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Muon Collider: the dream machine

Big question for particle physics today: which collider to build after the HL-LHC?

Several important requirements have to be satisfied:
- energy reach exceeding the LHC by a large factor
» enable precision measurements of Standard Model

» have low construction cost = small size
- be sustainable in operation — energy efficient E

Muon Collider combines the best features of the two classes of machines:
high precision of ete- colliders + high energy reach of pp colliders

» like e*/e- muons are elementary particles — creating “clean” collisions

- X 200 higher mass — X 10°? less synchrotron radiation losses
b can fitin a fairly compact ring (/s =14 TeV in 27 km circumference)

At /s = 3 TeV Muon Collider becomes the most energy efficient machine »

Rich physics program provided by p*p- and VBF processes
with the discovery reach at y/s=14 TeV comparable to FCC-hh at /s=100 TeV
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Beam Induced Background: the critical challenge

Assuming the beam density of 2X10'2 muons/bunch — large number of decays in the collider ring
e.g. for/s=15TeV: 4.1 X 10> decays per metre of lattice

Secondary/tertiary particles interact with the accelerator lattice & Beam Induced Background (BIB)
» depends on the beam parameters (energy, size, rate) arXiv:2203.07964
- depends on the accelerator layout (magnets, shields)

Machine-Detector Interface (MDI) is crucial
for absorbing as much of BIB particles as possible

Dedicated MDI for a y/'s = 1.5 TeV Muon Collider
designed by the Muon Accelerator Program (MAP) »

- tungsten nozzles with BCH cladding

» 10° opening angle (limiting the forward acceptance)

FLUKA simulation neutrons photons electrons [eleEiiieiss

b reduces the flux and energy of BIB particles
reaching the detector by 2-3 orders of magnitude

The remaining BIB particles still pose serious experimental challenges for the detector design + event reconstruction
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BIB properties: /s = |.5TeV

BIB has several characteristic features to be exploited in the detector design

BIB Particles

Predominantly very soft particles (~10 MeV) except for neutrons

fairly uniform spatial distribution — no isolated signal-like energy deposits
b conceptually different from pile-up contributions at the LHC

1.

2. Significant spread in time (few ns + long tails up to a few ps)
uu- collision time spread: 30psaty/s=15TeV | <20psat+/s=3TeV

— neutrons
~|— photons

|—electrons

Ilillllillllill ||_||i|1|_
100 150 200 250 300

b strong handle on the BIB — requires state-of-the-art timing detectors

Momentum [MeV]

3. Strongly displaced origin along the beam o, - 150m T Frewors]  §°F S B
crossing detector surface at a shallow angle T | photons ¢ e — photons

b affects charge distribution + time of flight

Main BIB contributions in the tracking detector:
- electrons — directly producing tracker hits
- neutrons — radiation damage to Si + electronics

10% -

- photons — creating secondary electrons A
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Tracking detector: baseline layout
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Tracking detector: BIB environment

At the LHC we are used to backgrounds primarily from pile-up pp collisions
b real tracks pointing at displaced vertices

Event at the CMS experiment
with 78 reconstructed vertices »

At the Muon Collider background tracks are not reconstructable

A cloud of looping tracks : | -
from soft electrons: <pt> = 3.5 MeV P i

Tremendous combinatorics for the classical outward track reconstruction
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Importance of timing: occupancy

Raw hit density in the Vertex Detector is unsustainable
b up to = 1K hits/cm? in a narrow +0.5 ns time-integration window

Occupancy is reduced by 250% with even narrower time windows P
assuming state-of-the-art time resolution for single hits

The narrow time window defined around the expected arrival from the IP
subtracting a photon's time of flight (TOFhoton) at the hit position

b absolute time windows vary with the module's position in 8 angle

Non-neligible fraction of BIB hits arriving earlier than TOF photon
b rejected during hit clustering — not used in track reconstruction
but contribute to the sensor occupancy

1st DOnd 3rd

o A P 4 A hit from an early BIB particle
O . .
2 would make the pixel blind
2 threshold to the potential signal particle
v l= . >

t4 t3 time

—

~1ns
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Pixel granularity: occupancy

Particle density is not uniform — highest close to the tungsten nozzles (within the -30: <t < 50; window)

VXD Barrel: Layer O VXD Barrel: Layer 2 10 VXD Endcap: Disk 2 VXD Endcap: Disk 7 0P
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| — 0 T Pixel pitch must be optimised separately for each region

I Finer pitch = more readout channels = more processing
; ik 5 more demanding cooling — higher material budget

Choice of detector technologies must be very careful
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Pixel granularity: technology

Current state-of-the-art Silicon pixel sensors can deliver the nevessary S [ [ —25x25u 5050 un?
timing resolution — potentially even better in ~10 years from now S ][ =100 x 100 um? — 200 x 200
One of the candidate technologies considered for the major part g
of the Tracking Detector — Resistive Silicon Detectors (RSD) 3 Y
b 6:220ps oOuvz4pm pitchz250pum — low number of channels = =
. high spatial resolution provided by charge sharing across multiple pads :::::::T{é:::::::::::::::::g::::::::::::::::: :::::::::::::::::;:::::::::::::::::;:::::::::::::::::%:::::::::::::::::
— low occupancy must be ensured to avoid pile-up effects P NN N o= B O ==
50x50 um pads would be sufficient for most of the VTX b T
VTXBarreI .......... fIﬁﬁﬁfi]"ﬁfi?ff'ffﬁ""ﬁ%ﬁ'ff'ff""ﬁf?".ﬁf"iff
NP PR IR VRPN IV PR PN BT B
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Layer

4 Effective area used for readout of a
single hit is 3x3 pads = 150x150 pum?

b more traditional design required for VTX
RSD e.g. Trench Isolated LGAD

Standard

Particle density in the innermost barrel layer too high for track seeding — extreme combinatorics
b can be used only for matching to already reconstructed tracks — improving impact-parameter resolution
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Angular filtering: combinatorics

After reading out so many hits & how do we reconstruct actual tracks?

. L =~ doubl
b BIB tracks are not reconstructable, but combinatorics is huge lac;,lér )
Combinatorics can be reduced dramatically by exploiting hit directionality o B
selecting stubs from double layers pointing towards the interaction point centre @
Hit pairing done in two angular dimensions: A¢ + A8 1ooo 1 4oo P
. A8 limited by the length of the interaction-region o S O N
oz=10 mm at/s=15TeV — 0z=1.5mm at/s=10 TeV oo R —— “r | oy o7
— even larger when including strongly displaced vertices L R
. A limited by the lowest track pr + distance from theP P «- I o
(_‘céz R ..timing.&sm) +loase doublets ~1 week/event 200§—> o | 1OO§ |
g | ~2 days/event B 505 - F
. N o ~2 min/event N :
" — L= 4 Number of input hits for track reconstruction significantly reduced
. Banrel after loose angular filtering compatible with a 6z =10 mm beamspot

Further reduction of hit multiplicity by an order of magnitude possible
when the vertex position is precisely known (before full track reconstruction)
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Vertex Detector Layer ID
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Current developments

A number of developments are ongoing to explore additional means for occupancy reduction

Realistic digitisation of pixel sensors to exploit cluster shapes for BIB rejection P

b BIB particles crossing sensors at shallow angles — wider clusters — more charge

Increasing strength of the magnetic field in the GEANT4 simulation

» low-pr BIB tracks contained in a smaller radius P £
» enhanced suppression of BIB tracks in Ad

Integrating critical surfaces of the Vertex Detector

into the MDI-optimisation workflow in FLUKA

b shape + composition can be fine-tuned to reduce
occupancy in specific regions and time windows
instead of integrated number of arriving particles

90

80

70

60

50

40

30

20

10

x103

VXD Endcap

— B =8.57T

of

Adopting the ACTS tracking software for faster computational performance

b targeting full 4D track reconstruction in the future

b great potential for early rejection of fake track candidates based on bad x2 P
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Summary

Muon Collider is a unique machine for both discoveries and precision measurements
gaining a lot of attention from the theoretical and experimental communities

Tracking Detector is a crucial component for nearly any physics analysis
with the most challenging requirements for the Vertex Detector

Beam Induced Background introduces unprecedent occupancy in the Vertex Detector
making generic readout and track-reconstruction schemes highly inefficient

State-of-the-art timing resolution combined with fine spatial granularity are necessary
well inline with ongoing R&D towards HL-LHC

Novel approaches to track reconstruction are very much needed
e.g. 4D track-reconstruction, track-less vertex identification, computing optimisations

Plenty of work to do before seeing "clean” p+u- collision events
but looks perfectly feasible within the next decade
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Backup: accelerator

Up to now most studies performed on the /s = 1.5 TeV case
for a connection with the previous MAP studies

Realistic Muon Collider designs foresee /s =3 TeV and /s =10 TeV
but no dramatic changes in BIB characteristics are expected

Muon Collider will operate at ~100 KHz bunch-crossing rate
leaving plenty of time for data-processing (10s)

Radiation levels do not exceed those at HL-LHC
~1 MRad/year TID + ~10'5/year 1 MeV n. eq. fluence in the tracker

e N HEREE) —

Dedicated publications on physics and detector prepared as part of the Snowmass '21 process:

» Muon Collider Physics Summary | arXiv:2203.07256

. Simulated Detector Performance at the Muon Collider | arXiv:2203.07964

» Promising Technologies and R&D Directions for the Future Muon Collider Detectors | arXiv:2203.07224

Technical side of detector simulations for the Muon Collider | Comput.Softw.Big Sci. 5 (2021) 1, 21

Special |INST issue on Muon Accelerators for Particle Physics
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Backup: accelerator

Muon Collider accelerator parameters

Parameter Vs=15TeV /s=3TeV +/s=10TeV
Beam momentum [GeV] 750 1500 5000
Beam momentum spread [%] 0.1 0.1 0.1
Bunch intensity 2-10" 2.2-10" 1.8-10"
5;,;(; [cm] 1 0.5 0.15

e n normalised transverse emittance [7 um rad] 25 25 25

e ;, v normalised longitudinal emittance [MeV m] 7.5 7.5 7.5

04,y Deam size [pm] 6 3 0.9

o, beam size [mm] 10 5 1.5

Integrated luminosity targets: 10 ab-'at/s=10 TeV + potentially 1ab-'at/s=3 TeV
with instantaneous luminosity of ~1034- 103> cm-2s-!
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Backup: Vertex Detector layout
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Backup: Magnetic Field effect
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