

Timepix4 Timing Performance and First Beam Test Results The 31st International Workshop on Vertex Detectors

Timepix4: A pixel readout ASIC for hybrid detectors

- Developed by CERN, Nikhef, IFAE, and IEAP
- 65 nm CMOS
- 448×512 pixels, 55×55 μ m² pitch
- Can readout positive and negative polarity signals
- Simultaneous measurement of time and charge deposition (by measuring time over threshold)
- Time-bin size of 25 ns/128 ≈ **195 ps**
- Data driven
- Max rate: 360×10⁶ hits/cm²/s ~ 20 GB/chip/s
- Four-side buttable (peripheries underneath matrix, TSV option)

X. Llopart et al 2022 JINST 17 C01044 [DOI: 10.1088/1748-0221/17/01/C01044]

VERTEX 2022

K. Heijhoff

			Timepix3 (2013)	Timepix4 (2019
hnology			130nm – 8 metal	65nm – 10 meta
el Size			55 x 55 µm	55 x 55 µm
el arrangement			3-side buttable 256 x 256	4-side buttable 512 x 448
sitive area			1.98 cm ²	6.94 cm ²
	Data driven (Tracking)	Mode	TOT and TOA	
		Event Packet	48-bit	64-bit
		Max rate	0.43x10 ⁶ hits/mm ² /s	3.58x10 ⁶ hits/mm
		Max Pix rate	1.3 KHz/pixel	10.8 KHz/pixel
	Frame based (Imaging)	Mode	PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-
		Frame	Zero-suppressed (with pixel addr)	Full Frame (without pixe
		Max count rate	~0.82 x 10 ⁹ hits/mm²/s	~5 x 10 ⁹ hits/mm ²
Fenergy resolution		ution	< 2KeV	< 1Kev
A binning resolution			1.56ns	195ps
A dynamic range			409.6 µs (14-bits @ 40MHz)	1.6384 ms (16-bits @ 4
dout bandwidth			≤5.12Gb (8x SLVS@640 Mbps)	≤163.84 Gbps (16x @10.24 Gbps)
get minimum threshold		threshold	<500 e⁻	<500 e⁻

Nikhef

Time measurement in Timepix4

VERTEX 2022

Coarse and fine time measurement – 40 MHz and 640

K. Heijhoff

MHz
op
b1110
- 3
of-

Timepix4 front-end

- Analog test pulses were used to characterise the analog front-end jitter
- The relative arrival time of analog test pulses was scanned by delaying the system clock in steps of 20 ps
- Digital pixel inputs: Edge pixels can be triggered with external signals
- Digital pixel inputs were used to characterise the TDC

K. Heijhoff

Readout module 4 (SPIDR4)

- depending on DAC settings
- (Also see reference in the top-right corner of this slide)

Digital front-end time resolution

- Structure in ultra-fine time bins has a small impact on TDC resolution (few %)
- Variation in the VCO frequency over the pixel matrix observed:

Bottom half: $1.547 \text{ ns} \pm 20 \text{ ps}$ Top half: 1.583 ns ± 14 ps

• We have estimated the TDC resolution for correction methods of increasing complexity

Expected TDC resolution for various correction methods

No correction	111	ps
(i) Chip-wide	111	ps
(ii) Per matrix half	80	ps
(iii) Per VCO	61.9	ps
(iv) Per VCO, ufToA	60.3	ps
Best possible	58.3	ps
Ideal bins	56.4	ps

K. Heijhoff et al 2022 JINST 17 P07006 [DOI: 10.1088/1748-0221/17/07/P07006]

K. Heijhoff

LHCb VELO Timepix3 Telescope

- Systematic timing errors have been studied in detail using the Timepix<u>3</u> telescope.
- Understanding the combined time resolution of large systems will be vital for future 4D trackers

Beam ...

K. Akiba *et al* 2019 *JINST* **14** P05026 [DOI: <u>10.1088/1748-0221/14/05/P05026]</u>

K. Heijhoff et al 2020 JINST 15 P09035 [DOI: 10.1088/1748-0221/15/09/P09035]

K. Heijhoff

VERTEX 2022

Timepix4 Telescope

- Currently a new telescope based on the Timepix4 ASIC is in the early stages of operation
- Final telescope will have 8 layers of Timepix4
- It will be the ideal tool to investigate fast detectors that can handle enormous rates
- In the context of 4D tracking, we want to investigate the timing characteristics of this telescope
- Results shown are obtained with 4 Timepix4 layers in a 180 GeV/c mixed hadron beam at the CERN SPS

Timepix4 Telescope setup

- 2 × 100 µm planar n-on-p sensors for time resolution (perpendicular to beam)
- 2 × 300 µm planar n-on-p sensors for spatial resolution (angled for charge sharing)
- All chips are cooled to room temperature using a titanium cooling block (3D printed) through which glycol is circulated.

27 Oct. 2022

K. Heijhoff

downstream scintillator DAQ

First beam

- First hitmap data on the online monitoring looked puzzling
- Other histograms look as expected
- Offline analysis is performed using the LHCb Kepler framework

K. Heijhoff

Timewalk correction

- 100 µm sensors give signals of ~8ke for MIPs
- The ToT measurement is used to apply a timewalk correction
- Current track time resolution: $\sigma_{\rm t}$ = 340 ps (4 layers)
- Lots of room for improvement:
- 1. Problems with external clock
- 2. VCO not locked to 40 MHz in Timepix4v1
- 3. Pixel variation in discharge current affects timewalk correction. (Charge calibration will fix this.)

Before

After

K. Heijhoff

Conclusion and Outlook: Towards Fast Timing and 4D tracking

- We have set a challenging benchmark time resolution using test-pulse measurements
- Proof of concept: Track reconstruction with 4-layer Timepix4 Telescope.
- Testbeam with 8 layers + DUT has taken place earlier this month:
 - Planes have been upgraded to Timepix4v2
 - Time reference system has been upgraded to an MCP + PicoTDC $(\sigma_{\rm t}$ < 20 ps)
- Faster sensors are anticipated: LGAD, 3D, ...

Backup slides

- Contraction

Jo not remove *

Timepix4 test-pulse measurement setup

K. Heijhoff

Pixel capacitance and front-end resolution

- Higher input capacitance of 3D sensor leads to worse jitter at low signal charge
- 3D sensor still has better time resolution because of 6x higher signal charge

K. Heijhoff et al 2021 JINST 16 P08009 [DOI: 10.1088/1748-0221/16/08/P08009]

K. Heijhoff

Clock distribution – Column digital locked look (DLL)

- The column DLL distributes the clock along the columns
- The adjustable delay buffers (ADBs) precisely define the clock phase in each pixel group
- Controller tunes the total delay to 25 ns
- Possible to set the delay manually
- Individual ADB stations can be bypassed

VERTEX 2022

2.2 BCncsim TEncsim — WCncsim 1.8 ICK17 TARGET ADB Delay [ns] 1.6 1.4 BCspectre TCspectre output fine coarse -WCspectre in delay delay section section 1.2 CK31 1 0.8 скоит <mark>pixel</mark> ° **15** 14 0.6 periphery mode ctrl_fine ctrl coarse 0.4 value set 0.2 by user Fine delay section 100 125 150 175 200 225 Delay code 75 25 50 0 ~22.7 mW/cm² to distribute a 40 MHz clock with a 100 ps_{rms} Coarse delay section from next from next

K. Heijhoff

27 Oct. 2022

iWoRID 2018 X. Llopart et al 2019 JINST 14 C01024

- the phase of analog test pulses
- ADB station)

- understood

Timepix4 Timewalk measured with test pulses

K. Heijhoff

VERTEX 2022

Timepix4 pixel equalisation

K. Heijhoff

VERTEX 2022

Baseline distribution

Timepix3 telescope

- Eight planes with Timepix3 + sensors
- Planes rotated to optimise spatial resolution
- Scintillators provide a reference time
- Constant fraction discriminators (CFDs) reduce timewalk effects
- All planes run on a common 40 MHz clock

Timewalk

- Cluster time set by earliest hit in cluster: cuts out most timewalk
- Correction improves track resolution: $\sigma(\text{track}) = 438 \text{ ps} \rightarrow 415 \text{ ps}$
- Atypical timewalk behaviour. A decreasing function of charge is expected.

K. Heijhoff

Timewalk and track topology

Timewalk and sensor effects mixed by track topology

27 Oct. 2022

K. Heijhoff

K. Heijhoff

- scintillators and telescope planes.
- 514 ps resp.
- Improves track time resolution:

K. Heijhoff

Plane time correlation

- $\operatorname{cov}(t_a t_{\mathrm{up}}, t_b t_{\mathrm{down}})$ Measured as: ρ_{ab}
- Taking into account correlations correctly predicts track time resolution: $\sigma_{\text{track}} = \left(\mathbf{1}^{\mathrm{T}}\mathbf{C}^{-1}\mathbf{1}\right)^{-1/2}$ = 436 ps (Measured: 438 ps)

Covariance matrix of plane time measurements

Correlations before corrections

After timewalk and pixel corrections

K. Heijhoff

DUT charge distributions

charge in small region

K. Heijhoff et al 2021 JINST 16 P08009 [DOI: 10.1088/1748-0221/16/08/P08009]

Intrapixel time delay

3D sensor technology

Thin planar sensor

K. Heijhoff

27 Oct. 2022

4.0