epsilon^{4}}\right) \mathrm{I}_{0,2,2,2,0,0,0,2,3,0,0,0,0}^{\mathrm{d}=6-2,}$
$I_{\mathrm{d}=6-2 \epsilon}$
$I_{2,1,2,2,2,0,1,1,0,0,0,0}^{d=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{4}}\right) I_{5,3,0,3,0,0,0,0,3,0,0,0}^{\mathrm{d}=8}$
$\left(\frac{1}{\epsilon^{5}}\right) I_{3,0,0,2,0,0,0,3,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right) I_{3,2,0,2,0,0,0,1,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{3}\right) \mathrm{I}_{1,0,2,0,0,2}^{\mathrm{d}, 6-2 \epsilon}$
$\left(\frac{1}{\epsilon}\right) I_{1,0,1,1,0,1,0,3,3,0,0,0}^{\mathrm{d}=4-2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right) I_{0,2,0,2,0,0,1,3,2,0,0,0}^{\mathrm{d}=6-1 .}$
$\left(\frac{1}{\epsilon^{3}}\right) I_{0,0,2,2,0,0,2,3,2,2,0,0,0}^{\mathrm{d}=6-2,}$
$\left(\frac{1}{\epsilon}\right) I_{3,0,1,1,0,0,1,2,1,0,0,0}^{\mathrm{d}=4,2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right) I_{2,0,2,0,2,0,1,1,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}$ $\mathrm{I}_{2}^{\mathrm{d}=4-2 \epsilon}$
${ }_{2,0,1,1,1,0,1,1,1,1,0,0,0}$
$\left(\frac{1}{\epsilon^{2}}\right) I_{1,1,0,2,0,1,1,2,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right) I_{4,2,2,2,2,0,0,0,0,0,0,0}^{d=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{4}}\right) \mathrm{I}_{4,0,2,2,2,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{2}\right) I_{0,2,2,2,2}^{\mathrm{d}=6-2 \mathrm{e}}$
$\left(\frac{1}{\epsilon^{2}}\right) I_{2,0,2,2,2,2,0,1,2,0,0,0,0}^{\mathrm{d}=6,-2 \epsilon}$
$\mathrm{I}_{\mathrm{d}=6-2 \epsilon}$
$\mathrm{I}_{2,1,2,2,1,0,1,2,0,0,0,0}^{2}$
$\left(\frac{1}{\epsilon^{3}}\right) I_{4,3,0,3,0,1,0,0,3,0,0,0}^{d=8}$
$\left(\frac{1}{\epsilon^{5}}\right) I_{4,0,0,2,0,0,0,3,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right) \mathrm{I}_{3,0,0,0}^{\mathrm{d}=6}$
$\left(\frac{1}{\epsilon^{2}}\right) I_{3,0,2,0,2,0,0,1,2,0,0,0}$
$\left(\frac{1}{\epsilon^{2}}\right) \mathrm{I}_{2,2,0,2}^{\mathrm{d}=6-2 \epsilon}$
$\mathrm{I}_{1,1,1,1,1,0,1,0,1,1,0,0,0}^{\mathrm{d}=4-2 \epsilon}$
$\left(\frac{1}{2}\right) \mathrm{I}_{2}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right)$
$\left(\frac{1}{3}\right) I_{0,0,2,}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon}\right) I_{2,0,1,1,0,0,1,3,1,0,0,0}^{\mathrm{d}=4-2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right) I_{2,0,2,0,1,0,1,2,2,0,0,0}^{d=6}$
$\mathrm{I}_{1,0,1,1,1,0}^{\mathrm{d}=4-2 \epsilon}$
$\mathrm{I}_{1,0,1,1,1,0,1,2,1,0,0,0}$
$\left(\frac{1}{\epsilon}\right) I_{1,0,1,1,0,}^{\mathrm{d}=4-2 \epsilon}$
$\left(\frac{1}{\epsilon}\right) I_{3,2,2,2,2,1,0,0,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{3}}\right) I_{3,2,2}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right) I_{3,0,2,2,0,1,0,4,0,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\mathrm{I}^{\mathrm{d}=6-2 \epsilon}$ $\mathrm{I}_{0,2,2,2,1,0,2,2,0,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right) I_{2,0,2,2,2,0,1}^{\mathrm{d}}, \mathbf{2}$
$\left(\frac{1}{\epsilon^{3}}\right) I_{3,3,0,3,0,1,1,0,3,0,0,0}^{d=8}$
$\left(\frac{1}{\epsilon^{5}}\right) I_{3,0,0,2,0,0,0,4,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon^{2}}\right) I_{3,0,2,0,1,0,0,2,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{2}\right) \mathrm{I}_{210}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon}\right) I_{0,0,3,0,0,0,3,4,3,0,0,0}^{d=8-2 \epsilon}$ $\left(\frac{1}{\epsilon^{2}}\right) \mathrm{I}_{2,1,0,2,0,0,}^{\mathrm{d}=6-2 \epsilon}$ $\mathrm{I}_{1}^{\mathrm{d}=4-2 \epsilon}$ $\mathrm{I}_{1,0,1,1,0,0,1,2,1,0,0,0}^{\mathrm{d}=4-2 \mathrm{e}}$ $I^{\mathrm{d}=4-2 \epsilon}$ $\mathrm{I}_{0,1,1,1,0,0,1,2,1,0,0,0}$ $\left(\frac{1}{\epsilon}\right) I_{1,0,0,2,0,2,0,2,1,2,0,0,0}^{\mathrm{d}=6,2 \epsilon}$ $\left(\frac{1}{\epsilon^{3}}\right) I_{1,0,2,0,0,1,1,3,2,0,0,0}^{\mathrm{d}=6-2 \epsilon}$
$\left(\frac{1}{\epsilon}\right) I_{2,0,1,1,0,1,1,2,1,0,0,0}^{\mathrm{d}=4,2 \epsilon}$
$\left(\frac{1}{\epsilon}\right) I_{2,2,2,2,2,1,1,0,0,0,0}^{\mathrm{d}=6-2 \epsilon}$

Numerical boundary conditions using pySecDec

- In our basis choice, each $\mathrm{I}_{\nu_{1}, \ldots, v_{n}}$ is a finite integral. The finite integral candidates were found using Reduze 2 . This has the benefit of allowing fast(-ish) convergence of the integrals with pySecDec in the Euclidean region.
[Manteuffel, Studerus, 1201.4330] [Manteuffel, Panzer, Schabinger, 1411.7392]
- We compute all basis integrals in the Euclidean region in the point $s=-2, m_{W}^{2}=$ $4, m_{t}^{2}=16$, using the Qmc integrator configured with:
ib. use_Qmc(minn=10**7, maxeval=10**9, transform='korobov3', epsabs=1e-12, cputhreads=16)
- The computation took between 1/2-1 day on a Ryzen Threadripper Pro 3955WX.
- We find for example: $\mathrm{I}_{1,1,1,1,0,1,1,1,1,1}=0.133952666651743990-0.13899149646580500 \epsilon+O\left(\epsilon^{2}\right)$

$$
\pm\left(2 . \times 10^{-10}+7 . \times 10^{-10} \epsilon\right)
$$

3-Loop vertex topology, relevant for mixed-EW

- Another limitation of DiffExp is that $i \delta$-prescriptions for crossing thresholds are provided manually.
- We dealt with this by assuming all physical thresholds arise from unitarity cuts. We then add all prescriptions of the form:

$$
s-\left(\sum_{j} m_{j}\right)^{2}+i \delta
$$

where s is the momentum along the cut, and the m_{j} are the masses of the cut propagators.
(For pseudo-thresholds these prescriptions are automatically ignored by DiffExp.)

3-loop vertex topology

- Using DiffExp we may transport from the Euclidean point to any other (real) point in phasespace.
- Transporting from $\left(s, m_{W}^{2}, m_{t}^{2}\right)=(-2,4,16)$ to $\left(s, m_{W}^{2}, m_{t}^{2}\right)=\left(1,\left(\frac{401925}{455938}\right)^{2},\left(\frac{433000}{227969}\right)^{2}\right)$, we obtain:

```
I
I
I
I
I I,=4,2\epsilon,1,0,1,1,1,1,0,0,0
```

- The computation involved 16 line segments and took 45 minutes on a single CPU core.

The final precision reached has $8+$ significant digits. We also obtain a piecewise function.

Feynman parameter integration through differential equations

Based on work with Johann Usovitsch

Feynman parametrization

- Consider a scalar Feynman integral:

$$
I_{\nu_{1} \ldots \nu_{n}}^{(d)}\left(s_{1}, \ldots, s_{N}\right)=\int\left(\prod_{j=1}^{l} \frac{d^{d} k_{j}}{i \pi^{\frac{d}{2}}}\right) \prod_{j=1}^{n} \frac{1}{D_{j}^{\nu_{j}}}
$$

Where:

$$
\begin{aligned}
& d=d_{\text {int }}-2 \epsilon \\
& D_{i}=-q_{i}^{2}+m_{i}^{2}-i \delta
\end{aligned}
$$

- A formula by Feynman tells us that:

$$
\frac{1}{D_{1}^{\nu_{i}} \ldots D_{n}^{\nu_{n}}}=\frac{\Gamma(\nu)}{\Gamma\left(\nu_{1}\right) \ldots \Gamma\left(\nu_{n}\right)} \int_{0}^{1} d^{n} x \frac{x_{1}^{\nu_{1}-1} \ldots x_{n}^{\nu_{n}-1} \delta\left(1-\sum_{j=1}^{n} x_{j}\right)}{\left(x_{1} D_{1}+\ldots+x_{n} D_{n}\right)^{\nu}}
$$

- This gives the well-known Feynman parametrization:

$$
I_{\nu_{1} \ldots \nu_{n}}^{(d)}=\frac{\Gamma(\nu-l d / 2)}{\prod_{j=1}^{n} \Gamma\left(\nu_{j}\right)} \int\left(\prod_{j=1}^{n} d x_{j} x_{j}^{\nu_{j}-1}\right) \frac{\mathcal{U}^{\nu-(l+1) d / 2}}{\mathcal{F}^{\nu-l d / 2}} \delta\left(1-\sum_{j=1}^{n} x_{j}\right)
$$

Direct integration \& differential equations

- Alternatively, we may apply the formula recursively to two propagators: [Papadopoulos, Wever, 1910.06275]

$$
\begin{aligned}
D_{12} & =x_{1} D_{1}+\left(1-x_{1}\right) D_{2} \\
D_{123} & =x_{2} D_{12}+\left(1-x_{2}\right) D_{3}
\end{aligned}
$$

- And we define a collection of integral families:

$$
D_{1 \ldots n}=x_{n-1} D_{1 \ldots, n-1}+\left(1-x_{n-1}\right) D_{n}
$$

$$
\begin{aligned}
& I_{\nu_{1} \ldots \nu_{n}}^{(1, d)}=I_{\nu_{1} \cdots \nu_{n}}^{(d)}=\int\left(\prod_{j=1}^{l} \frac{d^{d} k_{j}}{i \pi^{\frac{d}{2}}}\right) \prod_{j=1}^{n} D_{j}^{-\nu_{j}} \\
& I_{\nu_{1} \ldots \nu_{n}}^{(k, d)}=\int\left(\prod_{j=1}^{l} \frac{d^{d} k_{j}}{i \pi^{\frac{d}{2}}}\right) D_{1 \ldots k}^{-\nu_{1}} \prod_{j=k+1}^{n} D_{j}^{-\nu_{j-k+1}} \\
& I_{\nu_{1} \ldots \nu_{n}}^{(n, d)}=\int\left(\prod_{j=1}^{l} \frac{d^{d} k_{j}}{i \pi^{\frac{d}{2}}}\right) D_{1 \ldots n}^{-\nu_{1}} \prod_{j=1}^{n-1} D_{j}^{-\nu_{j+1}}
\end{aligned}
$$

$$
I_{\nu_{1} \ldots \nu_{n}}^{(k, d)}=\int\left(\prod_{j=1}^{l} \frac{d^{d} k_{j}}{i \pi^{\frac{d}{2}}}\right) D_{1 \ldots k}^{-\nu_{1}} \prod_{j=k+1}^{n} D_{j}^{-\nu_{j-k+1}} \prod_{j=1}^{k-1} D_{j}^{-\nu_{j+n-k+1}} \quad \text { for } 1<k<n-1
$$

The orange propagators are included to provide a complete basis for IBP reductions, but do not play any further role in the discussion.

Direct integration \& differential equations

- Example: $n=4$ propagators

$$
\begin{aligned}
& I_{\nu_{1} \cdots \nu_{n}}^{(1, d)}=I_{\nu_{1} \cdots \nu_{n}}^{(d)}=\int\left(\prod_{j=1}^{l} \frac{d^{d} k_{j}}{i \pi^{\frac{d}{2}}}\right) D_{1}^{-\nu_{1}} D_{2}^{-\nu_{2}} D_{3}^{-\nu_{3}} D_{4}^{-\nu_{4}} \\
& I_{\nu_{1} \cdots \nu_{n}}^{(2, d)}=\int\left(\prod_{j=1}^{l} \frac{d^{d} k_{j}}{i \pi^{\frac{d}{2}}}\right) D_{12}^{-\nu_{1}} D_{3}^{-\nu_{2}} D_{4}^{-\nu_{3}} D_{1}^{-\nu_{4}} \\
& I_{\nu_{1} \cdots \nu_{n}}^{(3, d)}=\int\left(\prod_{j=1}^{l} \frac{d^{d} k_{j}}{i \pi^{\frac{d}{2}}}\right) D_{123}^{-\nu_{1}} D_{4}^{-\nu_{2}} D_{1}^{-\nu_{3}} D_{2}^{-\nu_{4}} \\
& I_{\nu_{1} \cdots \nu_{n}}^{(4, d)}=\int\left(\prod_{j=1}^{l} \frac{d^{d} k_{j}}{i \pi^{\frac{d}{2}}}\right) D_{1234}^{-\nu_{1}} D_{1}^{-\nu_{2}} D_{2}^{-\nu_{3}} D_{3}^{-\nu_{4}}
\end{aligned}
$$

Direct integration \& differential equations

- Then we have:

$$
I_{\nu_{1} \ldots \nu_{n}}^{(k-1, d)}=\frac{\Gamma\left(\nu_{1}+\nu_{2}\right)}{\Gamma\left(\nu_{1}\right) \Gamma\left(\nu_{2}\right)} \int_{0}^{1} d x_{k} x_{k}^{\nu_{1}-1}\left(1-x_{k}\right)^{\nu_{2}-1} I_{\nu_{1}+\nu_{2}, \nu_{3} \ldots \nu_{n}}^{(k, d)}
$$

- Note that by iterating the recursion formula, we find:

$$
I_{\nu_{1} \ldots \nu_{n}}^{(d)}=\frac{\Gamma(\nu)}{\Gamma\left(\nu_{1}\right) \ldots \Gamma\left(\nu_{n}\right)}\left(\prod_{j=1}^{n-1} \int_{0}^{1} d x_{j} x_{j}^{\mu_{j}-1}\left(1-x_{j}\right)^{\nu_{j+1}-1}\right) I_{\mu_{n}, 0, \ldots, 0}^{(n, d)}
$$

- The recursion ends at a generalized tadpole integral:

$$
I_{\mu_{n},, \ldots, 0}^{(n, d)}=\int\left(\prod_{j=1}^{l} \frac{d^{d} k_{j}}{i \pi^{\frac{d}{2}}}\right) D_{1 \ldots, n}^{-\nu}=\frac{\Gamma(\nu-l d / 2)}{\Gamma(\nu)} \frac{\tilde{\mathcal{U}}^{\nu-(l+1) d / 2}}{\tilde{\mathcal{F}}^{\nu-l d / 2}}
$$

$$
\begin{aligned}
& x_{1} \rightarrow \prod_{i=1}^{n-1} x_{i} \quad x_{n} \rightarrow\left(1-x_{n-1}\right) \\
& x_{j} \rightarrow\left(1-x_{j-1}\right) \prod_{i=j}^{n-1} x_{i} \quad \text { for } j=2, \ldots, n-1
\end{aligned}
$$

- Where \tilde{U} and \tilde{F} are rescaled versions of the standard Symanzik polynomials.

Direct integration \& differential equations

- We may use this to obtain numerical results for the complete integral family:

1. Set up a system of differential equations:

$$
\partial_{x_{k}} \vec{I}^{(k+1, d)}=M_{x_{k}} \vec{I}^{(k+1, d)}
$$

2. Transport boundary conditions to obtain a piecewise solution between $0<x_{k}<1$
3. Integrate the expansions according to the recursion formula:

$$
I_{\nu_{1} \ldots \nu_{n}}^{(k-1, d)}=\frac{\Gamma\left(\nu_{1}+\nu_{2}\right)}{\Gamma\left(\nu_{1}\right) \Gamma\left(\nu_{2}\right)} \int_{0}^{1} d x_{k} x_{k}^{\nu_{1}-1}\left(1-x_{k}\right)^{\nu_{2}-1} I_{\nu_{1}+\nu_{2}, \nu_{3} \ldots \nu_{n}}^{(k, d)}
$$

- The only input needed is:

$$
I_{\nu}^{(n, d)}=\int\left(\prod_{j=1}^{l} \frac{d^{d} k_{j}}{i \pi^{\frac{d}{2}}}\right) D_{1 \ldots n}^{-\nu}=\frac{\Gamma(\nu-l d / 2)}{\Gamma(\nu)} \frac{\tilde{u}^{\nu-(l+1) d / 2}}{\tilde{\mathcal{F}}^{\nu-l d / 2}}
$$

5-point 2-loop example:

- We consider the following illustrative example:

$$
\begin{aligned}
I^{5 \mathrm{p}}=\int & \frac{d k_{1}^{4-2 \varepsilon} d k_{2}^{4-2 \varepsilon}\left(\left(k_{2}-p_{1}-p_{2}\right)^{2}\right)^{-a_{9}}\left(\left(k_{1}-p_{1}-p_{2}-p_{3}-p_{4}\right)^{2}\right)^{-a_{10}}}{\left(\left(k_{2}-p_{1}-p_{2}-p_{3}-p_{4}\right)^{2}\right)^{a_{1}}\left(\left(k_{2}-p_{1}-p_{2}-p_{3}\right)^{2}\right)^{a_{2}}\left(k_{2}^{2}\right)^{a_{3}}} \times \\
& \frac{\left(\left(k_{2}-p_{1}\right)^{2}\right)^{-a_{11}}}{\left(\left(k_{1}-p_{1}-p_{2}\right)^{2}\right)^{a_{4}}\left(\left(k_{1}-p_{1}\right)^{2}\right)^{a_{5}}\left(k_{1}^{2}\right)^{a_{6}}\left(\left(k_{1}-k_{2}+p_{3}\right)^{2}\right)^{a_{7}}\left(\left(k_{1}-k_{2}\right)^{2}\right)^{a_{8}}},
\end{aligned}
$$

- Where the kinematics is

$$
p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=p_{4}^{2}=0,
$$

- Graphically, we have:

$$
p_{1} \cdot p_{2}=s_{12} / 2, p_{1} \cdot p_{3}=s_{13} / 2, p_{1} \cdot p_{4}=s_{14} / 2, p_{2} \cdot p_{3}=s_{23} / 2
$$

$$
p_{2} \cdot p_{4}=-\left(s_{12}+s_{13}+s_{14}+s_{23}+s_{34}-s_{55}\right) / 2, p_{3} \cdot p_{4}=s_{34} / 2
$$

5-point 2-loop example:

- We combine our propagators in the following way:

Iterative Feynman trick		
j	input	output

- The choices are motivated by first combining propagators which have the same internal momentum. This leads to simplifications of the graph.

5-point 2-loop example:

- Note that: $D_{12}=(k_{2} \underbrace{\left.-p_{1}-p_{2}-p_{3}-p_{4} x_{1}\right)^{2}}_{\tilde{Q}}-\underbrace{x_{1}\left(1-x_{1}\right)\left(-p_{4}^{2}\right)}_{\widetilde{M}}$

5-point 2-loop example:

5-point 2-loop example:

We evaluate one of the most complicated master integrals at the numerical point

$$
s_{14}=3, s_{13}=-11 / 17, s_{23}=-13 / 17, s_{12}=-7 / 17, s_{34}=-7 / 13, s_{55}=-1 \text { in } d=4-2 \varepsilon
$$

$$
\mathrm{I}^{5 \mathrm{p}}[1,3,1,1,1,1,1,1,0,0,0]=
$$

$\frac{1}{\varepsilon^{-4}}(-80991.44634941832815855134956686330134244459)+$ $\frac{1}{\varepsilon^{-3}}(-1176854.140501650857516200908950071824160111-$ $303701.8453350029342400125918254935316349429 i)+$
$\frac{1}{\varepsilon^{-2}}(-13432835.8477692962185637394931604891797674-$
$4251651.64965980166114774272201533676580580 i)+$
$\frac{1}{\varepsilon^{-1}}(-111346171.63704503288070435527859004232921-$ $32927342.395688330300021665788556801968176 i)+$
($-763045644.5561305442093867867513427731742-$
$183231121.4048774146788661490531205282119 i)+$
$+\varepsilon(-4428755434.16119754697555927652734791719-$ $816059490.912195429388068459166197648719 i)+$ $\varepsilon^{2}(-23085640630.259889520777994526537639199-$ $3082908606.7551294811504215473642629605 i)+$
$\varepsilon^{3}(-110164352209.7092412652451256610943938-$ $10252510409.42185691550687766152353640 i)+$ $\varepsilon^{4}(-497649560130.015209279192098631531920-$ $30796992268.3516086870566559550754104 i)$.

Computational complexity (IBP):

- Combining two propagators leads to integral families with less master integrals than the deformations from auxiliary mass flow, and in turn faster IBP reductions:

Topology	No deformation	Combined propagators	AMFlow
topo7	31	19	31
topo7 with $m_{1}=0, m_{2}=0$	8	12	21
5 p	142	69	191
5 p with $s_{55}=0$	108	69	174

- However, the DiffExp solver (based on Frobenius) is not as fast as the solver in AMFlow (local Fuchsian form + recursion for coefficients). We expect a combination of methods will be fruitful!

Conclusion

- Series expansion methods allow for obtaining high-precision numerical results for multiloop integrals with multiple scales.
- The Mathematica package DiffExp can be used for computing user-provided systems of differential equations.
- Analytic continuation past thresholds can be performed in an automatic way.
- Automated approaches exist for computing boundary conditions (i.e. AMFlow, or the here presented Feynman parameter approach.)

Thank you for listening!

