

The power of resistive read-out in silicon sensor

Francesco Moscatelli and Nicolò Cartiglia

On behalf of Italian PRIN "4DInSiDe" research project.

Motivations

In recent years, two design innovations have been introduced in the design of silicon detectors:

- Low-Gain Avalance Diode (LGAD)
 - It provides large signals and low noise, ideal for timing
- Resistive read-out (RSD)
 - It shares the signal among neighbouring pads, ideal for position resolution

In this talk, I will review the possibilities opened by these two innovations

First design innovation: low gain avalanche diode (LGAD)

The LGAD sensors, as proposed and first manufactured by CNM

(National Center for Micro-electronics, Barcelona):

High field obtained by adding an extra doping layer

E ~ 300 kV/cm, closed to breakdown voltage

 The low-gain mechanism, obtained with a moderately doped p-implant, is the defining feature of the design.

Low gain is the key ingredient to good temporal resolution

Summary of LGAD temporal resolution

Comparison WF2 Simulation - Data
Band bars show variation with temperature (T = -20C - 20C), and gain (G = 20 -30)

There are now hundreds of measurements on 45-55 μ m-thick LGADs

→ Current sensor choice for the ATLAS and CMS timing layers

LGAD: State-of-the art

JTE + p-stop design

- CMS && ATLAS choice
- Not 100% fill factor
- Very well tested
- High Occupancy OK
- Rate ~ 50-100 MHz
- Rad hardness ~ 2-3E15 n/cm2

Trench-isolated design

- Almost 100% fill factor
- Temporal resolution (50 μ m): 35-40 ps
- High Occupancy OK
- Rate ~ 50-100 MHz
- Rad hardness: to be studied

Second design innovation: resistive read-out (Tredi conf. 2015)

- The signal is formed on the n+ electrode ==> no signal on the AC pads
- The AC pads offer the smallest impedance to ground for the fast signal
- The signal discharges to ground

RSD and DC-RSD

This design has been manufactured in several productions by FBK, BNL, and HPK

This design is presently under development by FBK

The main advantage of the DC-RSD design is to limit the signal spread

DC-RSD with resitors

The DC-RSD design can also be done including resistors between the readout electrodes.

According to simulation, these resistors are improving the position resolution of

Simulation results in talk: "TCAD

simulations of innovative Low-

Gain Avalanche Diodes for

optimization "

particle detector design and

the sensors

Top view

Experimental set-up

The **Particulars TCT laser setup** has been used:

- IR laser generates a signal in the RSD,
- simulating the passage of a MIP
- laser spot size ~ 8 µm
- Laser temporal precision: ~ 8 ps
- movable x-y stage provides reference positions of the laser shots, precision: σ_{Laser} ~ 2 μm

Sensors are read out with 16-ch fast analogue board, developed at FNAL

The signals are recorded with 16-ch CAEN Digitizer (5 Gs)

Example of signal sharing

The laser is shot at the position of the red dot: the signal is seen in 4 pads

Vertex_2022, Resistive Readout

RSD2 structures used in this analysis (FBK - RSD2 production)

In this study, the perforance of sensors with electrodes shaped as crosses is presented.

4 different dimensions: 200, 340, 450, and 1300 μm

(B) Pitch = 450 μm

(C) Pitch = 1300 μm

Pitch = 0.45 mm

RSD position resolution (FBK RSD2 production)

RSDs at gain = 30 achieve a spatial resolution of about 3% of the pitch size:

RSD:

- 1300 x 1300 μ m²: σ_x ~ 40 μ m
- 450 x 450 μ m²: σ_x ~ 15 μ m

RSD2 crosses: spatial resolution for 4 different pitch sizes 100 90 – – – 1300 um gain = 30 •**→-** •450 um - 340 um – 🖶 – 200 um 50 30 20 10 20 80 120 140 40 100 160 Total AC amplitude [mV]

RSD temporal resolution (FBK RSD2 production)

The resolution depends mostly upon the signal size and **weakly on the pixel size**RSDs at gain = 30 achieve a temporal jitter of about 20 ps

RSD2 Crosses: time jitter for 3 different pixel sizes

RSD2 performance summary

Final goal of RSD R&D: a completely new tracker

The design of a tracker based on RSD is truly innovative:

- It delivers ~ 20 -30 ps temporal resolution
- For the same spatial resolution, the number of pixel is reduced by 50-100
- The electronic circuitry can be easily accommodated
- The power consumption is much lower, it might even be air cooled (~ 0.1-0.2 W/cm²)
- The sensors can be really thin

Conclusions

The FBK – RSD2 production has been designed to:

- Have uniform spatial resolution over the pixel surface
- Explore different read-out layouts.

This analysis explores the spatial and temporal resolutions of sensors with crossed-shaped electrodes.

4 pitch sizes: 200, 340, 450, and 1300 microns

Spatial resolution depends upon ~ 1/gain, ~ 1/pitch, and ~noise

For all pitch sizes, the resolution is dominated by the jitter term ==> Improvement with low-noise electronics

Temporal resolution depends upon ~ 1/gain, and ~noise

The resolution does not depend on the pitch size ==> Improvement with low-noise electronics

Back-up

Resistive silicon detectors

- Resistive silicon detectors (aka AC-LGAD) were presented at TREDI 2015
- At TREDI 2020, we presented the first results on the properties of silicon sensors with resistive read-out
- Now, at TREDI 2022, we present the results obtained with the second FBK RSD production, RSD2.

RSD building blocks:

position reconstruction using charge imbalance

In this analysis, the 4 pads with the highest signals are used.

4 pads are readout, all others connected to gnd Reconstruction method via charge imbalance:

$$x_i = x_{center} + k_x \frac{pitch}{2} * \frac{Q_3 + Q_4 - (Q_1 + Q_2)}{Q_{tot}}$$

$$y_i = y_{center} + k_y \frac{pitch}{2} * \frac{Q_1 + Q_3 - (Q_2 + Q_4)}{Q_{tot}}$$

$$k_x = \frac{Q_{tot}}{Q_3 + Q_4 - (Q_1 + Q_2)}|_{x@edge}$$

$$k_y = \frac{Q_{tot}}{Q_1 + Q_3 - (Q_2 + Q_4)}|_{y@edge}$$

Reconstruction 1: evaluate the performance

Shoot the laser in a grid of points

Reconstructed hit position

First take-home result: even without any additional correction, the cross-shaped electrodes provide a fairly accurate reconstruction

Second take-home result: near the pads, the reconstructed positions are systematically shifted with respect to true positions

Reconstruction 2: measure the migration map

For each laser position, connect the true and reconstructed positions.

Reconstruction 2: apply the correction

Raw data

Note: a 30 microns minimum distance from the metal electrodes has been used to ensure the laser shot is fully on the open silicon.

Corrected data

RSD2 response uniformity

Area of the DC-signal in the 1300 x 1300 μm^2 pixel.

The amount of charge injected by the laser has been measured using the area of the DC-signal.

The response is very uniform over the pixel area

Signal spread vs pixel size

In small pixels, for equal gain, the signal-to-noise ratio is worse since part of the signal leaks to pads not used in the reconstruction

Example of position resolution

RSD2 crosses: spatial resolution at 3 different gains in the 450 μ m pixel

Aide memoire: RSD principle of operation

AC signals (red) are measured on the pads

DC signal (green) on the resistive layer

The signal sees several impedances \mathbf{Z}_{i} in parallel, and it is split according to Ohm's law.

Each pad gets a share S_i of the total signal, exactly as in a current divider

The FBK RSD2 production

Goals for RSD2:

Optimized signal sharing for uniform performance

- Optimize the fabrication parameters (resistivity, oxide, gain layer)
- Reduce as much as possible the metal area of the pads
- Design electrodes shape that would maximize the response uniformity obtained with the collected charge

Details on RSD2:

- M. Mandurrino, "RSD2, the new production of AC-LGADs at FBK", 39th RD50,
- F. Siviero, "First experimental results of the spatial resolution of RSD pad arrays ..." VCI2022

RSD2 W15 gain

All structures belong to W15, For reference, this is the gain curve

Area of the DC-signal in the 1300 x 1300 μm^2 pixel.

The amount of charge injected by the laser has been measured using the area of the DC-signal.

Note: in some plots, values of gain > 30 are reported. These are achieved by increasing the laser intensity to about 3 MIP while keeping the bias in the range 250V-330V. This feature is indicated as "**gain equivalent**"

Hit position resolution

$$\sigma_{hit}^2 = \sigma_{jitter}^2 + \sigma_{signal}^2 + \sigma_{reconstruction}^2 + \sigma_{sensor}^2$$

 σ_{jitter}^2 : contribution due to the electronic noise. This term determines the measurement precision. See next slide

 σ_{signal}^2 : systematic error in the reconstruction of the signal amplitude. For example, the amplitude, due to the fitting method to determine the maximum of the gaussian, has a 1% systematic error.

 $\sigma_{reconstruction}^2$: Possible systematic errors in the reconstruction program, the position is always shifted in x or y. This determines the measurement accuracy.

 σ_{sensor}^2 : this term groups all sensor imperfections. For example, uneven n+ resistivity

Position Jitter

The main component of the position resolution is the position jitter, defined as:

$$\sigma_{jitter} = rac{\sigma_{el_noise}}{rac{dA}{dx}}$$

Imagine a system with a single read-out pad where a hit generates:

- A signal of 100 mV when shot near a pad
- A signal of 0 mV when shot at the opposite corner
- Noise ~1 mV (as in our lab)

In this simplified system, the signal decreases by:

- Pitch 1300 μm: 0.05 mV/μm
- Pitch 450 μm: 0.15 mV/μm

So, the jitter is:

- Pitch 1300 μ m: 1 mV/(0.05 mV/ μ m) = 20 μ m
- Pitch 450 μ m: 1 mV/(0.15 mV/ μ m) = 7 μ m

100 mV

 $0.0 \,\mathrm{mV}$

Read-out pad

With increasing number n of AC-read-out pads, the jitter becomes larger as $\sigma_{jitter} \propto \sqrt{r}$

==> keep the number of read-out pads as small as possible

Step 1: position reconstruction using charge imbalance

In this analysis, the 4 pads with the highest signals are used.

4 pads are readout, all others connected to gnd Reconstruction method via charge imbalance:

$$x_i = x_{center} + k_x \frac{pitch}{2} * \frac{Q_3 + Q_4 - (Q_1 + Q_2)}{Q_{tot}}$$

$$y_i = y_{center} + k_y \frac{pitch}{2} * \frac{Q_1 + Q_3 - (Q_2 + Q_4)}{Q_{tot}}$$

$$k_x = \frac{Q_{tot}}{Q_3 + Q_4 - (Q_1 + Q_2)}|_{x@edge}$$

$$k_y = \frac{Q_{tot}}{Q_1 + Q_3 - (Q_2 + Q_4)}|_{y@edge}$$

Results: resolution vs gain (4 different pitches)

Note: high-gain signals are obtained using a 3 MIP laser setting

Equivalent Gain

Equivalent Gain

Summary: resolution vs pitch

The position resolution is very good

- Using only 4 read-out pads, the resolution in small structures is limited by the excessive signal spread
- The best relative resolution is about 3% of the pitch

Resolution vs Sum of 4 amplitudes (4 different pitches)

The jitter reproduces quite well the overall resolution vs amplitude trend

Note: one single normalization for the 4 pitch sizes

How to improve performances

The resolution is dominated by the jitter term

==> limited by the electronic noise.

The electronics used for this study is "fast electronics":

large bandwidth, high noise

Clearly, the wrong choice if you simply want the amplitude

Low-noise small bandwidth electronics might lead to significant improvements.

If shaping time increases by 10 ns, the noise decreases by about 3

