The auxiliary mass flow approach

Xiao Liu

University of Oxford

Based on 1711.09572, 2107.01864 and 2201.11669
In collaboration with Yan-Qing Ma and Chen-Yu Wang
Precision calculations for future $e^{+} e^{-}$colliders: targets and tools
17 June 2022, CERN, Geneva

Outline

I. Introduction

II. Auxiliary mass flow
I. The method
II. Iterative strategy
III. The package AMFIow
I. Basic usage
II. Applications to e+e-colliders phenomenology
IV. Summary and outlook

High precision physics

> Multiloop scattering amplitudes

- most popular approach \rightarrow talks by Vasily, Andreas, Long, Narayan
- construct the amplitude \rightarrow talk by Max

$$
\mathcal{A}=\sum_{j} a_{j} I_{j}
$$

- reduce the scalar integrals to master integrals \rightarrow talk by Tiziano

$$
I_{j}=\sum_{k} b_{j k} \mathcal{I}_{k}
$$

- compute the master integrals \rightarrow talks by Stefan, Vitalii, Janusz, Martijn

$$
\mathcal{I}_{k}=\sum_{l=-2 L} c_{k l} \epsilon^{l}
$$

- other novel \& promising approaches \rightarrow talks by Valentin, Charalampos

High precision physics

> Master integrals calculation

- canonical differential equations [Kotikov, Phys. Lett. B, 1991][Henn, Phys. Rev. Lett., 2013]
- sector decomposition [Binoth and Heinrich, Nucl. Phys. B, 2000]
- Mellin-Barnes representation [Boos and Davydychev, Theor.Math.Phys, 1991][Smirnov, Phys. Lett. B, 1999]
- numerical (ordinary) differential equations [Czakon, Phys. Lett. B, 2008]
- numerical solver [Hidding, Comput.Phys.Commun., 2021][Armadillo, Bonciani, et al, arXiv:2205.03345]
- differential equations \rightarrow IBP reduction [Chetyrkin and Tkachov, Nucl. Phys. B, 1981] [Laporta, Int. J. Mod. Phys. A, 2000]

$$
\frac{\partial}{\partial x} \overrightarrow{\mathcal{I}}(x)=A(x) \overrightarrow{\mathcal{I}}(x)
$$

- boundary conditions \rightarrow method of region [Beneke and Smirnov, Nucl. Phys. B, 1998], Sector decomposition, auxiliary mass flow

$$
\overrightarrow{\mathcal{I}}\left(x_{0}\right) \quad \text { or } \quad \overrightarrow{\mathcal{I}}(x) \stackrel{x \rightarrow x_{0}}{\sim} \ldots
$$

Outline

I. Introduction
II. Auxiliary mass flow
I. The method
II. Iterative strategy
III. The package AMFlow
I. Basic usage
II. Applications to e+e-colliders phenomenology
IV. Summary and outlook

Auxiliary mass flow

$>$ Dimensionally regulated Feynman integrals

$$
I(\vec{\nu})=\int \prod_{i=1}^{L} \frac{\mathrm{~d}^{D} \ell_{i}}{\mathrm{i} \pi^{D / 2}} \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}} \cdots \mathcal{D}_{N}^{-\nu_{N}}}{\left(\mathcal{D}_{1}+\mathrm{i} 0\right)^{\nu_{1}} \cdots\left(\mathcal{D}_{K}+\mathrm{i} 0\right)^{\nu_{K}}}
$$

- integrals with auxiliary mass parameter η

$$
I_{\mathrm{aux}}(\vec{\nu} ; \eta)=\int \prod_{i=1}^{L} \frac{\mathrm{~d}^{D} \ell_{i}}{\mathrm{i} \pi^{D / 2}} \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}} \cdots \mathcal{D}_{N}^{-\nu_{N}}}{\left(\mathcal{D}_{1}-\eta\right)^{\nu_{1}} \cdots\left(\mathcal{D}_{K}-\eta\right)^{\nu_{K}}}
$$

- obtain physical integrals through

$$
I(\vec{\nu})=\lim _{\eta \rightarrow \mathrm{i} 0^{-}} I_{\mathrm{aux}}(\vec{\nu} ; \eta)
$$

Auxiliary mass flow

Expansion near $\eta=\infty$

- method of region [Beneke and Smirnov, Nucl. Phys. B, 1998]
- the only contributing region: $\ell_{i}^{\mu} \sim \sqrt{\eta}$

$$
\frac{1}{\left((\ell+p)^{2}-m^{2}-\eta\right)^{\nu}}=\frac{1}{\left(\ell^{2}-\eta\right)^{\nu}} \sum_{i=0}^{\infty} \frac{(\nu)_{i}}{i!}\left(-\frac{2 \ell \cdot p+p^{2}-m^{2}}{\ell^{2}-\eta}\right)^{i}
$$

- Feynman parametric representation

$$
\int \mathfrak{D} \vec{x} \frac{\mathcal{U}^{-D / 2}}{(\mathcal{F} / \mathcal{U}+\eta)^{N_{\nu}-L D / 2}}=\eta^{L D / 2-N_{\nu}} \int \mathfrak{D} \vec{x} \mathcal{U}^{-D / 2} \sum_{i=0}^{\infty} \frac{\left(N_{\nu}-L D / 2\right)_{i}}{i!}\left(-\frac{\mathcal{F}}{\eta \mathcal{U}}\right)^{i}
$$

- fully massive vacuum integrals [Davydychev and Tausk, Nucl, Phys. B, 1993] [Broadhurst, Eur. Phys. J.

C, 1999][Schroder and Vuorinen, JHEP, 2005] [Kniehl, Pikelner and Veretin, JHEP, 2017][Luthe, phdthesis, 2015]
[Luthe, Maier, Marquard et al, JHEP, 2017]

17 June 2022

Auxiliary mass flow

$>I(\eta)$ as an analytic function of η

- there should be a maximal threshold $\eta=\eta_{\text {th }}$ on the real axis
- $\quad I(\eta)$ is real-valued for $\eta>\eta_{\text {th }}$ and complex-valued for $\eta<\eta_{\text {th }}$
- branch cut can be chosen as the straight line connecting $\eta=-\infty$ and $\eta=\eta_{\text {th }}$ along the real axis, such that $I\left(\eta^{*}\right)=I^{*}(\eta)$

Auxiliary mass flow

> Analytic continuation

- differential equations

$$
\frac{\partial}{\partial \eta} \overrightarrow{\mathcal{I}}_{\text {aux }}(\eta)=A(\eta) \overrightarrow{\mathcal{I}}_{\text {aux }}(\eta)
$$

- boundary conditions at $\eta=\infty$
- define a path: $\left\{\eta_{0}, \eta_{1}, \ldots, \eta_{l}\right\}$
- expand at $\eta=\infty$ to estimate $I\left(\eta_{0}\right)$
- expand at $\eta=\eta_{i}$ to estimate $I\left(\eta_{i+1}\right)$
- expand formally at $\eta=0$ and match at
$\eta=\eta_{l}$
- η_{0} : outside the larger circle
- η_{l} : inside the smaller circle
- $\left|\eta_{i+1}-\eta_{i}\right|<r_{i}$

Auxiliary mass flow

> A simple example: one-loop massless bubble

$$
I\left(\nu_{1}, \nu_{2}\right)=\int \frac{\mathrm{d}^{D} \ell}{\mathrm{i} \pi^{D / 2}} \frac{1}{\left(\ell^{2}\right)^{\nu_{1}}\left((\ell+p)^{2}\right)^{\nu_{2}}}
$$

- master integral: $I(1,1)$

$$
\begin{aligned}
& I(1,1)=\left(-p^{2}-i 0\right)^{D / 2-2} \times \frac{\Gamma(2-D / 2) \Gamma(D / 2-1)^{2}}{\Gamma(D-2)} \\
& \begin{aligned}
\left.I(1,1)\right|_{p^{2}=1, D=4-2 \epsilon} & =\frac{1}{\epsilon}+(2-\gamma+i \pi)+O\left(\epsilon^{1}\right) \\
& =\frac{1}{\epsilon}+(1.42278+3.14159 i)+O\left(\epsilon^{1}\right)
\end{aligned}
\end{aligned}
$$

Auxiliary mass flow

- insert auxiliary mass

- master integrals: $\vec{I}_{\text {aux }}(\eta)=\left\{I_{\text {aux }}(1,0 ; \eta), I_{\text {aux }}(1,1 ; \eta)\right\}$
- construct differential equations using IBP reduction

$$
\frac{\partial}{\partial \eta} \overrightarrow{\mathcal{I}}_{\text {aux }}(\eta)=\left(\begin{array}{cc}
\frac{1-\epsilon}{\eta} & 0 \\
\frac{2(\epsilon-1)}{\eta(4 \eta-1)} & -\frac{2(2 \epsilon-1)}{4 \eta-1}
\end{array}\right) \overrightarrow{\mathcal{I}}_{\text {aux }}(\eta)
$$

- $\eta_{\text {th }}=1 / 4$
- boundary conditions

$$
\begin{aligned}
I_{\mathrm{aux}}(1,0 ; \eta) & =\eta^{1-\epsilon} \times(-\Gamma(\epsilon-1)) \\
I_{\mathrm{aux}}(1,1 ; \eta) & \sim \eta^{-\epsilon} \times\left(\Gamma(\epsilon)+\mathcal{O}\left(\eta^{-1}\right)\right)
\end{aligned}
$$

Auxiliary mass flow

- define a path for analytic continuation
- singularities: $\{0,1 / 4\}$
- $R_{\mathrm{L}}=R_{\mathrm{S}}=1 / 4$
- $\{-i / 2,-i / 4,-i / 8\}$
- expand near $\eta=\infty$
- $\quad I_{\text {aux }}(1,1 ; \eta)=\eta^{-\epsilon} \sum_{n=0}^{\infty} a_{n}(\epsilon) \eta^{-n}$
- $a_{0}(\epsilon)=\epsilon^{-1}-0.577216$
- $a_{1}(\epsilon)=0.166667$
- $a_{100}(\epsilon)=5.49443 \times 10^{-64}$
- estimate at $\eta=\eta_{0}=-i / 2$ to obtain

$$
I_{\mathrm{aux}}(1,1 ;-i / 2)=\epsilon^{-1}+0.0548501+1.88709 i
$$

Auxiliary mass flow

- expand near $\eta=\eta_{0}=-i / 2$
- $\quad I_{\mathrm{aux}}(1,1 ; \eta)=\sum_{n=0}^{\infty} a_{n}(\epsilon)\left(\eta-\eta_{0}\right)^{n}$
- $a_{0}(\epsilon)=\epsilon^{-1}+0.0548501+1.88709 i$
- $a_{1}(\epsilon)=0.5714-1.77538 i$
- $a_{100}(\epsilon)=-1.29958 \times 10^{24}+1.28029 \times 10^{26}$
- estimate at $\eta=\eta_{1}=-i / 4$ to obtain

$$
I_{\mathrm{aux}}(1,1 ;-i / 4)=\epsilon^{-1}+0.609168+2.13174 i
$$

- expand near $\eta=\eta_{1}=-i / 4$
- $\quad I_{\text {aux }}(1,1 ; \eta)=\sum_{n=0}^{\infty} a_{n}(\epsilon)\left(\eta-\eta_{1}\right)^{n}$
- estimate at $\eta=-i / 8$ to obtain

$$
I_{\text {aux }}(1,1 ;-i / 8)=\epsilon^{-1}+0.994236+2.42639 i
$$

Auxiliary mass flow

- expand near $\eta=0$
- $\quad I_{\mathrm{aux}}(1,1 ; \eta)=\sum_{n=0}^{\infty} a_{n}(\epsilon) \eta^{n}+\eta^{1-\epsilon} \sum_{n=0}^{\infty} b_{n}(\epsilon) \eta^{n}$
- $b_{n}(\epsilon)$ can be totally determined by sub-topology
- $b_{0}(\epsilon)=-2 \Gamma(\epsilon-1)$
- $b_{1}(\epsilon)=4 \Gamma(\epsilon-1) /(\epsilon-2)$
- $a_{n}(\epsilon)$ cannot be totally determined but can be reduced to $a_{0}(\epsilon)$
- $a_{1}(\epsilon)=2(2 \epsilon-1) a_{0}(\epsilon)$
- $a_{2}(\epsilon)=2(2 \epsilon-1)(2 \epsilon+1) a_{0}(\epsilon)$
- match at $\eta=\eta_{2}=-i / 8$ to obtain $a_{0}(\epsilon)=\epsilon^{-1}+1.42278+3.14159 i$
- take the limit $\eta \rightarrow i 0^{-}$
- $\lim _{\eta \rightarrow i 0^{-}} I_{\text {aux }}(1,1 ; \eta)=a_{0}(\epsilon)=\epsilon^{-1}+1.42278+3.14159 i$

Auxiliary mass flow

> A two-loop example: massless double-box

- number of master integrals: $8 \rightarrow 39$

The growth of \#MIs might result in prohibitive complexities for more complicated problems. Iterative strategy.

Outline

I. Introduction
II. Auxiliary mass flow
I. The method
II. Iterative strategy
III. The package AMFIow
I. Basic usage
II. Applications to e+e-colliders phenomenology
IV. Summary and outlook

Iterative strategy

> A simple observation

- 108 master integrals
- inserting η to fewer propagators may reduce the number of master integrals

Iterative strategy

$>$ Integration regions

- loop momentum of each branch can be either of $O(1)$ or $O(\sqrt{\eta})$
- regions for one-loop:

$$
\begin{equation*}
\overrightarrow{(\mathrm{S})} \tag{L}
\end{equation*}
$$

- regions for two-loop:

- (LSS), (SLS), (SSL) excluded by momentum conservation
- $N_{1}=2, N_{2}=5, N_{3}=15, N_{4}=47, \ldots$

Iterative strategy

Expansions

- (L ... L): $\frac{1}{(\ell+p)^{2}-m^{2}-\kappa \eta} \sim \frac{1}{\ell^{2}-\kappa \eta}$

- (S ... S): $\frac{1}{(\ell+p)^{2}-m^{2}-\eta} \sim \frac{1}{-\eta}$

sub-family
- mixed: $\frac{1}{\left(\ell_{\mathrm{L}}+\ell_{\mathrm{S}}+p\right)^{2}-m^{2}-\kappa \eta} \sim \frac{1}{\ell_{\mathrm{L}}^{2}-\kappa \eta}$

Integrals can be solved iteratively.

- can be further transformed into p-integrals with fewer loops [Liu and Ma, arXiv: 2201.11637]

Examples

> Two-loop five-point massless double-pentagon

$$
\begin{aligned}
& \mathcal{D}_{1}=\ell_{1}^{2}, \mathcal{D}_{2}=\left(\ell_{1}-p_{1}\right)^{2}, \mathcal{D}_{3}=\left(\ell_{1}-p_{1}-p_{2}\right)^{2}, \\
& \mathcal{D}_{4}=\ell_{2}^{2}, \mathcal{D}_{5}=\left(\ell_{2}+p_{5}\right)^{2}, \mathcal{D}_{6}=\left(\ell_{2}+p_{4}+p_{5}\right)^{2}, \\
& \mathcal{D}_{7}=\left(\ell_{1}-\ell_{2}\right)^{2}, \mathcal{D}_{8}=\left(\ell_{1}-\ell_{2}+p_{3}\right)^{2}, \mathcal{D}_{9}=\left(\ell_{1}+p_{5}\right)^{2}, \\
& \mathcal{D}_{10}=\left(\ell_{2}-p_{1}\right)^{2}, \mathcal{D}_{11}=\left(\ell_{2}-p_{1}-p_{2}\right)^{2}, \\
& \vec{s} \equiv\left\{s_{12}, s_{23}, s_{34}, s_{45}, s_{15}\right\}, \quad s_{i j}=\left(p_{i}+p_{j}\right)^{2}
\end{aligned}
$$

- introduce η to D_{5}

$$
\frac{\mathcal{D}_{9}^{\nu_{9}} \mathcal{D}_{10}^{\nu_{10}} \mathcal{D}_{11}^{\nu_{11}}}{\mathcal{D}_{1}^{\nu_{1}} \mathcal{D}_{2}^{\nu_{2}} \mathcal{D}_{3}^{\nu_{3}} \mathcal{D}_{4}^{\nu_{4}}\left(\mathcal{D}_{5}-\eta\right)^{\nu_{5}} \mathcal{D}_{6}^{\nu_{6}} \mathcal{D}_{7}^{\nu_{7}} \mathcal{D}_{8}^{\nu_{8}}}
$$

Examples

- all-large region (LLL): $\ell_{1} \sim \sqrt{\eta}, \ell_{2} \sim \sqrt{\eta}, \ell_{1}-\ell_{2} \sim \sqrt{\eta}$

$$
\frac{1}{\left(\ell_{1}^{2}\right)^{\nu_{1}+\nu_{2}+\nu_{3}-\nu_{9}}\left(\ell_{2}^{2}\right)^{\nu_{4}+\nu_{6}-\nu_{10}-\nu_{11}}\left(\ell_{2}^{2}-\eta\right)^{\nu_{5}}\left(\ell_{1}-\ell_{2}\right)^{\nu_{7}+\nu_{8}}}
$$

- mixed region (SLL): $\ell_{1} \sim 1, \ell_{2} \sim \sqrt{\eta}, \ell_{1}-\ell_{2} \sim \sqrt{\eta}$

- all-small region (SSS): $\ell_{1} \sim 1, \ell_{2} \sim 1, \ell_{1}-\ell_{2} \sim 1$

$$
\frac{\mathcal{D}_{9}^{\nu_{9}} \mathcal{D}_{10}^{\nu_{10}} \mathcal{D}_{11}^{\nu_{11}}}{\mathcal{D}_{1}^{\nu_{1}} \mathcal{D}_{2}^{\nu_{2}} \mathcal{D}_{3}^{\nu_{3}} \mathcal{D}_{4}^{\nu_{4}} \mathcal{D}_{6}^{\nu_{6}} \mathcal{D}_{7}^{\nu_{7}} \mathcal{D}_{8}^{\nu_{8}}}
$$

Examples

- repeat the above procedure and obtain a tree

Examples

- master branch of massless double-pentagon

- end up with scaleless integrals

Examples

- block-triangular systems [xL and Ma, Phys. Rev. D, 2019] [Guan, XL and Ma, Chin. Phys. C, 2020]
- much smaller size
- much better structure
- 30~100 times faster on average for finite field computations
- differential equations at first step (176*176): block-triangular V.S. IBP
(FiniteFlow+LiteRed) [Peraro, JHEP, 2019] [Lee, J. Phys. Conf. Ser, 2014]

	block-triangular	IBP
\# relations	869	212847
$t_{\text {FFSample }}$	0.029 s	3.93 s

Examples

- $\vec{S}_{0}=\left\{4,-\frac{113}{47}, \frac{281}{149}, \frac{349}{257},-\frac{863}{541}\right\}$
- construction of the amflow-tree: 6 CPU hours
- 16-digit numerical solution: 7 CPU hours

$$
\begin{aligned}
& I(1,1,1,1,1,1,1,1,0,0,0) \\
&=-0.06943562517263776 \epsilon^{-4}+(1.162256636711287+1.416359853446717 \mathrm{i}) \epsilon^{-3} \\
&+(37.82474332116938+15.91912443581739 \mathrm{i}) \epsilon^{-2}+(86.2861798369034+166.8971535711277 \mathrm{i}) \epsilon^{-1} \\
&-(4.1435965578662-333.0996040071305 \mathrm{i})-(531.834114822928-1583.724672502141 \mathrm{i}) \epsilon \\
&-(2482.240253232612-2567.398291724192 \mathrm{i}) \epsilon^{2}-(8999.90369367113-19313.42643829926 \mathrm{i}) \epsilon^{3} \\
&-(28906.95582696762-17366.82954322838 \mathrm{i}) \epsilon^{4}
\end{aligned}
$$

- checked against analytic solutions [Chicherin, Gehrmann, Henn et al, Phys. Rev. Lett., 2019] [Chicherin and Sotnikov, JHEP, 2020]

Examples

> Cutting-edge examples

(e)

(f)

Outline

I. Introduction
II. Auxiliary mass flow
I. The method
II. Iterative strategy
III. The package AMFIow
I. Basic usage
II. Applications to e+e-colliders phenomenology
IV. Summary and outlook

AMFlow

Project ID: 32748265 笑
-o- 52 Commits 1 Branch 2 Tags 1.5 MB Project Storage 1 Release

A proof-of-concept implementation of auxiliary mass flow method.

- a Mathematica package for numerical computations of Feynman integrals using auxiliary mass flow
- available at https://gitlab.com/multiloop-pku/amflow
- current version: 1.1
- basic features
- systematic: works for arbitrary integrals in principle
- efficient: easy to reach high precision
- user-friendly: press the button \& wait for the results

AMFlow

- main package: AMFlow.m
- provides functions to perform automatic computations
- SolveIntegrals[targets, precision, epsorder]
- differential equation solver: diffeq_solver/DESolver.m
- provides functions to solve differential equations numerically using series expansion
- interfaces to IBP reducers[Klappert, Lange, et al, Comput.Phys.Commun., 2021][Smirnov and Chuharev,

Comput.Phys.Commun., 2020][Peraro, JHEP, 2019][Lee, J. Phys. Conf. Ser., 2014]

- FiniteFlow+LiteRed: ibp_interface/FiniteFlow+LiteRed/interface.m \& sup.m
- Kira: ibp_interface/Kira/interface.m
- Fire+LiteRed: ibp_interface/Fire+LiteRed/interface.m
- BlockTriangular: in preparation
- examples/..

AMFlow

- examples/automatic_vs_manual

(*load the package*)
current $=$ If [\$FrontEnd $===$ Null, $\$$ InputFileName, NotebookFileName []]//DirectoryName; Get[FileNameJoin[\{current, "..", "..", "AMFlow.m"\}]];
(*set ibp reducer, could be "FiniteFlow+LiteRed", "Kira" or "Fire+LiteRed"*
SetReduction0ptions["IBPReducer" -> "Kira"];

```
(* configuration of the integral family*)
AMFlowInfo["Family"] = tt;
AMFlowInfo["Loop"] = {l1, 12};
AMFlowInfo["Leg"] = {p1, p2, p3, p4};
AMFlowInfo["Conservation"] = {p4 -> -p1-p2-p3};
AMFlowInfo["Replacement"] = (p1^2 -> 0, p2^^2 -> 0, p3^2 -> msq, p4^2 -> msq, (p1+p2)^2 -> s, (p1+p3)^2 -> t};
```



```
AMFlowInfo["Numeric"] = {s >> 30, t }>>-10/3,\textrm{msq}->>1}
AMFlowInfo["NThread"] = 4;
```

(*SolveIntegrals: computes given integrals with given precision goal up to given eps order*)
(*returned is a list of replacement rules like ($\mathrm{j} 1 \rightarrow \mathrm{v} 1, \mathrm{j} 2 \rightarrow \mathrm{v} 2, \ldots$, where $\mathrm{j} 1, \mathrm{j} 2, \ldots$ are integrals and $\mathrm{v} 1, \mathrm{v} 2, \ldots$ are their results*)
target $=\{j[t t, 1,1,1,1,1,1,1,-3,0], j[t t, 1,1,1,1,1,1,1,-2,-1], j[t t, 1,1,1,1,1,1,1,-1,-2], j[t t, 1,1,1,1,1,1,1,0,-3]\}$;
precision $=20$;
epsorder $=4$;
auto $=$ SolveIntegrals[target, precision, epsorder];

- SetReductionOptions["IBPReducer" -> "reducer"];
- AMFlowInfo[keyword] = object;
- SolveIntegrals[targets, precision, epsorder];

Outline

I. Introduction
II. Auxiliary mass flow
I. The method
II. Iterative strategy
III. The package AMFIow
I. Basic usage
II. Applications to e+e-colliders phenomenology
IV. Summary and outlook

Applications

$>e^{+} e^{-} \rightarrow t \bar{t} @ N N L O$ electroweak

AMFlowInfo["Family"] = eett;
AMFlowInfo["Loop"] = \{l1, l2 $\}$;
AMFlowInfo["Leg"] = \{p1, p2, p3, p4\};
AMFlowInfo["Conservation"] $=\{p 4->-p 1-p 2-p 3\}$;
AMFlowInfo["Replacement"] $=\left\{p 1^{\wedge} 2->0, p 2^{\wedge} 2->0, p 3^{\wedge} 2->m t s q, p 4 \wedge 2->m t s q,(p 1+p 2)^{\wedge} 2->s,(p 1+p 3)^{\wedge} 2->t\right\}$;
AMFlowInfo["Propagator"] = \{l1^2-mWsq, $(11+p 1)^{\wedge} 2,(11+p 1+p 2)^{\wedge} 2-\mathrm{mWsq}, 12 \wedge 2-\mathrm{mtsq},(12+\mathrm{p} 3)^{\wedge} 2-\mathrm{mZsq},(12+\mathrm{p} 3+\mathrm{p} 4)^{\wedge} 2-\mathrm{mtsq}$, $\left.(11+\mathrm{l} 2)^{\wedge} 2,(\mathrm{l} 1+\mathrm{p} 3)^{\wedge} 2,(12+\mathrm{p} 1)^{\wedge} 2\right\}$;
AMFlowInfo["Numeric"] $=\{\mathrm{s}->10, \mathrm{t}->-11 / 3$, mtsq $->1$, mWsq $->35 / 162$, mZsq $->5 / 18\}$;
AMFlowInfo["NThread"] = 20;

- master integrals: $84 \rightarrow 84$
- 20-digit results in physical region obtained in 0.4 h (20 threads)

Applications

$>e^{+} e^{-} \rightarrow W^{+} W^{-} @ \mathrm{NNLO}$ electroweak

AMFlowInfo["Family"] = eeww;
AMFlowInfo["Loop"] = \{11, 12\};
AMFlowInfo["Leg"] = \{p1, p2, p3, p4\};
AMFlowInfo["Conservation"] = \{p4 -> -p1-p2-p3\};
AMFlowInfo["Replacement"] $=\left\{p 1^{\wedge} 2->0, p 2^{\wedge} 2->0, p 3^{\wedge} 2->m W s q, p 4^{\wedge} 2->m W s q,(p 1+p 2)^{\wedge} 2->s,(p 1+p 3)^{\wedge} 2->t\right\} ;$
AMFlowInfo["Propagator"] = \{l1^2-mZsq, $(11+\mathrm{p} 1)^{\wedge} 2,(11+\mathrm{p} 1+\mathrm{p} 2)^{\wedge} 2-\mathrm{mZsq}, 12^{\wedge} 2-\mathrm{mtsq},(12+\mathrm{p} 3)^{\wedge} 2,(11+\mathrm{l} 2-\mathrm{p} 4)^{\wedge} 2,(11+\mathrm{l} 2)^{\wedge} 2-\mathrm{mtsq}$, $\left.(11+\mathrm{p} 3)^{\wedge} 2,(\mathrm{l} 2+\mathrm{p} 1)^{\wedge} 2\right\}$;
AMFlowInfo["Numeric"] $=\{\mathrm{s}->10, \mathrm{t}->-11 / 3$, mtsq $->162 / 35$, mWsq $->1$, mZsq $->9 / 7\}$;
AMFlowInfo["NThread"] = 20;

- master integrals: $166 \rightarrow 166$
- 20-digit results in physical region obtained in 2.7 h (20 threads)

Applications

$>e^{+} e^{-} \rightarrow t \bar{t}$ with complex Z mass

AMFlowInfo["Family"] = eettc;
AMFlowInfo["Loop"] = \{11, 12\};
AMFlowInfo["Leg"] = \{p1, p2, p3, p4\};
AMFlowInfo["Conservation"] = \{p4 -> -p1-p2-p3\};
AMFlowInfo["Replacement"] = \{p1^2->0, p2^2 $\left.->0, p 3^{\wedge} 2->m t s q, p 4^{\wedge} 2->m t s q,(p 1+p 2)^{\wedge} 2->s,(p 1+p 3)^{\wedge} 2->t\right\}$;
AMFlowInfo["Propagator"] = \{l1^2-mZsq, $(11+\mathrm{p} 1)^{\wedge} 2,(11+\mathrm{p} 1+\mathrm{p} 2)^{\wedge} 2-\mathrm{mZsq}, 12^{\wedge} 2-\mathrm{mtsq},(\mathrm{l} 2+\mathrm{p} 3)^{\wedge} 2,(\mathrm{l} 2+\mathrm{p} 3+\mathrm{p} 4)^{\wedge} 2-\mathrm{mtsq}$, $\left.(11+\mathrm{l} 2)^{\wedge} 2-\mathrm{mtsq},(\mathrm{l} 1+\mathrm{p} 3)^{\wedge} 2,(\mathrm{l} 2+\mathrm{p} 1)^{\wedge} 2\right\}$;
AMFlowInfo["Numeric"] $=\left\{\mathrm{s}->10, \mathrm{t}->-11 / 3\right.$, mtsq $->1$, mZsq $\left.->5 / 18-I^{*} 55 / 7236\right\}$;
AMFlowInfo["NThread"] = 20;

- master integrals: $69 \rightarrow 69$
- 20 -digit results in physical region obtained in 0.3 h (20 threads)

Outline

I. Introduction
II. Auxiliary mass flow
I. The method
II. Iterative strategy
III. The package AMFlow
I. Basic usage
II. Applications to e+e-colliders phenomenology
IV. Summary and outlook

Summary and Outlook

What we have

- Auxiliary mass flow method fully automized the computation of boundary conditions for differential equations.
- AMFlow is the first public tool which can compute arbitrary Feynman loop integrals, at arbitrary kinematic point, to arbitrary precision.

$>$ What we need

- Powerful reduction techniques are urgently needed to construct differential equations, both for η and for dynamical variables.
- A guide for choosing better master integrals in general cases is needed, which may strongly simplify the differential equations.

