A High Granularity Timing Detector for the ATLAS Phase-II upgrade

Mengqing Wu (Radboud University & Nikhef) On behalf of the ATLAS HGTD group

Vertex 2022, Tateyama, Oct 24-28 2022

Detector upgrade requirements towards HL-LHC

HL-LHC: instantaneous luminosity 5 times higher, giving a total integrated luminosity of up to 4 ab⁻¹

 Up to 200 inelastic pp collisions (pile-up) on average per bunch crossing → motivates not only finer spatial measurements but also timing measurements

 Higher radiation requirement → detector radiation hardness increased by an order of magnitude

Exploit the 4th dimension: time

Interactions spread not only in z but also in t (RMS ~ 175 ps), at least for tracks in **high |η| region**, requiring

• σ_t << 175ps, and HGTD aims at < 50ps

- → pile-up suppression by a factor of ~6
- → impact on pile-up rejection, track/jet reconstruction Critical to success of the physics programme

Finer spatial measurements by ITK

High Granularity Timing Detector

- Pixel detector with coarse spatial resolution but highly precise time measurements
 - Time resolution per track (hit):
 - 30-50 ps (35-70ps)
 - Luminosity measurements, bunch by bunch, i.e.
 40MHz readout
 - Goal for HL-LHC: 1% luminosity uncertainty
 - Approved by CERN LHCC in Sep 2019
- Two HGTD end-up disks installed in the gap between barrel and end-cap calorimeter
- $z \sim \pm 3.5$ m from the nominal interaction point
- Total radius: 11 cm < R < 100 cm
- Active region covering:
 - $2.4 < \eta < 4.0$, 12 cm < R < 64 cm
- Radiation hardness requirements:
 2.5x10¹⁵ n_{eq}/cm² (w/ Safety Factor=1.5)
 or 2 MGy (w/ SF=2.25)

Detector Vessel

Detector Module

Sensors: Low Gain Avalanche Diode

- Low Gain Avalanche Diodes
 - Compared to APD and SiPM, LGAD has modest gain of 10-50
 - High drift velocity, thin active layer
 - favoured for fast timing
- LGAD for HGTD:
 - 50 µm thick
 - Compromise between Landau fluctuations contributing to the time resolution, charge/bias property etc.
 - Pad size 1.3x1.3 mm²
 - Compromise between rise time, capacitance, occupancy, fill factor...
 - Signal level: 10fC (w/ 20 gain) before and 4fC (w/ 8 gain) after irradiation

Thorough studies carried out with small prototypes and full size sensors, only selected examples shown here

Measuring the sensor performance

- UCSC boards widely used in the lab and at the test beam
 - Versions of 1 or 4 channels for single and 2x2 pad(s) prototypes
 - Help to explore the sensor limits without ASICs
- HGTD Test Beam paper summarising 2018-2019 beam test results:
 C. Agapopoulou et al 2022 JINST 17 P09026
- Latest Test Beam results see Valentina's talk "Performance studies of the Low Gain Avalanche Detectors for the ATLAS High Granularity Timing Detector in beam tests", today 9:15

Irradiation damage on the LGAD sensors

- HGTD targets at 70ps (hit) time resolution after 2.5x10¹⁵ n_{eq}/cm² full radiation
- Gain layer is the key property of the Low Gain Avalanche Diode contributing to S/N, timing and efficiency
 - <u>Different gain layer designs</u> (thickness, doping) studied using full radiation as reference
 - Gain layer doping affected by irradiation from the "acceptor removal" process (i.e. removal of the acceptor from its substitutional lattice site)
 - To recover the gain:
 higher bias voltage is needed

Single Event Burnout

- Single Event Burnout (SEB) when <u>heavily irradiated</u> <u>sensors</u> (~end-of-life 2.5e15 n_{eq*}cm⁻²) operated with <u>high bias voltage</u>
 - Not a problem if operated with lower voltage!
 - A single particle which deposits enough energy (~tens MeV) causes: conductive path leading to destructive breakdown
 - Confirmed & cross checked with R&D at CMS and RD50
 - Bias voltage safe from SEB: < 11V/μm (i.e. <~550V for 50μm)

Carbon enriched gain layer design

- Defect engineering: Carbon enrichment reduces "removal speed"
 - Carbon enriched gain layer (C-GL) design
 - Only C-GL modules left in the <u>safe white region</u>

- All C-GL sensors reached specification requirements!
 - Below shows results from measurements using Sr90 in the lab, sensor irradiated with max. fluence
 - Confirmed by TB data (SPS TB 2021 & DESY 2022)

Full size sensor prototypes

- Good uniformity of full size sensor prototypes (15*15 pads)
 - Sensors from various vendors: HPK, IME, FBK and CNM
- Example shown here from IME
 - electrical properties shown here, satisfying the required specifications.

- More before sensor (pre)production
- QA/QC procedures both have been proposed
- Vendor verification

Detector Module

ATLAS LGAD Timing Integrated Readout Chip (ALTIROC)

ALTIROC, TSMC 130 nm CMOS,

Output two data paths:

- Timing data: Time of arrival (TOA) + time over threshold (TOT) data per channel, data stored in one local memory until L1A; requiring:
 - Jitter < 25ps @ 10fC / 65ps @ 4fC
 - Discriminator threshold min. 2fC
 - Integrated temperature measurement + calibration between fills to maintain resolution at system level
 - Low power: <1.2W/chip (TDC at 10% occupancy) to satisfy cooling budget
- Luminosity: per sensor hit multiplicity readout at 40MHz (used only in outer ring)

ALTIROC R&D Roadmap

- ALTIROC0: version 0 ASIC, preamplifier + discriminator waveform sampling on the oscilloscope
- ALTIROC1: 5x5 array with complete analogue front-end (discriminator, TOA, TOT)
- ALTIROC2: first 15x15 full scale prototype, first digital module, with almost complete functionalities
 - new territory in HEP: first full scale bump-bondable 1GHz front-ends to readout 4 pF LGAD pixels
 - Main goal: demonstrate the functionality/performance of the ASIC (time resolution + luminosity counting) alone & assembled with a sensor

 Only selected example performance shown here
- Preliminary Design Review (PDR) on Oct 18

ASIC: ALTIROC2 performance

- Tested with and without full size sensor prototype
- Intensive tests prove it to be fully functional

 → thus used for module assembly tests and
 demonstrator tests
 - Close to specification as ASIC alone: meets the specs with one activated column ON at a time
 - Additional noise found in ASIC+LGAD assembly
 understood:
 - Due to parasitic inductances separating sensor/preamp grounds.
 - Noise get amplified 10 times more than ASIC alone
 - · Close to spec 2.6fC min. threshold achieved
- Radiation influence studied
 - Jitter stays stable with the increasing Total ionising does (TID).

More details

see a talk @

ALTIROC R&D Roadmap

- ALTIROC0: version 0 ASIC, preamplifier + discriminator waveform sampling on the oscilloscope
- ALTIROC1: 5x5 array with complete analogue front-end (discriminator, TOA, TOT)
- ALTIROC2: first 15x15 full scale prototype, first digital module, with almost complete functionalities
 - new territory in HEP: first full scale bump-bondable 1GHz front-ends to readout 4 pF LGAD pixels
 - Main goal: demonstrate the functionality/performance of the ASIC (time resolution + luminosity counting) alone & assembled with a sensor

 Only selected example performance shown here
- Preliminary Design Review (PDR) on Oct 18
- ALTIROC3:
 - Number of improvements based on studies on ALTIROC2, including higher redundancy to improve
 robustness against single event effects, choice of the pre-amplifier etc.
 - Submission to foundry ~ Nov 2022 to arrive at CERN early Feb 2023
- ALTIROC-A pre-production ASIC
 - Design to start in April 2023
- Final Design Review (FDR) planned in Oct 2023

Detector Module

Sensor + ALTIROC2: Hybridisation

Testing hybrid prototype (full size sensor + ALTIROC2)

- √ 15 (Spain) +40 (China) +30 (Germany) hybrids produced
- √ Bump-bonding connectivity: validated with x-ray
- ✓ Good agreement of break-down voltage and bulk current
- √ Functionality confirmed with Sr90 source tests in the lab

☐ To be further confirmed with beam tests

Work in progress before (pre)production:

- Beam tests in July and Sep 2022 at CERN, analyses ongoing
- Next beam test at CERN: Oct 19 Nov 2

Module Assembly

- In total 8032 modules, each 2x4 cm2
 - Five full modules produced for tests
 - more without sensors (digital module) for DAQ chain tests
- Dedicated tools developed
 - Bending the flex, aligning and placing the hybrids on the flex, and gluing the assembly
- Module-level test system developed
 - An adapter card produced and successfully tested

Flex tail

Detector Units

384 Detector Units, in 24 different shapes
Loading assemblies to detector units happens on the same site

- Module layout converging
- Flatness critical parameter to ensure contact of modules with cooling plate
- Various materials investigated
- Various companies contacted, in-house production not excluded
- Early prototypes for heater and demonstrator tests produced and tested

Peripheral Electronic Board (PEB)

- Intensive work on characterising all individual components on its prototypes
 - DCDC converter bPOL12V in depth investigated regarding space constraints, power efficiency
 - Intense tests communications via IpGBT with the FELIX readout card
 - First digital module data successfully dumped through FELIX early Oct.
 - MUX64: analogue multiplexer (for monitoring ASIC power supply and temperature)

Demonstrator

- Heater demonstrator
 - 19 silicon heaters mounted on a silicon stave
 - Representing modules dissipating heat
 - On the cooling plate (CO2 cooling)

- DAQ Modular PEB demonstrator
 - 4 copies across institutes working on various aspects (firmware, software, system tests, luminosity etc.)
 - A mini full chain readout demonstrator, from module emulator boards to FELIX board
 - Support up to 14 modules with two IpGBTs and one VTRx+
 - Latest update:
 - Timing data can reach up to the benchmark bandwidth
 320Mbps with 14 modules fully loaded
 - Luminosity data can reach the required 640 Mbps with 7 modules loaded
 - Various copies upgraded to digital modules with ALTIROC2 for firmware and software development

HGTD Mechanics and service

- Specifications on Hermetic vessel and on-detector cooling defined next week review the preliminary design
- Cooling plate with CO2 loops design and prototyping in good progress
- Outer ring in progress: Challenging tight junction design with lots of feed-throughs

Prototype of cooling plate

Conclusion and outlook

- The HGTD will yield track time measurements with a time resolution of 30-50 ps in the forward region 2.4-4
 - Expect important benefits from suppression of pile-up tracks and forward jets, and more potential in object identification
- Great progress has been made in developing the LGAD sensors and the ALTIROC readout ASICs
 - Good progress in LGAD design fulfilling the radiation hardness requirements
 - Carbon enriched LGADs fulfil the radiation hardness requirements up to 2.5e15 n_{eq}/cm²
 - ALTIROC2 (first full size prototype) tested, so far all blocks functional and performed as expected
 - ALTIROC3 submission expected in November
- Stay tuned for the next milestones:
 - 2023: many critical elements (Sensor ASIC and PEB) move to the pre-production phase
 - 2024: module and detector units pre-production start
 - 2025-2026: HGTD-A, HGTD-C vessels integration

Backup

You've got one

Replacement plan

- Inner rings replace every 1000 fb⁻¹ (3 times in total);
- middle ring every
 2000 fb⁻¹ (1 time)
- outer ring kept the same
- →To not exceed 2 MGy and 2.5 × 1015 neq/cm2

Choice of detector geometry

$$\sigma_j = \frac{\sigma_n}{\left|\frac{dV}{dt}\right|} \approx \frac{\sigma_n}{\left|\frac{S}{\tau_p}\right|} = \frac{\tau_p}{S/N}$$

Active thickness ~50 (+/-5) μm

- large capacitance (noise) can be offset by gain -> good S/N
- In order to reach the desired time resolution the thickness is limited to <80 μm (Landau fluctuations)</p>
- thinner sensors have steeper Q-V (difficult to control the bias voltage over a single module)

Cell size 1.3x1.3 mm² determines:

- capacitance (dominated by capacitance to the back, interpixel capacitance ~0.5 pF – measured and shown at PDR)
- > assures that weighting field is 1/thickness and that the role in contribution to the time walk is negligible dominated by the $\sigma_{\rm lf}$
- pixel hit occupancy and fill factor (indirectly)

- Flex cable tail for the demonstrator was designed based on previous flex PCB
 - 13 different lengths defined by the position of the connector on the module loaded on the support unit and the connector on the PEB: 90 pieces
 - Additional length (65 mm long) for testing purposes on sites (module qualification): 40 pieces
 - Flex cable tails manufactured by same company

6.5 cm long flex cable tail prototype for the demonstrator attatched to a module flex prototype

Flex cable tail prototype stackup

Flex cable tail prototypes for the demonstrator 13 lengths: 73.2-28.5 cm long (longest and shortest length)