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Introduction and context
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• Typical analytic approaches express Feynman integrals in terms of classes of 

iterated integrals:

• Multiple polylogarithms

• Iterated integrals over modular form

• Elliptic multiple polylogarithms

Analytic methods for Feynman integrals

• Strengths of analytic methods:

• Branch-cuts and analytic structure is 

manifest (through the symbol map)

• Specialized algorithms can be developed for 

evaluating the relevant classes of functions

• Drawbacks of analytic methods:

• The analytic continuation may be difficult to 

perform

• Many Feynman integrals lie outside the 

known classes of functions
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• Prototypical example:

• Sector decomposition and numerical integration (FIESTA, pySecDec)

Numerical methods

• Strengths of numerical methods:

• Numerical integration is fully algorithmic and 

general purpose

• Applicable to integrals with many scales

• Drawbacks of numerical methods:

• Numbers might not expose symmetries 

and/or structures underlying the integrals

• Performance can lack behind analytic 

methods
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• Semi-numerical methods perform as much as possible of the computation analytically, before 

resorting to numerical approximations

• We may set up differential equations in analytic form, and then solve these differential equations

• Numerically using finite difference methods

• Semi-analytically through one-dimensional series expansions

Semi-numerical methods

• Strengths of series expansion methods:

• State of the art performance on many types of Feynman 

integrals

• Speed improves as more points are computed

• Analytic continuation of Feynman integrals becomes simple

• Drawbacks:

• Simplification of the differential equations is 

not fully algorithmic

• Derivation of boundary conditions requires 

some manual effort

[Mandal, Zhao, 1812.03060]

[Moriello, 1907.13234]
[MH, 2006.05510]

[Lee, Smirnov, Smirnov, 1709.07525]

[Liu, Ma, Wang, 1711.09572, 2201.11669]

[Talk by Chen]
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Series expansions

• The main steps of the approach which we discuss in this talk is as follows:

• Set up a linear system of differential equations

• Reduce multi-scale problems to a single-scale problem by integrating along a one-

dimensional contour

• Split up the contour into multiple segments such that series expansions converge on each 

segment

• Find series solutions of the integrals along each segment, and fix boundary conditions by 

matching neighbouring segments

• Cross thresholds by assigning ±𝑖𝛿 to logarithms and algebraic roots in the solutions
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• This strategy was demonstrated in [F. Moriello, 1907.13234] for the computation 

of planar integrals relevant to H+j production in QCD at NLO

• Simultaneously, in a larger collaboration, we applied these methods to the 

computation of non-planar H+j integrals:

(History) Series expansions

[Bonciani et al, 1907.13156] [Frellesvig et al, 1911.06308]

[R. Bonciani, V. Del Duca, H. Frellesvig, J. M. Henn, MH, L. 
Maestri, F. Moriello, G. Salvatori, V. A. Smirnov]
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Family F
Master integrals

• IBP-reduction:

• 73 master integrals

• Default FIRE basis: 𝒪(1 GB)

• More suitable (pre-

canonical) basis: 𝒪(100 MB)

• Possible using either FIRE or 

KIRA

Elliptic sectors

Fig: Master integrals with numbering.
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Family F alphabet
• 69 letters in total

• We labeled the

following roots:

• These roots appear in 10 independent combinations:

• The roots are not simultaneously rationalizable
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Plots for family F The real part of the integrals is in blue, the imaginary part is orange.
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DiffExp
• A general implementation of these methods was made into the Mathematica package DiffExp, 

introduced in arXiv:2006.05510, (available at https://gitlab.com/hiddingm/diffexp )

• DiffExp accepts (any) system of differential equations of the form

for which the matrix entries are combinations of rational and algebraic functions

• It enables one to numerically integrate various multi-scale Feynman integrals at arbitrary points 

in phase-space, and at precisions of tens of digits (or higher)

• The Feynman integrals do not have to be in canonical form and may also be of “elliptic”-type or 

associated with more complicated geometries.
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Series expansions
• Series expansions have been featured various times in the past literature.

• For single-scale problems, see e.g:

• For multi-scale problems, see for example:
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Additional literature
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Additional literature
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Additional literature

• As we have already seen during this workshop, various other public programs and 

packages are in development, such as AMFlow and SeaSyde.

• AMFlow: very efficient + automatic determination of boundary conditions.

• SeaSyde: computations with complex masses and complex contours.
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Series expansion methods
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• We consider a family of scalar Feynman integrals:

and a basis of master integrals Ԧ𝐼. Taking derivatives on kinematic invariants and 

masses and performing IBP reductions, we obtain:

• We aim to solve these differential equations. Since they are of Fuchsian type, they 

admit convergent (generalized) power series solutions

Differential equations

[Kotikov, 1991], [Remiddi, 1997]
[Gehrmann, Remiddi, 2000]

(See e.g. [1212.4389], [1411.0911]
[1702.04279])
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• In many cases the differential equations can be brought into a canonical form:

• Along a one-dimensional contour we find:

Canonical differential equations

[Henn, 2013]
See also:

[Lee, 1411.0911]
[Prausa, 1701.00725]

[Gituliar, Magerya, 1701.04269]
[Meyer, 1705.06252]

[Dlapa, Henn, Yan, 2002.02340]
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• Let us expand the matrix as a power series:

• Using integration-by-parts, we can always write:

• Thus, all the integrations can be performed in terms of (generalized) series 

expansions:

Series expansions - canonical basis
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• The series solutions have a finite radius of convergence.

• Rule of thumb: radius of convergence ~ distance to nearest singularity.

• By concatenating series expansions (possibly centered at singularities) we can 

reach any point in phase-space. How do we choose the center-points?

Line segmentation
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• Strategy:

• Choose the line segments such that each expansion is evaluated at most 1/𝑘 the 

distance to the nearest singularity, where 𝑘 > 1. 

• For example, we may choose 𝑘 = 2, and evaluate each expansion at most half the 

distance to the nearest singularity.

• To cross singularities, we center expansions at singularities.

• We give an illustrative example on the next slide.

Line segmentation
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• Suppose: Xsing = … ,−0.095,0,4,16, … , is the set of singularities.

• We seek to integrate from:  𝑥start = 0, to 𝑥end = 6

• Then we may pick the following partitioning into six line segments, such that each evaluation happens 

at most ½ the distance to the nearest singularity:

Line segmentation: example
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• The series solutions centered at singularities may contain logarithms and square 

roots.

• Logarithms appear after integration of terms 1/𝑥.

• Square roots can arise from homogeneous solutions (when the indicial equation has a half-

integer root), or from the basis definition.

• By transferring an 𝑖𝛿-prescription to the line parameter, we can perform the 

analytic continuation of these functions. In particular we can let:

Analytic continuation
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• We don’t like to carry theta functions around in the series expansions (for 

performance reasons), so we may instead use replacement rules.

• For example, if 𝑥 carries −𝑖𝛿, and we evaluate at a point 𝑥 < 0, we let:

• Additional comments:

• The 𝑖𝛿-prescriptions can be determined from the Feynman prescription

• Typically, we should avoid crossing two singular regions at the same time

Analytic continuation

Introduction   Series expansions   Examples    Boundary conditions    Conclusion   



Examples
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• Load DiffExp:

• Set the configuration options and load the matrices

3-loop banana graph
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• Prepare the boundary conditions along an asymptotic limit:

3-loop banana graph
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• Next, we transport the boundary conditions:

3-loop banana graph
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• Lastly, we plot the result:

3-loop banana graph
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3-loop banana graph
• Computation time typically scales quadratically with expansion order:
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• Let us consider the following 3-loop integral family:

• The finite basis consists of 77 integrals in total. We choose 19 integrals in 𝑑 = 4, 53 integrals in 𝑑

= 6, and 5 integrals in 𝑑 = 8. The differential equations are ~ 10 MB before expanding in 𝜖.

3-loop vertex topology, relevant for mixed-EW

Based on work with

[Ievgen Dubovyk, Ayres Freitas, Janusz Gluza, 
Krzysztof Grzanka, MH, Johann Usovitsch, 2201.02576]
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• In the automatic approach that DiffExp uses, the differential matrix is required to be 

finite as 𝜖 → 0. For a general basis Ԧ𝑓 this is not the case.

• Let’s rescale each master integral by a power of 𝜖:

• Then we obtain the following linear system:

• We don’t always find a solution for the above system, but empirically we do find a 

solution if we choose a finite basis of master integrals.

3-Loop vertex topology, relevant for mixed-EW

[Ievgen Dubovyk, Ayres Freitas, Janusz Gluza, 
Krzysztof Grzanka, MH, Johann Usovitsch, 

2201.02576]
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Basis integrals
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Numerical boundary conditions using pySecDec

• In our basis choice, each I𝜈1,…,𝜈𝑛 is a finite integral. The finite integral candidates were 

found using Reduze 2. This has the benefit of allowing fast(-ish) convergence of the 

integrals with pySecDec in the Euclidean region. [Manteuffel, Studerus, 1201.4330]
[Manteuffel, Panzer, Schabinger, 1411.7392]
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• Another limitation of DiffExp is that 𝑖𝛿-prescriptions for crossing thresholds are provided 

manually.

• We dealt with this by assuming all physical thresholds arise from unitarity cuts. We then 

add all prescriptions of the form:

where 𝑠 is the momentum along the cut, and the 𝑚𝑗 are the masses of the cut propagators. 

(For pseudo-thresholds these prescriptions are automatically ignored by DiffExp.)

3-Loop vertex topology, relevant for mixed-EW
[Ievgen Dubovyk, Ayres Freitas, Janusz Gluza, 

Krzysztof Grzanka, MH, Johann Usovitsch, 2201.02576]
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3-loop vertex topology

• The computation involved 16 line segments and took 45 minutes on a single CPU core. 

The final precision reached has 8+ significant digits. We also obtain a piecewise function.
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Feynman parameter integration through 

differential equations

Based on work with Johann Usovitsch
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Feynman parametrization

• Consider a scalar Feynman integral:

• A formula by Feynman tells us that:

• This gives the well-known Feynman parametrization:

Where:
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Direct integration & differential equations
• Alternatively, we may apply the formula recursively to two propagators:

• And we define a collection of integral families:

The orange propagators are included to provide a 

complete basis for IBP reductions, but do not play any 

further role in the discussion.

See also: 
[MH, Moriello, 1712.04441]

[Papadopoulos, Wever, 1910.06275]
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Direct integration & differential equations
• Example: 𝑛 = 4 propagators
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Direct integration & differential equations
• Then we have:

• Note that by iterating the recursion formula, we find:

• The recursion ends at a generalized tadpole integral:

• Where ෨𝒰 and ෨𝐹 are rescaled versions of the standard Symanzik polynomials.
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Direct integration & differential equations
• We may use this to obtain numerical results for the complete integral family:

1. Set up a system of differential equations:

2. Transport boundary conditions to obtain a piecewise solution between 0 < 𝑥𝑘 < 1

3. Integrate the expansions according to the recursion formula:

• The only input needed is:
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5-point 2-loop example:
• We consider the following illustrative example:

• Where the kinematics is

• Graphically, we have:
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5-point 2-loop example:

• We combine our propagators in the following way:

• The choices are motivated by first combining propagators which have the 

same internal momentum. This leads to simplifications of the graph.
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5-point 2-loop example:

• Note that:
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5-point 2-loop example:
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5-point 2-loop example:
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• Combining two propagators leads to integral families with less master integrals than 

the deformations from auxiliary mass flow, and in turn faster IBP reductions:

• However, the DiffExp solver (based on Frobenius) is not as fast as the solver in 

AMFlow (local Fuchsian form + recursion for coefficients). We expect a combination 

of methods will be fruitful!

Computational complexity (IBP):
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Conclusion

• Series expansion methods allow for obtaining high-precision numerical results for 

multiloop integrals with multiple scales.

• The Mathematica package DiffExp can be used for computing user-provided 

systems of differential equations.

• Analytic continuation past thresholds can be performed in an automatic way.

• Automated approaches exist for computing boundary conditions (i.e. AMFlow, or 

the here presented Feynman parameter approach.)
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Thank you for listening!
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