
Harris Kagan
Ohio State University

for the RD42 Collaboration
Vertex 2022 

Tateyama, Japan
October 25, 2022

Recent Developments in Diamond 
Detectors

Outline of Talk
 Introduction – Motivation, Diamond Detectors, RD42
 Radiation Tolerance
 Rate Tolerance
 Device Development – Test beam results of 3D diamond pixel devices
 Development of the Atlas BCM’
 Summary



Introduction - Motivation
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Present Situation at CERN LHC:
• Innermost layers → highest radiation damage, highest particle rate 
• Current detectors designed to survive ~12 months in HL- LHC
→ R&D for more radiation tolerant detector designs and/or materials

Diamond as a Detector Material:
• Properties:

Inherent radiation tolerance – large displacement energy
insulating material with high thermal conductivity
high charge carrier mobility
Smaller signal than in same thickness of silicon

RD42 work:
• Investigate signals and radiation tolerance in various detector designs:

pad → full diamond as a single cell readout
pixel → diamond sensor on pixel chips
3D → strip/pixel detector with design to reduce drift distance



Introduction - The 2022 RD42 Collaboration
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110 participants 28 institutes



Introduction – Diamond as a Particle Detector
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• Diamond detectors are 
operated as ionization 
chambers

• Poly-crystalline material 
comes in large wafers

• Metalization on both sides
• Pad
• Strip
• Pixel

• Connected to low noise 
electronics 

pCVD diamond 
with 3D pixel 
device
bump-bonded to 
FE-I4

15cm



Introduction – Diamond as a Particle Detector
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CERN Test Beam Setup 
(MALTA Telescope)

• characterization of devices 
using test beams

• transparent or unbiased hit 
prediction from telescope

• tracking precision at detector 
under test: ~2-3μm

• talk by Heinz Pernegger on 
the Malta Telescope
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Radiation Tolerance



Radiation Tolerance – Analysis Strategy
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• Measure signal response as a function of predicted position
Direct measurement of charge collection distance (CCD)
CCD = average distance e-h pairs drift apart under E-field

• Convert CCD to “schubweg” (λ) – the mean free drift distance 
before being trapped in an infinite material – assume same λ for e,h

• Damage equation:

• Fit in 1/λ vs φ space to determine k, λ0

n  =   n0 +  kφ
↓           ↓

n  number of traps
n0 initial traps in material
k  damage constant
φ fluence
λ MFDD
λ0 initial MFDD



Radiation Tolerance – Analysis Strategy
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Example  – 800 MeV protons, 24 GeV protons
• Plot single-crystalline and poly-crystalline on same graph
• Fit in 1/λ vs φ space
• Damage constant (=slope) the same for single-crystal and poly 

800 MeV Protons 24 GeV Protons



Radiation Tolerance – Damage Curve Analysis
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Particle Species Relative Damage Constant, κ

24 GeV p 1

800 MeV p 1.67 ± 0.09

70 MeV p 2.6± 0.3

25 MeV p 4.4± 1.2

fast neutrons (>100keV) 4.3± 0.4



Radiation Tolerance – Shape Analysis
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Signal Shape Analysis
• Study the shape of the pulse 

height distribution after 
irradiation (5/10 algorithm)

• Use the ratio FWHM/MP
which is a measure of the 
uniformity of the material

• 800 MeV proton irradiated
• pCVD samples

• FWHM/MP decreases w/dose
• scCVD samples

• Smaller initial FWHM/MP 
• FWHM/MP is flat w/dose

• See similar results for other 
irradiation energies, species

-HV +HV

800 MeV p 24 GeV p
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Rate Studies



Rate Studies in pCVD diamond
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 First done@PSI - 5yrs ago published rates to 300kHz/cm2

 3 years ago w/new electronics, rates up to 10MHz/cm2

 Recently measured rate after fluences of 2x1015n/cm2

 Pad detectors tested in ETH-Z (CMS Pixel) telescope
 Electronics is prototype for HL-LHC BCM/BLM

19.8ns bunch spacing clearly visible



Rate Studies in pCVD diamond
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No rate dependence observed in pCVD up to 3-20MHz/cm2

No rate dependence observed in pCVD up to 2x1015n/cm2

Now extending dose to 1016 n/cm2 then 1017 n/cm2

RD42 PreliminaryM. Reichmann
Thesis 2022:
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Device Development for more radiation tolerance:
3D diamond pixel detectors



3D Device in pCVD Diamond 
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Have to make resistive columns in diamond for this to work
-columns made with 800nm femtosecond laser
-initial cells 100μm x 150μm; columns 4-6μm diameter

Comparison of planar 
and 3D devices

After large radiation fluence all detectors are trap limited
•Mean carrier “schubweg” λ < 50μm
•Need to keep drift distances (L) smaller than (λ)

Can one do this in 
pCVD diamond?

Planar 3D



3D Device in pCVD Diamond 
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Femtosecond laser converts insulating diamond into resistive 
mixture of various carbon phases: amorphous carbon, DLC, 
nano-diamond, graphite.

• Initial methods had 90% column yield → now >99% yield 
with Spatial Light Modulation (SLM) 

• Initial column diameters 4-6μm → now 2.6μm (with SLM)



3D Device in pCVD Diamond
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 Measured signal (diamond thickness 500μm):
 Planar Strip ave charge

6,900e or ccd=192μm
 3D ave charge

13,500e or ccdeq=350-375μm
 First time we collected >75% of deposited charge in pCVD 

3D cell size:
150μm x 150μm



Cell size: 150μm x 150μm
Voltage: 25V

3D Device in pCVD Diamond
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 Measurements consistent with TCAD simulations:
 Large cells, large diameter columns →

lower field regions in saddle points

This part was understood well enough to construct pCVD
3D diamond pixel devices with various cell sizes.

from: G. Forcolin, Ph.D. Thesis 
Manchester University 2017



Results of CMS 3D pCVD Pixel Devices
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Produced 4000 cell pixel prototype w/50μm x 50μm pitch
• Three fabricated: Oxford 2, Manchester 1
• 50μm x 50μm cells ganged for 3x2 (CMS) readout
• Bump bonding: CMS@Princeton (In)
• 3x2 ganged tested in Aug 2017@PSI, Sep, Oct 2018@CERN
• Compared to 100μm x 150μm tested in Aug 2017@PSI

100μm x 150μm50μm x 50μm cells, ganged



Comparison of CMS 3D pCVD Pixel Devices
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3D pixel device structures [50μm x 50μm] 
compared to [100μm x 150μm] cells

• Produced cells with 100μm x 150μm size for CMS pixel readout chip
• Cleaning, photolithography, metal contact to pixel and bias – RD42
• Bump and wire bonding - Princeton

[50μm x 50μm] [100μm x 150μm]



Results of CMS 3D pCVD Pixel Devices
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• Readout w/PSI46digv2.1-respin CMS chip
6 cells (3x2) readout w/1 pixel channel

• Preliminary efficiency >99.3% threshold 1500e
• Collect >85% of charge!

Results (50μmx50μm cells)

applied voltage -55V
threshold 1500e
hit efficiency >99.3%



Results of CMS 3D pCVD Pixel Devices
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• Readout w/PSI46digv2.1-respin CMS chip
1 cell readout w/1 pixel channel

• Efficiency >90.0%, threshold 1500e
• Collect >55% of charge!

Results (100μmx150μm cells)
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Development of the ATLAS BCM’ system for 
Beam Abort and Luminosity Determination 



Development of the ATLAS BCM’
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Development of the ATLAS BCM’
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BCM’ should provide for μ ≤ 200:
• Fast bunch-by-bunch safety system for ATLAS 
• Background monitoring
• Luminosity measurement

In an environment of:
• Flux ≤ 220 MHz/cm2

• NIEL ≤ 2x1015 hadrons/cm2

• TID ≤ 200Mrad
BCM’ Solution is:

• Multiple detectors by function (BCM, BLM, Abort, Lumi)
• Multiple detectors with same functionality for cross-check
• Fast electronics (<1.5ns rise-time, <15ns recovery)
• Everything rad tolerant (65nm TSMC)



Development of the ATLAS BCM’

26Harris KaganVertex 2022 – Tateyama, Japan

• Good S/N with 1 detector/ch @45°
 electronics in 65nm technology for extra gain-bw
 preamp is differential after 1st stage 
 preamp noise should be <400e for initial signal of ≥8000e

• Individual preamps for Abort (Me) and Lumi (ke) 
 electronics with 2 preamps/ch   
 low gain preamp (Abort) with adjustable thresholds
 high gain preamp (Lumi) with adjustable thresholds
 differential design + independent ch V, gnd to minimize crosstalk
 preamp output directly coupled to on-chip CF discriminator

• Baseline threshold stability, voltage stability and rate 
 preamp should be able to handle μ=200 
 preamp recovery to <2% in 15ns for PH up to saturation
 preamp output semi-digital (leading edge: TOA, width: TOT)



Development of the ATLAS BCM’
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Development of the ATLAS BCM’
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4 pad (4:2:1:8) 
prototype



Development of the ATLAS BCM’
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Parameter Condition Min Typ Max Unit
Supply voltage VDDFEX, VDDA, VDDDX 1.08 1.20 1.32 V

Current consumption 
per active channel (X)

VDDFEX 15.5

mA
VDDA 16
VDDDX, with 50 Ω channel output 
termination. 6.5

Total 38
Analog output offset 
(DC level) With 50 Ω termination 90 120 170 mV

Analog output pulse P1dB Peak Voltage – DC voltage.
With 50 Ω termination. 325 mV

CFD LVDS output swing Peak-to-peak differential swing 200 mVp-p
CFD LVDS  common mode With 100 Ω differential 

termination
600 mV

CFD LVDS transition time 100 ps
ABORT Gain

Independent of the sensor 
capacitance value

8.2 μV/fC
ABORT Rise time 1.5 ns
ABORT Settling time 13 ns
ABORT ENC 830 K e-

LUMI Gain

At 2pF sensor capacitance

55 mV/fC
LUMI Rise time 1.6 ns
LUMI Settling time 14 ns
LUMI ENC 220 e-

CFD intrinsic time walk Over a linear output range ±20 ps
CFD threshold -15 100 mV

Measured parameters are within specifications



Development of the ATLAS BCM’

30Harris KaganVertex 2022 – Tateyama, Japan

Present Version: Calypso_C ASIC
Calypso_B Data:

• Lumi design for 2pF load: Risetime 1.6ns, recovery 14ns, gain 55mV/fC, noise 220e
• Abort design independent of  load: RT 1.5ns, recovery 13ns; gain 8.2μV/fC, noise 830ke

I2C
Bandgap
Reference



Development of the ATLAS BCM’
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Prototype Modules Read Out with Calypso_C ASIC
4-Pad Abort Design Shown here:

• Material tested as described in Sensor PDR
• Photos, Xpol and DIC taken of all samples
• Edges characterized
• Pre-selection performed w/photo-lithographic contacts on active area of material
• Cleaned, Re-metalized with BCM’ contacts (3-pad and 4-pad)

Latest Detector Design: 4:2:1:8



Development of the ATLAS BCM’

32Harris KaganVertex 2022 – Tateyama, Japan

New S Modules read out with Calypso_C in beamtest at CERN
4-Pad Abort Design (4:2:1:8):

• Results w/Calypso_C using AnalogOut and TOT
• Tracking in MALTA Telescope in Jun, Aug, Oct 2022 Test Beam

Small pad, size=1, C=0.45 pF Medium-Small pad, size=2, C=0.90 pF 



Development of the ATLAS BCM’
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New S Modules read out with Calypso_C in beamtest at CERN
4-Pad Abort Design:

• Results w/Calypso_C using AnalogOut and TOT
• Tracking in MALTA Telescope in Jun, Aug, Oct 2022 Test Beam

Medium-Large pad, size=4, C=1.8 pF Large pad, size=8, C=3.6 pF 



Development of the ATLAS BCM’
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Mean PH - S0 read out with Calypso_C in Beam test at CERN



Development of the ATLAS BCM’
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Comparison of new S0, with old H0 read out in the source setup at OSU
H0 presently yields more charge than S0 (after 1 yr of work)



Development of the ATLAS BCM’
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• System test w/Calypso_C driving Twinax, LAPA, VLDB+, 
FELIX (at CERN)



Summary of RD42 Work
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Lots of progress in diamond with HL-LHC in view
Quantified understanding of radiation and rate effects

 pCVD shows no rate effect up to 10MHz/cm2,8x1015n/cm2 @1000V
 Irradiate devices to 2-4x1016 this year; continue rate studies

3D detector prototypes for 1017 operation - great progress 
 3D works in pCVD diamond
 Scale up (x40) worked; continue scale up (x10) this year 
 Smaller cells (50μm x 50μm) worked; test smaller cells (25μm)
 Thinner columns (2.6μm) worked; try 2.0μm for 25μm x 25μm cells

3D diamond pixel devices being produced
 All work as expected; just tested 50μm cells irrad@3.5x1015p/cm2

 Visible improvements with each step
 Efficiencies look good, still a bit to be understood w/charge

BCM’ design underway – nearly complete
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