

ATLAS ITk Strip Sensor quality control and review of ATLAS18 pre-production sensor results

CHRISTOPH KLEIN (ON BEHALF OF THE ITK STRIP SENSOR COLLABORATION)

CARLETON UNIVERSITY, OTTAWA

VERTEX 2022 WORKSHOP

Introduction: the ATLAS Inner Tracker (ITk)

- ITk replaces current Inner Detector from Run 4 (2029) onwards (HL-LHC)
- all silicon pixel + strip detector
- large area sensor surface

Introduction: the ATLAS Inner Tracker (ITk)

- ITk replaces current Inner Detector from Run 4 (2029) onwards (HL-LHC)
- all silicon pixel + strip detector
- large area sensor surface

Introduction: the ATLAS Inner Tracker (ITk)

- ITk replaces current Inner Detector from Run 4 (2029) onwards (HL-LHC)
- all silicon pixel + strip detector
- large area sensor surface

History of Strip Sensor submissions

		Order type	Sensor type	Contractor	No. sensors	Sensor area	Status	
prototype		ATLAS07	barrel SS	НРК	143	1.4 m ²	completed	
		ATLAS12	barrel SS	НРК	120	1.1 m ²	completed	
		ATLAS12EC	end-cap R0	НРК	135	1.2 m ²	completed	
		ATLAS17LS	barrel LS, final size	НРК	70	0.7 m ²	completed	
		ATLAS17LS	barrel LS, final size	НРК	60	0.6 m ²	completed	
		ATLAS17LS	barrel LS, final size	IFX	40	0.4 m²	cancelled	same deliveries
		ATLAS18SS	barrel SS, final layout	HPK	60	0.6 m ²	completed	
ink to recent publication		Pre-production	all 8 types	НРК	1,041	9.2 m ²	completed	saı
		Production	all 8 types	НРК	20,800	190.3 m ²	ongoing	0

• pre-production: establish QC/QA procedures and verify sensor quality

• 2020: 1,041 pre-production sensors (5% of production) + 60 'extra' (prototype)

delays due to Covid-19 closure at CERN

25 Oct 2022 **CHRISTOPH KLEIN - VERTEX 2022**

Strip Sensor Part Flow

- all sensors undergo QC
- all end-cap sensors distributed through CERN
 - ½ EC sensors to Prague
 - ¼ each to Vancouver and Carleton
- barrel sensors divided between KEK and CERN
 - QC test subset for ½ barrel by KEK (HPK) and SCIPP
 - ¼ each to Cambridge and QMUL
- subsequent distribution to module assembly sites

25 Oct 2022 CHRISTOPH KLEIN - VERTEX 2022

Strip Sensor QC

EVERY SENSOR

- visual inspection
 - look for scratches, chips, etc.
- image capture
- sensor metrology
 - o sensor bow < 200μm
- sensor IV
 - $\circ V_{breakdown} > 500V$
 - \circ I_{leakage} @500V < 0.1 μ A/cm²
- sensor CV
 - $_{\odot}$ V_{depletion} < 350V

BATCH SUBSET

- mechanical thickness
- long-term current stability (10% 20%)
 - current fluctuations < 15% for 24h+
- Full Strip Test (2% 5%)
 - $\begin{array}{l} \circ \ \ I_{strip} < 200 nA, \ 1M\Omega < R_{bias} < 2M\Omega, \\ C_{coupling} > 20 pF/cm \end{array}$
 - < 1% failed strips/segment< 8 consecutive failed strips

if needed (test structures available):

- inter-strip capacitance & resistance
- punch-through protection (PTP)

Visual inspection findings

- scratch marks (serial number)
 on 4 sensors did not match
 serial number on HPK envelope
- one sensor had chipped corner
- no other major issues observed
- typical minor issues:
 - (light) scratches
 - o debris on surface

Metrology results

- 'bow' is defined as maximum height difference from a reference plane (to correct sensor tilt)
- majority of sensors even have bow below 50µm
- no failures

IV results

• IV is the most-failed QC test

• sensors fail to meet breakdown criteria $V_{BD} > 500V$

rather than current limit spec

 some sensors with 500V < V_{BD} < 700V show recovery during hold steps

 candidates for stability test

only sensors with known breakdowns shown

CV results

- one barrel shipment with larger number of 'marginal' sensor
 - V_{dep} less than 5V above specification for ~20 sensors
 - ⇒ partially related to measurement steps
 - sensors otherwise good
 - discussion with HPK, stricter internal process, acceptance criteria loosened slightly (<360V)
- vast majority of sensors fully deplete well below 350V

Striptest results

measurement procedure:

- sensor partially depleted (-150V), strips isolated, contact each strip
- readout strip isolation, current through dielectric (10V/100V applied to AC pad)
- coupling capacitance to strip implant
- bias resistance to bias rail
- ⇒ measured values determine failure mode

- 1 out-of-spec sensor identified
- usually <10 failed strips, if any

Beyond pre-production: some lessons learned

- 1. visual inspection is important
 - failed sensors often have some kind of visible irregularity
 - influences IV + striptest mainly
 - cross-check serial number / scratch marks
- plan for sufficient dry storage before testing
- 3. repeated IVs can be necessary during QC, e.g. after LTS
 - difficulty finding time for large scale investigation of failures during constrained production schedule
- 4. implementation of 'Fast Striptest'
 - production sensors with regions of low strip isolation
 - higher testing rate with similar precision for batches with more failures

Summary

- QC of pre-production sensors was performed in 2020
 - 1041 'pre-production sensors' + 60 additional prototype sensors were tested
- verified quality of final layouts for all 8 types of sensors manufactured by HPK (ATLAS18 types; SS/LS/R0-5)
- refined part flow of sensor shipments
- fully established QC site testing procedures with finalised setups and hardware
- use of ITk Production Database
 - records of all tests by HPK + ATLAS sites
 - shipments through database (object ownership + upload rights)
 - information sharing between sites (QC/QA and module sites)

backup

Sensor QC tests: labs & equipment

KEK/Tsukuba

Sensor QC tests: labs & equipment

Cambridge

Carleton

Sensor QC tests: labs & equipment

SFU/ **TRIUMF**

