

Early data from the tracking detector for the FASER experiment

VERTEX2022

24.10.2022

Benedikt Vormwald (CERN) for the FASER collaboration

The FASER experiment

- FASER = ForwArd Search ExpeRiment
- located 480m away from IP1 (ATLAS) at the LHC
- placed in old transfer tunnel to SPS on the line of sight of the IP1 collision axis
- Extremely low background
- Expected particles to reach FASER: muons, neutrinos, maybe exotic long-lived particles, e.g. dark photons

→ Tracker one of the key sub-detectors of FASER

Detector Concept

- Limited time and budget
- aiming for simple and robust detector
- reuse existing detector components
- reduced challenges wrt large LHC experiments: low radiation, low occupancy, low trigger rate

technical proposal:

https://arxiv.org/abs/1812.09139

FASER detector paper:

https://arxiv.org/abs/2207.11427

FASER tracker paper:

https://arxiv.org/abs/2112.01116

FASER Tracker

SCT module

NIM A 568 (2006) 642-671

- spare ATLAS SCT silicon strip modules
- 768 strips per sensor layer with 80µm pitch
- two sensor layers with 40mrad stereo angle
- ABCD readout chip

Tracker plane

- 2x4 modules per plane
- sensitive area: 24x24cm² covering full aperture of the magnets
- aluminum frame with integrated cooling channels
- operation at 15°C (no radiation damage)

Tracker station

- 3 planes per station
- mechanical frame with carbon fiber entry/exit window
- careful metrology during assembly

FASER Tracker

(interface tracker station not shown in this picture)

Interlock System & DCS

- 2 NTC frame temperature sensors & 1 humidity sensor per tracker plane
- 2 NTC temperature sensor per module
- Continuous readout of those sensors via micro-controller and DCS
- Interlock decision based on robust comparator-circuit
- WinCC based DCS system for controlling of the power supplies
- Finite-State-Machine for top-level operator commands

Sensor	DCS warning	DCS automatic actions	Hardware interlock
Module temperature	>30°C	>31°C	-
Plane humidity	>10%	-	-
Frame temperature	>23.0°C	-	<5°C or >25°C

glass-transition temperature of the glue: 35°C

Installation in the LHC tunnel

- Installation of FASER subdetectors within just 3 weeks in 03/2021
- Installation of FASER interface tracker station (IFT) in 11/2021
- Very smooth thanks to excellent cooperation between CERN transport crew, CERN cooling group and different FASFR teams
- No delays or any surprises
- Result of intense preparations, careful surface testing and commissioning
- More than 1 year remote operation before first beams

FASER Monitoring and Operation Model

- Live monitoring via Grafana for the entire detector system
 - → DAQ status
 - → DCS status
 - → LHC/trigger status
- System in operation since FASER installation in 03/2021 and data preserved in a centrally maintained database
- Built-in alert system sends alarms to expert groups

- FASER (tracker) is operated/supervised entirely remotely by two people (no control room)
- · Continuous monitoring of
 - → Leakage currents
 - → LV power
 - → Environmental conditions
 - → Data quality

by a remote shifter (anywhere in the world) part of the FASER operation model

Detector Calibration and Stability

- Gain = relation between comparator voltage and effective threshold charge
- Noise = threshold dispersion at charge injection of 2fC
- Measurement of key properties of the ABCD chip in very good agreement with design specifications (https://doi.org/10.1016/j.nima.2005.07.002)
- Very stable tracker performance over first month of beam operation

Detector Timing

ABCD readout

- Readout chip returns last 3 BX in its pipeline upon arrival of L1A
- Hit = pattern 010 and 011 (=01X)

- Early LHC fills used to timein the tracker
- ~1kHz of muon rate through FASER
- Coarse timing via trigger latency
- Fine timing via clock adjustment on the tracker DAQ boards
- Chosen working point: center of the efficiency plateau

Detector Hit Efficiency

- Operation point indicated with dashed lines
- No radiation damage expected at the detector location in TI12
- Very likely no need to adjust operation point in the future
- Hit efficiency of 99.64 ± 0.10% at threshold 1.0 fC and sensor bias 150V
- Very well in agreement with early ATLAS SCT results (https://doi.org/10.1088/1748-0221/9/08/P08009)

Detector Hit Map

- Distribution of clusters on track show excellent detector coverage in all layers
- Inefficiencies in between modules from module edges expected
- Station design shifts planes +/- 5mm in order to avoid overlapping inefficiencies
- Total number of dead/noisy strips <0.5%

Taking Data with the FASER tracker

- Very efficient data taking during LHC collisions
- Regular tracker calibration runs in inter-fills
- Example event display shows muon candidate with p=21.9GeV
- ~20/fb data collected so far

Run 8336 Event 1477982 2022-08-23 01:46:15

Conclusions

- FASER is a small and cheap experiment exploring the extreme forward direction 480m downstream of IP1
- probing for light, weakly-coupled and long-lived particles
- Detector performance with LHC collisions fully meets the expectations
- FASER tracker detector working flawlessly since the beginning
- Studies on tracker alignment ongoing
- Operation model well established and ready for the next years!

BACKUP

Motivation

- searches for new physics at large LHC experiements focussing mostly on high-p_T
- appropriate for heavy, strongly interacting particles

 $\sigma \sim \text{fb} - \text{pb} \rightarrow \text{expectations for Run-3: N} \sim 10^2 - 10^5$, isotropical

- If new particles are instead light and weakly coupling we might better look for those particles in the forward direction
- LHC is a factory for (SM) particles in forward direction:

σ_{inel} ~ 100mb → expecations for Run-3: **N ~ 10**¹⁶, highly forward oriented (~ mrad) Θ ~ Λ_{οcp} / Ε ~ 250 MeV / TeV

- even extremely rare decays might still be observable in this
 escapes acceptance of large LHC experiments enourmous forward particle stream
 - LHC experiments
- assuming weakly coupling particles as source for BSM physics: valid assumption that newly produced particles will be sufficiently longlived

- FASER experiment is placed 480m in the line of sight from LHC IP1 (ATLAS) with an aperture of 20cm targeting this mrad regime (n>9.1)
- proposed in 2017, approved in 03/2019, installed in 03/2021
- by now: 71 collaborators, 19 institutes, 8 countries

Physics Case

Dark photons

(just one example; see arXiv:1811.12522 for many more exampels and details)

additional terms in SM Lagrangian:

after field redefinition, dark photon A' mass eigenstate:

$$\mathcal{L}\supset -rac{\epsilon'}{2}F_{\mu
u}F'^{\mu
u}+rac{1}{2}m'^2X^2$$
 — new gauge boson

$$\mathcal{L} \supset \frac{1}{2} \frac{m_{A'}^2 A'^2}{2} - \frac{\epsilon}{\epsilon} e \sum_f q_f \bar{f} A' f$$

production

dark bremsstrahlung

hard scattering

decay

- decay to pair of SM fermions, if kinematically allowed
- for light A': predominantly electron/muon pairs
- suppressed by ε²: significantly long-lived

signature in FASER:

$$A' \rightarrow e^+e^-, \mu^+\mu^-, \dots$$

Physics Case

Dark photons

(projected sensitivity)

- with already 1fb⁻¹ starting to explore unconstrained space
- significant discovery potential with 150fb⁻¹ (expected Run-3 dataset)

- plot assumes 0 background and 100% efficiency
- O(1) inefficiencies have little effect on contour line
- 0-background assumption reasonable

FASER can complement LHC physics programme significantly wrt searches for weakly coupling light particles

FASER magnets

Effect of Crossing Angle

- to avoid parasitic collisions and beam-beam effects in the common beampipe close to the IP, the LHC runs with a crossing-angle
 - the half crossing angle is ~150µrad, which moves the collision axis by ~7.5cm at the FASER location
 - such a change reduces the signal acceptance in FASER by ~25%
 - leads to very small changes in physics sensitivity

Detector Components – DAQ

- Trigger an OR of signals from scintillators and calorimeter
- Expected maximum trigger rate ~500Hz from incoming muons
- Expected maximum bandwidth ~15MB/s (evt size ~25kB dominated by PMT waveforms)
- Trigger Logic Board is same general purpose FPGA board as Tracker Readout Board but with different firmware/adapter-card
- Readout and trigger logic electronics in TI12 tunnel
- Event builder and DAQ s/w running on PC on surface (600m away)
- No trigger signals sent/received from ATLAS

Detector Components – Calorimeter

Calorimeter Cell

- 6 LHCb outer ECAL modules on permanent loan to FASER, 4 in use in the detector
 - → thanks a lot to the LHCb ECAL collaboration!
- Shashlik-calorimeter: 66 layers (2mm lead/ 4mm plastic scintillator)
- total X₀=25
- sensitive area of 2x2 cells: ~24x24cm²

Energy reconstruction

- expected energy resolution for TeV electrons: 1%
- known uncertainty due to leakage: 25X₀ might not be sufficient to catch full shower of TeV particles
- SPS testbeam time in July 2021 foreseen for energy calibration using high energy electrons

Cosmics tests in the lab

 excellent results from cosmics tests in the lab proofing good light yield and excellent MIP efficiency (>99.8%)

Detector Components – Scintillators

Detector Components – Tracker

Cosmic tests with tracker stations on the surface

- first observation of a cosmics track with the FASER tracker
- very simple intra-station alignment results already in residual resolution (25µm) close to the design expectation
- flawless operation building very strong confidence in overall tracker performance

Installation in the LHC tunnel

11/2020 magnets installed

04/2021 FASER detectors in place

FASER in TI12

technical proposal: arXiv: 1812.09139

Location and Background Considerations

- located 480m away from IP1 (ATLAS)
- placed in old transfer tunnel to SPS on the line of sight of the IP1 collision axis
- extremely low radiation due to low dispersion function at FASER location
 - <5 x 10⁻³ Gy/year, <5 x 10⁷ neq@1MeV/year
- extremely low background (100m of rock between FASER and IP1)
 - muons/neutrinos from pp interaction at IP1 (0.4cm⁻²s⁻¹ muons with E>10GeV @ 2·10³⁴ cm⁻²s⁻¹ LHC inst. luminosity)
 - off-orbit protons showering in collimators (negligible)
 - beam gas interactions (negligible)
- FLUKA background model confirmed with in-situ measurements during Run-2

Detector Concept – Signal Signature

very clear and clean expected signature

- no signal in veto station
- signal in all scintillator stations downstream the decay volume
- two lepton tracks starting in the decay volume
- vector sum of tracks pointing back to IP1
 - strong magnetic field required to separate collimated tracks and measure momentum
- high energy deposition in the calorimeter (no separation possible; only 4 calo blocks)
- · no intrinsic irreducible background

FASER Tracker

Detector Services

Testing & Commissioning

