Operational Experience and Performance of the Belle II Pixel Detector

VERTEX 2022, October 24th Arthur Bolz, DESY For the Belle II PXD Collaboration

Outline

Introduction

• SuperKEKB, Belle II, and the Belle II Vertex Detector

The Pixel Vertex Detector (PXD)

- Working Principles
- PXD Modules and Calibration
- PXD Detector

PXD Operation in Belle II

- PXD Performance
- VXD Performance
- Operational Challenges: backgrounds, beam-losses, irradiation and aging

PXD2 2022 Upgrade

• Future of PXD

Setting the Scene

Super KEKB

- asymmetric e⁺e[−] collider
- $E_{cm} = M_{\gamma(4S)} \approx 10.58 \text{ GeV} \Rightarrow "B \text{ factory"}$
- $L_{\text{peak}} = 4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (June 2022)
 - "nano-beam" scheme and increased currents
 - goal 6 x 10³⁵ cm⁻²s⁻¹
- ongoing long shutdown 1 since July 2022:
 - ~1.5 year for accelerator and detector improvements

Belle II

- L_{int} 427.8 fb⁻¹ recorded until summer 2022
 - physics data-taking w/ full setup since March 2019
 - target L_{int} : 50 ab⁻¹ within ~203Xs (~50x Belle)
- upgraded trigger rate: up to 30 kHz
- upgraded detectors
- rich physics program: B-, τ -, searches for new physics, ...

Setting the Scene

Belle II Vertex Detector (VXD)

• Silicon Vertex Detector (SVD)

• dedicated VERTEX22 talk:

18. The Silicon Vertex Detector of the Belle II Experiment

- 4 layers of 2-sided silicon strips
- o r ≤ 140 mm

• Pixel Vertex Detector (PXD)

- 2 layers at radii 14 mm and 22 mm
- 8 inner + 12 outer module-pairs ("ladders")
 - ⇒ only 8 (inner) + 2 (outer) ladders installed
- ~7.7 x 10⁶ pixels
- ~0.21 % X₀ / layer material budget

acceptance

• $17^{\circ} < \Theta < 150^{\circ}$

○ p_T ≥ 40 MeV

1 1 014

fwd

Tracking at SuperKEKB

Challenges

- increased backgrounds with instantaneous lumi
 - beam lifetime only few minutes
 - \Rightarrow continuous "top up" injection (for 2400 bunches) (50 Hz @ 4 ms cooldown \Rightarrow 4 ms damping time with particle losses)
 - "Synchrotron", "Touschek intra-bunch scattering", "Bhabha", "2 photon"...
 - challenge for detector/tracking overall (challenges for PXD discussed explicitly later)
- smaller Lorentz boost (for better beam lifetime at 4 GeV > 3.5 GeV)
 - critical for time dependent measurements

Track reconstruction and PXD role

- (HLT) track finding seeded in CDC (pT > 100 MeV) or else SVD
- **PXD** hits used in offline track fit \rightarrow improved vertex resolution
- Regions of Interest (ROI) filtering:
 - HLT: extrapolates tracks to ROIs on PXD for readout to reduce data rate not needed vet
- PXD layer one crucial for impact parameter resolution
- PXD layer two (will be) important to retain performance at higher backgrounds

instantaneous occupancy [%]

SVD CDC

Outline

Introduction

• SuperKEKB, Belle II, and the Belle II Vertex Detector

The Pixel Vertex Detector (PXD)

- Working Principles
- PXD Modules and Calibration
- PXD Detector

PXD Operation in Belle II

- PXD Performance
- VXD Performance
- Operational Challenges: backgrounds, beam-losses, irradiation and aging

PXD2 2022 Upgrade

• Future of PXD

PXD Working Principle

DEPFET pixels: depleted p-channel field effect transistors

principle:

- Field Effect Transistor (FET) on top of fully depleted silicon bulk
 - \circ gate voltage regulates source \rightarrow drain current
- internal gate: deep n-implant below FET gate
 - o collects free electrons to modulate drain current
- periodic active clearing of internal gate
 - via *clear implant* (n+) and "punch through" mechanism

characteristics:

- + fast charge collection (O(ns))
- + provide full analogue charge signal

+ internal amplification
$$g_q = \frac{\partial I}{\partial q} \approx 500 \frac{pA}{e^{-1}}$$

- + high signal-to-noise ratio
- + low power consumption
- + thin sensors (75 μ m in active region: DEPFET matrix)
- non-destructive signal readout

PXD Working Principle

DEPFET operation

- pixel state changed by regular change of gate and clear voltages
 - gate on/off (-2.5 V / 3 V vs Source)

- charge collection gate off, clear off:
 - charges drift to internal gate
 - o no drain current
- readout gate on, clear off:
 - new charges drift to clear
 - stable drain current can be read out
- clear gate on, clear on:
 - charges drift from internal gate to clear

Sensor biasing

- bulk depletion
 - negative backside HV via frontside punch-through contact (~-70 V)
- field shaping
 - *deep p-well* prevents free e⁻⁻ drift to clear
 - o clear gate potential barrier between internal gate and clear
 - *drift voltage* to guide free e⁻⁻ to internal gate
 - o ...
- bulk (n⁺, V+) and guard (p⁺, V-)
 - structures around whole matrix to keep external charge carriers out

PXD Sensors

Layout

- matrix
 - 250x768 pixels, pixel size 50x(55-85) μm²
- ASICs (custom designed)
 - Switchers \rightarrow DEPFET control
 - $DCD \rightarrow 256$ channel ADC: 8bit source currents digitization DC
 - DHP → data processing: pedestal correction, zero suppression, ...
- all silicon design
 - mechanically self supporting modules
 - thinned to 75 μm (active region)
 - small total material budget ~0.21 % X₀

Operation

- single point sampling → median drain current pedestals stored on DHP for zero suppression
- rolling shutter read-out \rightarrow low power 50 kHz \rightarrow 20 µs integration time (2x beam revo. cycle) dead-time free except for 100 ns read-clear cycle
- design: 1% occupancy (layer 1)
 3 % occupancy limit (DHP, DAQ, tracking)
- power dissipated mainly in ASICS at end of stave
 - ~ 10W/module

PXD Modules

Calibration

- sensors characterized before installation
 - continuous optimization of working points needed during operation
- DCD calibration
 - optimize on linearity, ADC errors, noise, ...
- biasing optimization
 - optimize on signal to noise, ...
- pedestal optimization on DCD
 - pedestal compression via switchable input currents per pixel
 - noise reduction via Analog Common Mode Correction

PXD in Belle II

PXD assembly

- 2 PXD modules glued together ("ladder")
- 2 half shells mounted on Support and Cooling Blocks (SCBs)
- provide cooling via 2-phase CO₂ and forced N₂ flow

L2_029 +Y

fwd

Installation 2018 at KEK

- PXD + BP + SVD marriage
- VXD installation in Belle II

Outline

Introduction

• SuperKEKB, Belle II, and the Belle II Vertex Detector

The Pixel Vertex Detector (PXD)

- Working Principles
- PXD Modules and Calibration
- PXD Detector

PXD Operation in Belle II

- PXD Performance
- VXD Performance
- Operational Challenges: backgrounds, beam-losses, irradiation and aging

PXD2 2022 Upgrade

• Future of PXD

PXD Performance

Signal and noise

- noise performance < 1 ADU (~200 e⁻)
- at a SNR of ~30 50
- homogeneous noise and signal response across module matrix
- stable throughout $2019 \rightarrow 2022$
 - although see slight increase in noise with DCD irradiation

cluster charge distribution

pedestal noise

SNR MPV

DESY.

PXD Performance

Efficiency

- ~96% hit in L1 or L2
 - ~99% single hit efficiency in fiducial regions
- PXD simulation captures lots of features already well
 - continued efforts to further improve
 - challenging also due to radiation damages (see later)

di-muons: PXD L1 or L2 PXD efficiency 8.0 2.0 dead gates 0.6 0.5 Entries 1.884798e+08 glue gap 0.4 Mean y MC15rd e22 0.960 (z-alignment shift in MC) 0.3 data e20-26 Mean v 0.9459 0.2 0.1 Ζ 0 -2 -1 n 2 4 2 z at L1 [cm] · di-muons: PXD L1 or L2 Ŧ, Q 0.8 0.6 04 1.884798e+08 Entries Mean 0.960 MC15rd e22 0.2 Mean y 0.945941 - data e20-26 DESY. 150 ¢ at L1 [deg] -150 -100 100 -50

Impact parameter resolution

- 1.5 2x better than Belle
- worse description in MC compared to efficiency
 - too optimistic uncertainties assumed

 $v = \sqrt{a^2 + b^2/x^2}$

 $= 9.78 \pm 0.08$

 16.16 ± 0.21

 $a^2 + b^2/x^2$

 $= 10.73 \pm 0.01$

 $l = \sqrt{a^2 + b^2/x^2}$

di-muons to

beam spot,

pt > 2 GeV

50

0

100 150

muon (dea)

 $= 11.24 \pm 0.00$

 $= 23.08 \pm 0.02$

cosmic (exp12 proc12)

Bhabha (exp12 proc12)

dimu (exp12 proc12)

 $= 24.41 \pm 0.06$

VXD Performance

B World leading lifetime measurements

- precise measurements of decay vertices crucial for time dependent measurements
 - Belle II proper time resolution ~2x better than Belle Ο (despite SuperKEKB operating at smaller Lorentz boost compared to KEKB/Belle)
 - largely thanks to PXD and smaller beam pipe diameter
- Belle II published world-leading lifetime measurements on charmed mesons: D^0/D^+ , New: Λ_{a} , and Ω_{a}^{0}
 - further measurements, eg on time-dependent CP violation in the pipeline

 $\tau(\Omega_c^0) = 243 \pm 48 \,(\text{stat}) \pm 11 \,(\text{syst}) \,\text{fs}$

 confirming LHCb result in 3σ tension with pre-LHC world average

Y(4S)

 π^+ Rest of Events (ROE) O(100 μm) Δz_{boost} $\overline{\mathbf{B}}^{0}_{tag}$ B⁰sig

D⁰/D⁺: Phys. Rev. Lett. 127, 211801 (2021)

15

Backgrounds

- what is background?
 - synchrotron radiation,
 - lost electrons or whole beams inducing secondary particles with pipe or restgas
 - o ...
- why important?
 - can deteriorate performance (fake hits)
 - contributes to/dominates occupancy (in particular during injections) \rightarrow 1%/3% limits not hit yet (on avg)
 - \circ contributes to irradiation \rightarrow aging (slow irradiation) or even damages (fast irradiation)

Backgrounds: injection

- SuperKEKB is operated in top-up mode: continuous injection up to 50 Hz
 - $\,\circ\,$ at design luminosity, Touschek effects limit beam lifetime to few mins
 - injected bunches produce high background rates, damping takes few ms
 - mitigation: full veto (all BII detectors) + gated veto (all but PXD)
- PXD cannot halt data collection (default operation):
 - $\,\circ\,$ 20 μs integration time vs 10 μs beam revolution time
 - \circ injection spikes can saturate DAQ \rightarrow not yet critical (partial data loss at sub-permille level)

PXD Layer1 Exp14 Run2102-2104 LER injection run 2102 (Poisson 10kHz) run 2103 (Poisson ~100Hz) run 2104 (Physics ~100Hz) run 2100 (Physics ~3.2kHz) 0 0 0 500 1000 1500 2000 time since injection [µs]

Injection trigger vetoes: (on ECL occupancy)

Synchrotron radiation

- interaction region designed to avoid direct SR photons hitting central Be beam pipe
- still: large SR background observed in several -x modules after change of optics
 - dominated by low energy, single pixel clusters (<10 keV)
 - appear during HER injections (\rightarrow large betatron oscillations during cooldown)
 - origin: back-scattering photons from SR fan hitting +x edge of Ti beam pipe
- results in high localized hit density
 - inhomogeneous module irradiation
 - deterioration of clustering and tracking

mitigation

- small modification of HER beam orbit
 - sensitivity of PXD provides valuable feedback to accelerator
- new modified beam pipe w/ new geometry and additional gold plating to be installed with PXD 2022 update

Radiation effects: threshold shift

- radiation damages oxide layer
 - causes shift of MOSFET threshold voltage

• compensated by regular adjustment of gate voltage

PXD total dose measurement: 2019 - 2022: ~ 3-6 kGy

- 2019 2022: TID ~3-6 kGy depending on module
- estimated from module occupancies
- scaled to diamond sensor dose measurements to account for times without PXD data-taking

Pedestal aging

- pedestal aging and pedestal noise increase
- inhomogeneous across matrix → potential challenge for pedestal compression with consequences for module performance

Radiation effects: increasing hv currents

- observe unexpected increase in HV currents of some modules
 - \circ in guard ring area \rightarrow not affecting active pixel matrix
 - \circ so far no performance impact \rightarrow but power supply patch needed
- some annealing during *beam off/HV on* and *beam on/HV off* times

HV current [mA]

interpretation

- unexpected shorts in thinly spaced guard ring structures
- oxide charge increases with irradiation \rightarrow higher breakthrough currents
- from higher than expected lateral diffusion in (hot) SOI process
 - previously unnoticed due to wrong backside doping profile measurements (via SIMS)
- further studies with dedicated test structures ongoing

emission microscope image visualizing avalanche breakdown at guard rings

simulated diode guard ring structure before and after diffusion

Beam loss events

- reasons not fully clear
 - unstable beams due to dust particle collisions?
 - glitches of accelerator components?
- major issue of accelerator, eg preventing lumi ramp-up
- not always detected early enough to safely dump beams
 - $\circ~$ min. 40 μs delay from error to beam dump
 - collimator damage, QCS (superconducting final focussing magnets) quenches, ...,

impact on PXD:

- large instant radiation dose before beam could be dumped (~40 µs splash, total dose unknown)
- permanent damage: dead switcher gates
- exact failure mechanism still under study
 - radiation studies: problem localized in the switcher at clear & gate regulators
- mitigation procedures
 - SuperKEKB + Belle II: earlier detection and faster beam dump
 - PXD: faster emergency power off
 - (updated switcher design)

LER collimator damage on Nov 15 '20

DCU Dose

BP_FW_145

DD EW 35 1059 A mm

RP RW 35 1756 1 mm

layer one occupancy before/after beam loss in May '21

Beam loss events

- reasons not fully clear
 - unstable beams due to dust particle collisions?
 - glitches of accelerator components?
- major issue of accelerator, eg preventing lumi ramp-up
- not always detected early enough to safely dump beams
 - $\circ~$ min. 40 μs delay from error to beam dump
 - collimator damage, QCS (superconducting final focussing magnets) quenches, ...,

impact on PXD:

- large instant radiation dose before beam could be dumped (~40 µs splash, total dose unknown)
- permanent damage: dead switcher gates
- exact failure mechanism still under study
 - radiation studies: problem localized in the switcher at clear & gate regulators
- mitigation procedures
 - SuperKEKB + Belle II: earlier detection and faster beam dump
 - PXD: faster emergency power off
 - (updated switcher design)

LER collimator damage on Nov 15 '20

DCU Dose

BP_FW_145

DD EW 35 1059 A mm

RP RW 35 1756 1 mm

layer one occupancy before/after beam loss in May '21

DESY.

PXD Performance

Pixel hit efficiency in layer one (di-muons e20-e26)

DESY.

23

Alignment

- overall stable alignment
- small and stable PXD ladder deformations
- observe global z-shifts of detector eg with earthquakes
- observe z-movement (L2 in particular) with increasing beam currents
 - result in warming up of beampipe and thermal expansion
 - $\circ\;$ result in stress on PXD not fully compensated by PXD mechanics

Outline

Introduction

• SuperKEKB, Belle II, and the Belle II Vertex Detector

The Pixel Vertex Detector (PXD)

- Working Principles
- PXD Modules and Calibration
- PXD Detector

PXD Operation in Belle II

- PXD Performance
- VXD Performance
- Operational Challenges: backgrounds, beam-losses, irradiation and aging

PXD2 2022 Upgrade

• Future of PXD

PXD 2022

Building a 2nd PXD

PXD1 was incomplete

- only 10/20 ladders (8/8 inner, ½ broken, 2/12 outer) installed
 - not enough good modules available pre-2018
- good vertexing performance so far
 - but not guaranteed for higher future lumi \Rightarrow higher backgrounds
- suffered significant damage due to uncontrolled beam losses

ongoing efforts to install 2nd, complete PXD2

- same technology but improved manufacturing processes + time
- module production & assembly of both half shells completed
 - pre-commissioning at DESY ongoing
 - slowed down due to issues with pxd mechanics (gliding mechanism)
- PXD2 to be installed during current long shutdown 1:
 - $\circ~$ 6/2022 \rightarrow ~ fall/winter 2023

DESY.

1 layer vs 2 layer PXD performance

- L1 performance (efficiency, purity) will deteriorate with increasing occupancy
- can be (partially) recovered by second layer

26

Conclusion

AND SEEING WE ALL SEEN WE ALL JOKED ABOUT HAT RESOLUTION IS LIFE? BUT IT DOESN'T BLUNT THE SHOCK OF WAKING UP ONE MORNING

PXD status

- very good performance of PXD and stable operation throughout 2019-2022
- setbacks from beam loss events with high instantaneous dose rate
 - damages to detector
 - $\circ\;$ so far have remained out of full control and biggest risk for detector
- improved / automated operation, monitoring and calibration procedures for reduced load on shifters
- still lot of effort needed to operate detector, in particular
 - $\circ~$ in face of further damages from SuperKEKB beam-losses
- big thanks to those who make it possible!

PXD future

- great efforts from various institutions to prepare new and complete PXD
- pre-commissioning of full detector ongoing with installation in Belle II foreseen for spring 2023
- to retain PXD performance in future, rely on improvements to SuperKEKB also planned for LS1

Backup

PXD Modules Production

- 250 x 768 pixels per module
- pixel pitch varies in z-direction
 50 x 55 85 μm²
- best resolution in Belle II forward direction (at 45° incident angle)
- thinned to 75 μm in sensitive area
- mechanically self-supporting
 - thicker end of stave and (perforated) frame
 - host readout and control ASICS

PXD Modules

ASICS

4 x DHP: Data Handling Processor

- sensor, timing, trigger control
- data processing and transmission
 - pedestal correction
 - data reduction (zero suppression)
 - transmission at 1.6 Gbit/s
- TSMC 65 nm
- size 4.0 x 3.2 mm²
- rad. hard. provd (100 Mrad)

6 x Switcher: Row Control

- gate and clear signals
 - 32 channels control 4 rows each ("gates")
- fast HV ramping for clear
- AMS/IBM HV CMOS 180 nm
- size 3.6 x 1.5 mm²
- rad. hard proved (36 Mrad)

4 x DCD: Drain Current Digitizer

- pipeline 8-bit ADC per channel
- 256 input channels
- 92 ns sampling time
- UMC 180 nm
- rad. hard proved (10 Mrad)

 \Rightarrow all 3 custom PXD designs

rolling shutter mode:

- signals read gate by gate
- read-clear cycle in ~100 ns
 - full integration time 20 μs (1 "frame")
 - twice SuperKEKB revolution time

sampling:

- drain currents measured once
- pedestal correction on DHP
- zero suppression:
 - only signals above threshold send out

Module Production

Ladder gluing

- special jig for module handling, glue dispersion, alignment under microscope
- ceramic stiffening rods on backside
- critical step in PXD1 production
 - revised procedure for PXD 2022 avoids touching matrix side of sensors

PXD 2022

Pre-Commissioning at DESY

- perform full electrical tests to ensure no damage occurred during ladder mounting
- perform measurements with 90 Sr source to optimize working point
- before installation in Belle II this is only possible in the DESY setup

nvironment

Ionitoring

N2 Supply

CO2 Coolin

92 mm

Gated mode

- "gated mode" can blind PXD modules when noisy bunches pass
 - newly created charges are not collected
 - charges at internal gate are preserved
- challenges:
 - switching into gated mode results in pedestal fluctuations
 - produce noise on their own
 - \rightarrow still larger than injection noise
 - synchronization with injections
 - optimizing module parameters for GM

real GM "efficiencies"

- 2021 dedicated runs for PXD GM studies
 - inconsistent module behaviour
 - GM not ready yet
 - nor useful for current injection conditions
 - cost-benefit too high compared to slightly increasing global trigger veto

ADU

"gaited mode"

VXD Performance

Impact parameter and beam profile

• resolution: 1.5 - 2 x better than Belle

And any other design in the second second second	Data	Simulation
$\hat{\sigma}(d_0) \; [\mu \mathrm{m}]$	$14.2 \pm 0.1 (\text{stat}) \pm 0.1 (\text{syst})$	$12.5\pm0.1({\rm stat})$
$\hat{\sigma}(z_0) \ [\mu m]$	$16.1 \pm 0.1 ({ m stat}) \pm 0.1 ({ m syst})$	$13.9\pm0.1({\rm stat})$
the factor and the second second second	and the second	

- beam profile:
 - study impact parameter d₀ and resolution in di-muon events
 - $\circ~\phi\text{-dependence}$ gives info about beam profile:

 $\sigma_{d0}^{2} = \sigma_{intr}^{2} + (\sigma_{x} \sin \phi)^{2} + (\sigma_{y} \cos \phi)^{2}$

 $\circ\,$ unfold beam profile \rightarrow consistent with expectations from

 $_{\rm DESY.} \circ \,$ more involved methods study $\rm d_{_{01}}$ and $\rm d_{_{02}}$ correlations in 2-track events

[BELLE2-NOTE-PL-2019-011], [BELLE2-PUB-TE-2020-001]

Beam loss impact on global L1 efficiency

May 2021 beam loss

SuperKEKB

Design parameters and injection scheme

	LER	HER	
Energy	4.0	7.0	GeV
Current	3.6	2.6	A
Number of bunches	2500		
Bunch Current	1.44	1.04	mA
Circumference	3016		m
Emittance ε_x	3.2(1.9)	4.6(4.4)	nm
Emittance ε_y	8.64(2.8)	12.9(1.5)	\mathbf{pm}
Coupling	0.27	0.28	
Beta function β_x	32	25	$\mathbf{m}\mathbf{m}$
Beta function β_y	0.27	0.30	$\mathbf{m}\mathbf{m}$
Crossing angle $(2\Theta_c)$	83		mrad
Beam-beam parameter ξ_x	0.0028	0.0012	
Beam-beam parameter ξ_y	0.0881	0.0807	
Luminosity \mathcal{L}	8×10^{35}		$\mathrm{cm}^{-2}\mathrm{s}^{-1}$

PXD Backgrounds @ Belle II

Single-beam backgrounds:

- ▷ **Touschek scattering** \rightarrow scattering of particles within a bunch \rightarrow **Touschek rate** $\propto N_{particles} \times \rho \rightarrow I \times \frac{1}{\sigma_{v} n_{b}}$
- beam-gas scattering → Coulomb scattering and Bremsstrahlung (scattering off gas molecules) → Beam-gas rate ∝ N_{gas molecules} × N_{particles} → P × I × Z²_{eff}

- ▶ synchrotron radiation background → consequence of a radial acceleration of the beam's particles achieved in bending magnets and quadrupoles
- **injection background** \rightarrow continuous injection of charge into beam bunch modifying the beam bunch

Single-beam backgrounds can be mitigated with beam-steering, collimators, and vacuum-scrubbing

Luminosity backgrounds:

▶ two-photon background → leading luminosity background ($e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-e^+e^-$), unlike any of the backgrounds above cannot be reduced!

DESY. | S. Stefkova | ICHEP 2020, 30.07.2020

Page 6

HLT and Track Finding