







### 31<sup>st</sup> International Workshop on VERTEX Detectors

Tateyama Japan, 24 – 28 October 2022

### An LHCb Vertex Locater (VELO) for 2030s

<u>Evangelos – Leonidas Gkougkousis (CERN)</u>

#### ON BEHALF OF THE LHCb COLLABORATION

Tateyama Resort Hotel – October 27<sup>th</sup>, 2022

## Overview

| <b>Introduction</b> | <ul> <li>✓ The LHCb Experiment @ LHC</li> <li>✓ HL-LHC timescale and planning</li> <li>✓ Physics at Run 4 and beyond</li> <li>✓ Run 4 Conditions</li> </ul> |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Velo @ Run 5        | <ul> <li>✓ Timing Options</li> <li>✓ Towards a 4D tracker</li> <li>✓ X<sub>0</sub>, Φ<sub>eq</sub> and σ<sub>HIT</sub> – A delicate balance</li> </ul>      |
| Sensor R & D        | <ul> <li>✓ Silicon Technologies</li> <li>✓ Timing with LGADs and 3Ds</li> </ul>                                                                             |
| ASJC<br>Development | <ul> <li>✓ Requirements &amp; Limits</li> <li>✓ ASIC Generations</li> </ul>                                                                                 |
| RF Shield           | ✓ Wake field suppression manifold                                                                                                                           |
| Cooling             | $\checkmark$ 3D and microchannel implementations                                                                                                            |
| Vacuum tank         | $\checkmark$ Vacuum separation considerations                                                                                                               |
| Conclusions         | ✓ R&D and timeline                                                                                                                                          |
|                     | 27 / 10 / 2022 E. L. Gkougkousis                                                                                                                            |

## Related Talks

## LHCb Upgrade I & II, ASICs LHCb Upgrade I

Valeriia Lukashenko – Monday October 24<sup>th</sup>
 *"The Vertex Locator at LHCb Upgrade I"* <u>https://indico.cern.ch/event/1140707/contributions/5036353/</u>

Dimitra Andreou – Monday October 24th "Status of the Upstream Tracker" <u>https://indico.cern.ch/event/1140707/contributions/5052643/</u>

### LHCb Upgrade II

Ryunosuke O'Neil – Tuesday October 25<sup>th</sup>
 *"HV-MAPS for the LHCb Upgrade II Mighty Tracker"*

https://indico.cern.ch/event/1140707/contributions/5086206/

### **ASICs**

- Adriano Lai Thursday October 27<sup>th</sup> "TimeSPOT results on sensors and electronics and future perspectives" <u>https://indico.cern.ch/event/1140707/contributions/5031145/</u>
- Kevin Heijhoff Thursday October 27<sup>th</sup>

*"Timepix4 timing performance and first beam test results"* https://indico.cern.ch/event/1140707/contributions/5041530/





E. L. Gkougkousis

## Towards HL-LHC

COVID Revised, LHC schedule link



27 / 10 / 2022

E. L. Gkougkousis

Physics Case for an LHCb Upgrade II



### Physics Case



 $\operatorname{Re}(C_7'/C_7)$ 

### SM benchmarks – Unitarity triangle

- Precise benchmark of SM through apex of CKM unitarity triangle
- ✓ Allows tree level processes to be assessed against loop contributions
- Angle γ can be estimated with minimal theory uncertainties and tree level processes
- ✓ End of upgrade I precision (50 fb<sup>-1</sup>) → 1° End of upgrade II precision (300 fb<sup>-1</sup>) → 0.35°

#### Article: arXiv:2108.09283

### **Rare Decays**

- Flavor changing transitions anomalies show hits of new physics (B anomalies – 1.5 σ SM deviation)
- ✓ Greater statistics allows precision measurement of branching rations and angular distributions

| Observable                                       | LHCb 2025 | Upgrade II |
|--------------------------------------------------|-----------|------------|
| $B^0_s$ , $B^0  ightarrow \mu^+ \mu^-$           | 31%       | 10 %       |
| $B(B^0 \to \mu^+ \mu^-)/(B_s^0 \to \mu^+ \mu^-)$ | 54 /0     |            |
|                                                  |           |            |

## Run 4 Conditions I



- ✓ High PileUp induces PV spatial separation of the same order as detector resolution → PV unresolvable
- ✓ PV RMS time distribution in the order of 186 ps (Gaussian)
- ✓ Using time information, PV reconstruction efficiency can be recovered
- ✓ Track reconstruction highly benefits from timing
- ✓ 20 ps track binning sufficient for recovering efficiency



## Run 4 Conditions II



- Timing essential to maintaining practically identical reconstruction efficiency as upgrade I at Run 5 conditions
- $\checkmark$  Needed for mitigating ghost track rejection
- Important for b-related analysis for the identification of the displace vertex
- ✓ Separate b-decays from primary vertices



## Run 4 Conditions



- ✓ LHCb is essentially a trigger experiment (on-line trigger lines for interesting decays)
- ✓ If events not recognized as belonging to one of the trigger lines, they are rejected with no recourse
- Very important to ensure trigger efficiency at high PileUp conditions
- ✓ Simulated studies using a simplified Kalman filter approach at  $B_s^0 \to D_s^- \pi^+$  events
- ✓ Efficiency is recovered to 90% for an IP > 0.1 mm with the addition of timing



27 / 10 / 2022

E. L. Gkougkousis

# • Velo @ Run 5

## **Evaluated Options**



#### Timing planes + tracking option

- At least three layers required for outlier rejection & combinatorics
- Single hit resolution requirement at 25 ps
- Dispersion due to different particle momenta
- 100 μm pixel to maintain occupancy

|                                      | Upgrade I | Large<br>Planes | Endcaps     | Endcaps<br>+ Barrel |
|--------------------------------------|-----------|-----------------|-------------|---------------------|
| Covered<br>range                     | 2 ≤ η ≤ 5 | 2≤η≤5           | 2.8 ≤ η ≤ 5 | 2 ≤ η ≤ 5           |
| Additional<br>area [m <sup>2</sup> ] | 0.1       | 0.25            | 0.05        | 0.4                 |

#### Full 4D VELO option

- Single hit resolution at 50 ps
- Better efficiency in pattern recognition and vertex reconstruction
- Lower cost with respect to discrete timing solution:
  - Single sensor technology and ASIC
  - Less computing power due to higher efficiency in PV reconstruction





## • Velo @ Run 5

## $X_0$ , $\Phi_{eq}$ and $\sigma_{HIT}$ – A delicate balance



- IP resolution:  $\sigma_{IP} = \sigma_{extrap.} \times \sigma_{scatter}$
- Calculation for tracks of |η|=3.5
- To keep radiation hardness to moderate levels (Scenario B):
  - Increase binary pixel resolution → decrease quadratically electronics footprint
  - Decrease material budget by a factor of ~5

#### It's a game of balance to find the "right" operational point



# • Velo @ Run 5

## Full-on trimming VELO

Two different layout scenarios as baseline for optimization:

### Scenario A (S<sub>A</sub>)

- Closest pixel to beamline: 5.1 mm
- ~ 9 × Upgrade I Hit Rate (350 kHz)
- Pixel size can remain at  $55 \times 55 \ \mu m^2$
- Highly Radiation hard Silicon (sensors/ASIC) and/or frequent replacement
- 5 × radiation damage with respect to UI (6 ×  $10^{16} n_{eq}$ /cm<sup>2</sup>)

### Scenario B (S<sub>B</sub>)

- Closest pixel to beamline: 12.5 mm
- Same Hit Rate as Upgrade I (40 kHz)
- Pixel size <  $42 \times 42 \ \mu m$
- Same radiation damage with respect to UI (8  $\times$  10<sup>15</sup> n<sub>eq</sub>/cm<sup>2</sup>)
- Material budget to be reduced by a factor of ~5 before second hit (no RF foil?)



Sketch of a Scenario A using the current sensor modules



12

# Sensor R&D

## Silicon Technologies



### Planar Pixels

- ✓ Uniform weighting field  $\rightarrow$  low sensor induced jitter
- ✓ Charge generation & collection time propositional to thickness
- ✓ Low SNR, high power dissipation at  $\Phi > 10^{16} n_{eq}/cm^2$

### 3D pixels

- Decoupled charge generation and drift volumes
- ✓ Proven radiation hardness at  $\Phi < 10^{16} n_{eq}/cm^2$
- $\checkmark$  Highly non-uniform field (+ gain, jitter) with dead regions
- $\checkmark$  Higher capacitance and expensive process

### **CMOS** Sensors

- Integrated electronics, lower production cost (industrial process)
- ✓ Low capacitance → resolutions of ~50 ps (noise scales ~ C)
- ✓ Typically, thin depletion layers  $\rightarrow$  lower signal
- ✓ Moderate radiation hardness, proven up to  $\sim 10^{15} n_{eq}/cm^2$

### Low Gain Avalanche Diodes (LGAD)

- Signal amplification with intrinsic gain (double junction)
- ✓ High SNR and lower capacitance with 50  $\mu$ m substrate
- ✓ Carbon and deep-implanted LGADs radiation hard up to ~  $3 4 \times 10^{15} n_{eq}/cm^2$
- ✓ Segmentation under investigation, Ti-LGADs & iLGADs

# Sensor R&D

## LGADs

#### Article: <u>arXiv:2111.06731</u>

- ✓ Investigated different dopants to increase radiation hardness
- ✓ Ga, B gain layer and B + deep carbon implant studies under neutron and proton irradiation
- ✓ 20% improvement with deep carbon, 20% degradation with Ga devices
- 100 σ [ps] Boron unirrad Gallium unirrad hardness Carbon unirrad **Replace Boron with Indium 90**E Gallium 6e14 n Gallium 1e15 n Indium higher mass and lower reaction Carbon 1e14 p Gallium 1e14 p 80 cross-section expected to generated less O<sub>i</sub> 🛦 – Gallium 6e14 p Boron 6e14 p -&- Carbon 6e14 p defect clusters 70 Implantation energy and doping profiles already  $\checkmark$ 60 optimized via TCAD simulations 50 Boron - Indium Integral Variation (%) 40 Indium Permutations 30 20 10 600 0 600 200 300 400 500 100 400 Bias Voltage [V] *Time Resolution:*  $\sigma_{tot}^2 = \sigma_{timewalk}^2 +$ 30  $\sigma_{jitter}^2$  +  $\sigma_{conversion}^2$  +  $\sigma_{Clock}^2$ 200 10 TDC<sub>bin</sub> 100 400 500 200 300 700  $\sigma_{Dist.}^2 + \sigma_{Landau}^2$ 't<sub>rise</sub> Fixed Term **Boron Permutations** ~ 5-7 psec
- 27 / 10 / 2022

E. L. Gkougkousis

- Presentation: <u>16<sup>th</sup> Trento workshop</u>
- ✓ Radiation damage lead to acceptor removal though defect kinematics
- ✓ Modify gain layer implants to generate beneficial defects for gain (gain regulation):

#### Lithium co-implantation:

 Boron with Lithium co-implantation demonstrates better neutron radiation hardness

31<sup>st</sup> VERTEX Workshop

## Sensor R&D

### 3D Pixel (Columns - Trenches) Column design

- ✓ Extremely sharp signals with very fast rise time (< 180 ps)</li>
- ✓ Several geometries with 25 µm and 50 µm electrode distance
- ✓ Studies ongoing with pion beam at n/p irradiation fluences up to  $1 \times 10^{17} n_{eq}/cm^2$
- ✓ Single- and double-sided processes



### Trench design (TimeSpot)

- ✓ More uniform field than standard 3D
- ✓ Lower distortion term in  $\sigma_{tot}$
- ✓ Intransigently higher capacitance and larger inefficient regions due to tranches
- ✓ New process under development with very promising results
- Radiation studies to be performed, expecting similar results as for standard 3Ds

Presentation: <u>TimeSpot</u>





 $27 \ / \ 10 \ / \ 2022$ 

15

# ASIC Development

### Requirements & Limits



| Requirement                                           | scenario ${\cal S}_A$ | scenario ${\cal S}_B$ |
|-------------------------------------------------------|-----------------------|-----------------------|
| Pixel pitch [µm]                                      | $\leq 55$             | $\leq 42$             |
| Matrix size                                           | $256 \times 256$      | $335 \times 335$      |
| Time resolution RMS [ps]                              | $\leq 30$             | $\leq 30$             |
| Loss of hits [%]                                      | $\leq 1$              | $\leq 1$              |
| TID lifetime [MGy]                                    | > 24                  | > 3                   |
| ToT resolution/range [bits]                           | 6                     | 8                     |
| Max latency, BXID range [bits]                        | 9                     | 9                     |
| Power budget $[W/cm^2]$                               | 1.5                   | 1.5                   |
| Power per pixel [µW]                                  | 23                    | 14                    |
| Threshold level [e <sup>-</sup> ]                     | $\leq 500$            | $\leq 500$            |
| Pixel rate hottest pixel [kHz]                        | > 350                 | > 40                  |
| Max discharge time [ns]                               | < 29                  | < 250                 |
| Bandwidth per ASIC of $2 \text{ cm}^2 \text{ [Gb/s]}$ | > 250                 | > 94                  |

Simulated jitter at the front-end ouput versus input capacitance for 42  $\mu$ m pixel pitch



# ASIC Development

## Generations & Performance

- ✓ **UIASIC**: VeloPix, Developed in collaboration with MediPix collaboration
- ✓ **UII small scale prototype**: PicoPix (estimated 1<sup>st</sup> iteration submission ~ 18 month)

#### VeloPix:

- ✓ TSMC 130 nm technology
- ✓ Rate: 10.44 Gbps/cm<sup>2</sup>
- ✓ Total time resolution 25 ns
- ✓ Power: < 1.5 W/cm<sup>2</sup>



#### TimePix4:

- 65 nm technology
- Rate: 23 Gbps/cm<sup>2</sup>
- TDC: ~62 ps resolution
- > AFE: ~ 70 ps resolution
- Power: < 0.5 W/cm<sup>2</sup>



#### **PicoPix (In development)**

- ✓ 28 nm technology
- ✓ Rate: > 125 Gbps/cm<sup>2</sup>
- ✓ Minimum pixel size 42- 55 µm
- ✓ Total time resolution < **30 ps**
- ✓ Power: < 1.5 W/cm<sup>2</sup>
- ✓ 1<sup>st</sup> small scale prototype towards Upgrade II ASIC

# RF shield

## Wake field suppression manifold

- ✓ A wake field guide required to protect sensors and ensure a smooth transition of the beam's field
- ✓ It can be a large part of  $X_0$
- ✓ Three options under investigation:

#### **Cylindrical foil**

#### Wire mesh

current

- 20 µm Al foil
- Tensioned shield for mechanical stability
- NEG coating can be big part of X<sub>0</sub> – contains Vanadium, Titanium etc.
- Amorphous carbon coating is investigated (0.4 μm)

Equivalent to a 19 μm thick cylindrical foil

Wires at 200 µm pitch

70 μm diameter should be more than sufficient for the equivalent

#### Carbon composite

- $1.5 \times Al X_0$  but self supporting
- Can serve as mechanical support for modules
- Convenient for small thicknesses and complex shapes
   Proposal for no vacuum separation

# Cooling

Pub Note: <u>AIDA-2020-NOTE-2020-003</u>

### 3D & Microchannel solution

- ✓ Active cooling required to control thermal runaway due to electronics power dissipation and avoid annealing of irradiated sensors
- ✓ Power budget expected to remain at >  $1.5 \text{ W/cm}^2$
- ✓ Current option consists of CO₂ cooling via microchannel plates in direct contact with modules

#### Two options evaluated for upgrade 2:

- 1. Microchannel plate cooling (150 W/mK)
- 2. 3D printed Titanium / Si-Carbide (16 W/mK)
  - 1. Strong and easy to handle
  - 2. Lower cost and experience in industry

Bi-phasic Krypton cooling for operation at < -40 <sup>0</sup>C under consideration





Cooling flowing serially between micro channels



## Vacuum tank

## Vacuum separation considerations



# Secondary - primary vacuum separation

- ✓ Difficult to keep in scenario B while reducing material budget
- Impractical in scenario A if frequent replacement required
- ✓ If removed required materials that do not outgas to the primary vacuum

### Module replacement

- Mechanical design must be radically optimized towards flexibility in scenario A
- ✓ Fast replacement of modules during technical stops
- ✓ Material choice to control outgassing

# • R&D Path Towards Velo Upgrade II

## Timeline



#### Necessary R&D

- ✓ IC digital / analog design allowing for high rate and high bandwidth
- ✓ IC and sensor technology to withstand radiation hardness requirements
- Easy to make modules allowing replacement
- ✓ Lower special resolution (charge sharing or pixel pitch)
- ✓ Ability to make thin foil (cylindrical, wires)
- ✓ Ability to make thin foil openable

## Conclusions

## Summary and outlook

So far....

### Two Scenarios considered as a starting point

- $S_A$ : High data rate and radiation tolerance at > 6 × 10<sup>16</sup>  $n_{eq}$ /cm<sup>2</sup>
- S<sub>B</sub>: Higher hit resolution and reduction of material budget

### Full 4D Velo Tracker

- 20 ps per track timing to recover Run 3 efficiency
- Timing plane options rejected due to more complicated construction

### **R&D** Paths

- Next 2 years crucial to develop necessary technologies:
  - Fast and radiation hard sensors and ASIC
  - Reduced material budget RF shield option
  - New cooling solution
  - Vacuum tank that satisfies the requirements

