

MEI-LI HOLMBERG

LEVEL-1 TRACK FINDER

for the CMS HL-LHC upgrade

24 OCTOBER 2022

OVERVIEW

- Introduction
- Outer Tracker HL-LHC Upgrade
- Track Finder Hardware
- Track Finding Algorithm
 - o Overview
 - o Virtual Modules
 - o Project Design
- Algorithm Testing
 - o Skinny Chain
 - o Barrel-Only chain
- Summary

INTRODUCTION

- High-Luminosity LHC (HL-LHC) will increase the number of simultaneous proton-proton collisions
- CMS Trigger Systems select interesting events
 - o Level-1 Trigger (L1T) and High Level Trigger (HLT)
- CMS will include particle tracks from the Outer Tracker at the L1 Trigger
 - o Mainly used for vertexing
 - o Reduces L1 trigger rate from 4000 kHz to 750 kHz
- Track Finder reconstructs particle tracks every bunch crossing (40 MHz)
 - o Track $p_T > 2 \text{ GeV}$
 - o ~200 tracks per event
 - o Targeting 4 µs

Level 1 Trigger Rate

OUTER TRACKER HL-LHC UPGRADE

- L1 tracks uses data from the silicon Outer Tracker only
- New Outer Tracker will consist of 6 barrel layers and 5 disks on each side
- Outer tracker sensor filtering
 - o Transmits hits from $p_T > 2$ GeV charged particles: **Stubs**
 - o Reduces data rate to the Track Finder by a factor ~20

HARDWARE

- Track finding algorithm is being implemented on FPGAs
 - o Very fast and programmable integrated circuits
 - o Firmware programmed using a hardware description language (HDL) and high-level synthesis (HLS)
 - o Two VU13P FPGAs mounted on each Track Finder (TF) board
- The Track Finder is split into 9 equally sized sectors in φ
 - o 18 TF boards per sector (nonant), each processing different events
 - o Data at the borders is copied to both neighbouring sectors
- No communication between sectors is necessary
 - o Processes can run in parallel

OVERVIEW

- 1. Sort stubs into smaller regions in φ
 - Reduces combinatorics in upcoming steps
- Take two stubs in adjacent layers and estimate track parameters
- 3. Project potential track to other layers
- 4. Look for stubs close to the track in the other layers
 - Reject tracks if not enough layers with matching stubs were found
- 5. Remove duplicate tracks
- 6. Use stubs and track candidate to calculate final track parameters
 - Using a Kalman Filter

PROJECT DESIGN

- Algorithm is split up into multiple modules
 - Each processing module is implemented separately using HLS (except Kalman Filter)
 - o A module processes one event at a time
- Memories temporarily store the output of each module
 - Implemented in VHDL
- Top-level function connects the whole chain
 - o Implemented in VHDL
- 240 MHz FPGA clock

VHDL Top-Level

PROJECT DESIGN

- Multiple versions of each processing module work in parallel
- Scripts create and synthesise the processing modules
- VHDL top-level that connects all the modules is written by a python script

ALGORITHM TESTING

SKINNY CHAIN

- Firmware processing modules pass HLS simulations when run separately
 - o Does not mean the full chain will work out of the box
- Implemented and tested a small slice of the algorithm
 - o ~4% of the full project
 - o Did not include the Duplicate Removal modules
- Ran hardware simulations using 1000 events*
 - 98% of events match emulation
 - o Debugging in process
- Ran in hardware

Skinny chain VU7P FPGA Floorplan

ALGORITHM TESTING

BARREL-ONLY CHAIN

- Implement a chain with all the processing modules for the barrel layers
 - Using a single VU13P FPGA (final project will use two VU13Ps)
 - o 2/3 of the full project
 - Does not include the Duplicate Removal modules and the Kalman Filter
- Preliminary resource usage estimation
 - o Needs to be optimized
- Good progress towards meeting timing
 - Congestion on the FPGA
- No simulations yet

Preliminary Resource Usage

	BRAM_18K	DSP48E	FF	LUT	URAM
Total	2732	1176	1278914	711720	224
Available (VU13P)	5376	12288	3456000	1728000	1280
Utilization (%)	50.8	9.6	37.0	41.2	17.5

SUMMARY

- L1 Track Finding at CMS is necessary to reduce the L1 trigger rate to an acceptable level
- Algorithm modules have been individually tested
 - o Pass simulations
 - Meet timing requirements
- Skinny chain has been successfully run on hardware
 - o Debug the few inconsistent outputs
- Barrel-Only chain has been synthesised
 - o Optimise resource usage and fix timing issues
- Scale the chain up to the full project in the future

BACKUP SLIDES

OUTER TRACKER

TWO-STRIP AND PIXEL-STRIP MODULES

- Two types of sensor pair modules are used for the new Outer Tracker
- Two-Strip (2S) modules
 - o Accurate information in φ but coarse in z
- Pixel-Strip (PS) modules
 - o Accurate information in both ϕ and z

VIRTUAL MODULES

- Taking any two adjacent stubs in the first algorithm step results in large number of combinatorics
 - o Inefficient as we are only interested in $p_T > 2$ GeV tracks
- Split each sector layers into slices in φ : Virtual Modules (VMs)
- Stubs in an inner layer VM are only compatible with some outer layer VMs
- In firmware the VMs are implemented as separate memories
 - o Avoid having to go through lots of irrelevant stubs
- The VMRouter routes the stubs to the correct VM

Algorithm Steps

Intermediate BRAMs

PROJECT DESIGN - NUMBER OF MODULES PER NONANT

Top-Level

VHDL

COMBINED MODULES

- Some modules can be combined to save time
 - Can also save resources as it reduces the number of intermediate memories
- Tracklet Processor
 - o Tracklet Engine, Tracklet Calculator
- Match Processor
 - o Projection Router, Match Engine, Match Calculator
- The track finding algorithm is moving towards using the combined modules
 - o Combined modules implemented for barrel layers
 - A small combined module chain has been simulated but fails timing

COMMISSIONING & TESTING

- Tested skinny chain on hardware
 - o Successfully...
 - o Some inconsistencies in output
- Tested communication between L1 subsystems
 - o TF Board and Vertexing Board
 - Only the last step of TF algorithm (Kalman Filter Out)
 - o High speed fibre optics

Track Finder Board

9 Kalman Filter Out VU7P FPGA Floorplan