

Silicon strip detector for muon g-2/EDM experiment at J-PARC

S.Ogawa (Kyushu Univ.) on behalf of the J-PARC muon g-2/EDM collaboration

@Vertex 2022

Muon g-2 / EDM

- Muon anomalous magnetic moment (g-2)
 - 4.2 σ tension b/w measurement & prediction
 - Measurement: $116592061(41) \times 10^{-11} (350 \text{ ppb})$
 - SM prediction: $116591810(43) \times 10^{-11} (370 \text{ ppb})$
 - This can be a contribution from new physics.
 Another measurement by an independent strategy is desired.

Muon EDM

- Upper limit given by BNL: $1.8 \times 10^{-19} \, \mathrm{e} \cdot \mathrm{cm}$ (95% C.L.)
- Indicates CP violation in lepton sector.

Muon g-2/EDM measurement

- Muon g-2/EDM can be measured from spin precession of muon in a uniform B-field.
 - time dependent spin information reconstructed from decay positron energy/momentum.

$$\vec{\omega}_a + \vec{\omega}_\eta = -\frac{e}{m_\mu} \left[a_\mu \vec{B} - (a_\mu - \frac{1}{\gamma^2 - 1}) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$
g-2
EDM

BNL/ FNAL experiment

$$\vec{\omega}_a + \vec{\omega}_{\eta} = -\frac{e}{m_{\mu}} \left[a_{\mu} \vec{B} - (a_{\mu} - \frac{1}{\gamma^2 - 1}) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} (\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}) \right]$$

- Measurement at magic gamma momentum.
 - to cancel out 2nd term.
 - p = 3.1 GeV/c, ϕ : 14 m at B = 1.45 T
- Strong electric field focusing.

spin precession

by EDM

Muon g-2/EDM measurement

J-PARC experiment

- Measurement at $\vec{E} = 0$.
 - Beam storage by weak focusing B-field
 - Utilize low emittance muon beam.

$$\vec{\omega}_a + \vec{\omega}_\eta = -\frac{e}{m_\mu} \left[a_\mu \vec{B} - (a_\mu - \frac{1}{\gamma^2 - 1}) \vec{\beta} \times \vec{E} + \frac{\eta}{2} (\vec{\beta} \times \vec{B} + \vec{E}) \right]^0$$
EDM

- Measurement at lower muon momentum becomes possible.
 - → More compact storage region with better uniformity of B-field.
 - p = 0.3 GeV/c, ϕ : 0.66m at B = 3 T
- Independent measurement of muon g-2 to validate BNL/FNAL result at different systematic uncertainty.
- Clear separation of g-2 and EDM signal.

Muon g-2/EDM experiment at J-PARC

Silicon strip positron detector

Silicon strip positron detector for J-PARC muon g-2/EDM experiment

- Compact positron tracking detector by silicon strip sensors (640 100x100 mm² sensors).
- High hit rate capability (6 tracks/ns)
 and stability over rate changes (1.4 MHz→10 kHz)
- High efficiency for positrons in the analysis window (p=200-275 MeV/c).
- Operation in vacuum, 3T B-field.
- No EM-field contamination for muon orbit.

Silicon strip positron detector

• Detector consists of 160 submodules called quarter-vane.

Each quarter-vane consists of

- Silicon sensor
- FPC for analog signal transmission
- ASIC for signal amplification/digitization
- FPGA board for data/clock communication
- Cooling system for cooling in vacuum
- GFRP frame for assembly

Quarter-vane: submodule of detector

Sensor FPC & pitch adapter

ASIC & ASIC board

Silicon sensor (behind)

Silicon strip positron detector

- Prototyping of quarter-vane is ongoing towards real detector assembly. In my talk, three topics are picked up from many R&D activities.
 - QA of produced ASICs
 - ASIC board development
- FPGA board development
- DAQ backend development

Frontend ASIC

 Frontend ASIC "Slit128D" has been developed for amplification, digitization of silicon sensor signal.

- Slit128D
 - SilTerra 180 nm CMOS technology
 - Fast response to tolerate a high hit rate
 - Readout sequence dedicated for pulsed muon beam at J-PARC
 - 40us measurement period for each 25Hz pulsed beam
 - Binary readout with 5 ns time stamp and large memory buffer

Quality assurance of ASIC

- 15000 ASICs are produced for real detector assembly.
- Quality assurance (QA) of produced ASICs is on going.
 - QA system prepared: dedicated probe card & manual probe station.

- Performance check to reject bad chip before detector assembly.
 - Power consumption, dead channel, gain, noise, and timewalk are measured.

Quality assurance of ASIC

- So far 62 chips are tested.
 - 10 bad chips (noisy channel etc..) are identified and rejected.

Noise

- Estimated from "S-curve scan".
 - voltage threshold scan for the signal of fixed charge
- Requirement: ENC < 1600 e⁻¹

Noise of each channel (a good chip)

Timewalk

- Time difference of signal btw/ 0.5 3MIP
- Requirement: < 1ns
 - large timewalk can deteriorate high rate tolerance, and can lead to a systematic uncertainty of g-2.

Timewalk of each channel (a good chip)

Cooling system design

- Detector is operated inside vacuum, thus cooling of frontend ASIC, FPGA, regulator etc... is required.
 - In total 5 kW (~30 W per quarter vane) has to be cooled.
- Electric parts are thermally connected to heat pipe,
 which is cooled down by colling water inside the center pole.

Cooling system assembly

- Assembly procedure to realize this design has been studied.
- Thickness of thermal conductive adhesive has to be well controlled.
 - positioning of work to be glued & control of used amount adhesive
- A dedicated jig to control thickness of adhesive.

Cooling system assembly

- Amount of adhesive can be controlled by using "dispenser".
 - adhesive in syringe pushed by compressed air of a given pressure.
 - major parameter : applied pressure & adhesive viscosity
- For two component adhesive (e.g. stycast, araldite), viscosity depends on the speed of chemical reaction, whose direct control is difficult.
- A test dispense on a junk sample just before dispense on the real work
 - → Individual difference of amount of adhesive can be reduced.
 - Pressure for real dispense is adjusted, from the amount of adhesive in test dispense.

Requirement on sensor alignment

- Precise alignment between detector and B-field is essential for muon EDM measurement.
 - nonzero EDM can be detected as an up-down asymmetry of number of decay positrons.
 - If rotated each other, "g-2 component" of spin precession comes into "EDM component".
- Goal of sensor alignment:
 10 urad rotation & 200urad tilt.
 - This corresponds to1 um rotation & 20 um tilt of each sensor.
- Precise positioning of sensors in detector assembly
 + precise position monitoring of sensor in data taking.

Sensor alignment

- Silicon sensors are glued on GFRP frame.
 Gluing procedure with an alignment of
 O(1) um precision is under development.
- CMM (3D coordinate measuring machine) in temperature control room
 - sensor position & shape measurement by 1um precision
 - temperature is kept to 20 \pm 1 deg. , to avoid thermal expansion.

Sensor position measurement by alignment marker

Shape measurement by chromatic confocal sensor

Temperature control room

Sensor alignment

- Sensor positioning by a dedicated jig.
 - Horizontal shift (1um step) & Vertical shift (~10 um step)
 - Gluing by a UV curing adhesive.

- Precision better than 2um is achieved for rotation in quarter-vane plane.
 - already near to the final goal of 1 um

Glued position of each sensor (1st,2nd,3rd,4th) Deviation from ideal (gray) position

Summary

- Silicon strip detector for J-PARC muon g-2/EDM experiment is being developed.
 - Aims to measure muon g-2
 with an independent strategy from BNL/FNAL experiments.
- Prototyping of detector submodule (quarter-vane) is ongoing.
 - Frontend ASIC has been produced. Their quality assurance has started.
 - Cooling system has been designed.
 Assembly procedure to control adhesive thickness has been established.
 - Precise sensor alignment for EDM measurement under R&D.
 Precision of 2 um is already achieved.
- Detector assembly from JFY 2024, and physics data-taking from JFY 2027.

BACKUP

J-PARC experiment

- Measurement at $\vec{E} = 0$.
 - Storage by weak focusing B-field
 - Utilize low emittance muon beam.

$$\vec{\omega}_{a} + \vec{\omega}_{\eta} = -\frac{e}{m_{\mu}} \left[a_{\mu} \vec{B} - (a_{\mu} - \frac{1}{\gamma^{2} - 1}) \vec{\beta} \times \vec{E} \right] + \frac{\eta}{2} (\vec{\beta} \times \vec{B} + \vec{E})$$

$$= 0$$

$$\text{EDM}$$

Number of detected positron (p: 200-275 MeV)

Up-down asymmetry of detected positron

Muon cooling

- Low emittance muon beam by reacceleration of thermal muon.
 - Silica aerogel target: Surface muons stopped, and thermal muoniums emitted.
 - Laser ablated aerogel to increase the efficiency.

- Thermal muonium ionization by laser.
 - Two scheme under consideration.
 - 1S-2P excitation by 122nm
 or 1S-2S excitation by 244nm

Physics data taking expected from JFY 2027.

Expected sensitivity

• Total efficiency of muon will be 1.3×10^{-4} .

Subsystem	Efficiency	Subsystem	Efficiency
H-line acceptance and transmission	0.16	DAW decay	0.96
Mu emission	0.0034	DLS transmission	1.00
Laser ionization	0.73	DLS decay	0.99
Metal mesh	0.78	Injection transmission	0.85
Initial acceleration transmission and decay	0.72	Injection decay	0.99
RFQ transmission	0.95	Kicker decay	0.93
RFQ decay	0.81	e ⁺ energy window	0.12
IH transmission	0.99	Detector acceptance of e^+	1.00
IH decay	0.99	Reconstruction efficiency	0.90
DAW transmission	1.00		

Muon g-2

- Statistical uncertainty: 450 ppb (2 years of data taking)
 - Uncertainty comparable to BNL can be reached
- Systematic uncertainty: less than 70 ppb.

Anomalous spin precession (ω_a)		Magnetic field (ω_p)		
Source	Estimation (ppb)	Source	Estimation (ppb)	
Timing shift	< 36	Absolute calibration	25	
Pitch effect	13	Calibration of mapping probe	20	
Electric field	10	Position of mapping probe	45	
Delayed positrons	0.8	Field decay	< 10	
Diffential decay	1.5	Eddy current from kicker	0.1	
Quadratic sum	< 40	Quadratic sum	56	

Muon EDM

- Statistical uncertainty: $1.5 \times 10^{-21} \, \mathrm{e} \cdot \mathrm{cm}$
- Systematic uncertainty: $0.4 \times 10^{-21} \, \mathrm{e} \cdot \mathrm{cm}$
 - mainly from detector mis-alignment

24

a

Quarter-vane (simplified cross view)

a

ASIC gluing jig (side view)

