Performance of the ATLAS ITK Pixel Detector Prototype

VERTEX2022

Benedikt Vormwald for the ATLAS ITk Collaboration

ATLAS ITK Pixel Loaded Local Supports

- Detector integration from individual components to final detector one of the big challenges of the HL-LHC detector upgrades
- Smallest "feature-complete", functional building block of the ITk Pixel detector: Loaded local supports (LLS)
- → contains: modules, on-detector services, light-weight support structure, cooling, ...

Loaded Local Support Demonstrator Program

- ITk Pixel project in the transition period to pre-production
- Dedicated LLS demonstrators essential for the validation of the design and the next steps in the project

General Goals of the LLS Demonstrator Program

- Validation of loading concept and procedures
 - → Demonstration of meeting mechanical loading specifications (not covered in this talk)
 - → Electrical performance evaluation of the detector after loading
- Development and test of large-scale system aspects

System aspects that become important only at the integration level of LLSs

Loaded Local Support Demonstrator Program

Implications of available hardware

- Lack of RD53B (ITkPix) readout chips at the time of module production
- Modules for demonstrators based on RD53A readout chip
- FE dimensions different from final chip
- Consequence:
 - No active bump bonds in the center of the module
 - Three different analog FE technologies (synchronous [dropped], linear [CMS], differential [ATLAS])

Limitations

- Data transmission
 - → separate data transmission bench with ITkPix modules
- Exact thermal behavior on LLS
 - → separate thermal mock-ups with heaters
- Exact serial powering properties
 - → separate SP chain test stands with ITkPix modules

Loaded Local Support Demonstrator Program

sub- system	LLS flavor	modules	SP chains	HV groups	electrical up links	electrical down links
IS	L0 stave	4 (8)	1 (2)	4 (8)	48 (96)	4 (8)
IS	L1 stave	6 (12)	1 (2)	2 (4)	12 (24)	6 (12)
IS	coupled ring	3+10 (26)	1+1 (4)	3+2 (10)	67 (134)	13 (26)
OE	L3 half-ring	11+11	1+1	2+2	44	22
ОВ	L2 longeron	6+12 (36)	1+1 (4)	2+2 (8)	36 (72)	18 (36)
ОВ	L3 half-ring	11 (22)	1 (2)	2 (4)	11 (22)	11 (22)

- All conceptually different flavors of LLSs have been built
- Mostly loading of only half of the LLSs for reasons of module availability
- Building of prototypes is significant achievement in the ITk Pixel project
- Electrical performance evaluation currently ongoing at different sites
- → Focus of this talk: first results of OB L2 longeron M6

ITk Pixel Outer Barrel System Test

Test Box

Thermally insulated metal enclosure (\rightarrow Faraday cage)

Dry air supply (T_{dewPoint} ≈ -60° C) and dew point monitoring

Following the ITk grounding scheme

ITk Pixel Outer Barrel System Test

Readout

- Density of electrical links allow up to 1MHz readout
- Service designed for data-merging of multiple FEs of a module (not yet available in RD53A)
- Maximum 2 up-links and 1 down-link per quad module
- 3m commercial twinax data cables
- conversion of electrical to optical signal in optobox (GBCR – lpGBT – VTRx+)
- Realistic fiber plant (65m to rack area)
- Multi-module readout using phase-1 FELIX

→ Very realistic readout setup and first time large scale validation of opto-system and data-transmission

ITk Pixel Outer Barrel System Test

Detector control system

- System size and complexity requires decent detector control system
- Design compliant with system for actual detector operation (WinCC) and scalability to large detector in mind
- Finite State Machine guaranties save detector operation at any moment
- Used and exercised extensively during LLS testing

Detector monitoring

- ATLAS ITk Pixel will have a monitoring chips (MOPS) inside the detector to monitor module properties (temperature, voltage drop) via independent readout path
- → Successful validation of concept on system level
- → Valuable tool for SP chain monitoring

Performance Tracking through Integration

- Thorough tracking of electrical detector performance essential for validation of loading procedures and detector concept
- Stage 1-3: measurement in single module test stand
- Stage 4: demonstrator system test

Exceptionally well agreement keeping in mind the fundamentally different setups

Performance Tracking through Integration

stage 1: after module production

stage 2: after cell loading

stage 3: after pigtail assembly

stage 4: after final cell integration

- Example shows noise and threshold, but similar results for distributions of dead pixels, ToT, disconnected bump bonds
- Very stable performance of all tested chips through integration steps
- No sign for any performance degradation during loading

Serial Powering

- Serial powering is one of the novel key features of the HL-LHC tracker upgrades
- SLDO in RD53A known to be non-perfect affecting linearity and cold start-up
- Advantage of independet MOPS system: monitoring even when readout link no longer established
- Ohmic behaviour of SP chain from outside maintained also when single chips start to drop out
- → Beyond conceptual tests of monitoring/powering, dedicated SP chain tests have been successfully carried out with ITkPix modules

Scans with Radioactive Source

- Ultimate tool to find disconnected bump bonds
- Aiming to spot large sensor delamination due to mechanical stress during loading
- Strong Sr source (beta radiator)
- No self-triggering of RD53A
- Random trigger readout

→ No systematic delamination of bump bonds due to loading procedure visible

.15cm

Conclusions

- Completion of ITk Pixel Loaded Local Support prototypes important milestone in the project
- (Electrical) design validation currently ongoing
- Services, way of operation, readout, monitoring of demonstrators very complex and in many aspects close to final detector
- System Test is important contribution to preparations for detector operation
- First Outer Barrel RD53A Demonstrator (M6 longeron) fully tested
- No indication for any degradation or fundamental problem of the detector concept found on the system level
- Finalization of RD53A demonstrator program expected by the end of the year

BACKUP

DAQ/Readout Chain

Cables, power supplies, off-detector chain

DAQ/Readout Chain

