

EvtGen Workshop 07 December 2010 CERN

Status of EvtGen in ATLAS

Pavel Řezníček

on behalf of ATLAS MC generators group

Outline

- EvtGen usage in ATLAS MC
- Implemented version and updates
- Interface to ATLAS SW framework
- Issues when using together with other generators
- Summary

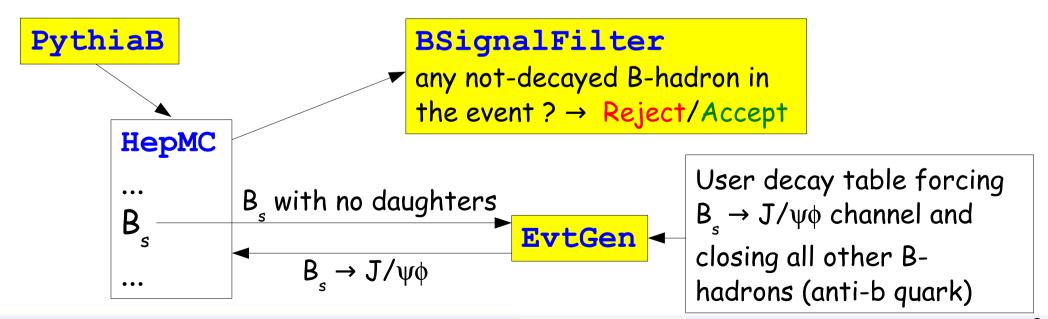
EvtGen Usage in ATLAS

- Exclusive B-decays simulation
 - Models of decays not included in standard generators (e.g. rare B-decays)
 - Models where spin correlations, mixing or CPV are needed
- Inclusive B-decays
 - B-tagging studies (small difference w.r.t. Pythia observed)
- Decay all particles in the event
 - Pythia/Herwig used only for hard interaction, EvtGen decays the particles
 - Used for production of di-jet with D* in the final state
- But more requests from individual users and groups are coming

Implemented Version

- EvtGen installed in ATLAS SW sice 2003, using copy of LHCb version alpha-00-10-22
 - Current version alpha-00-10-28: added few models, fixed collision of Pythia model with Pythia inside ATLAS SW
 - Note: the new version number does not correspond to upstream, but only to the ATLAS specific updates
 - Decay and particle data tables for inclusive running based on versions of BaBar and CDF as of summer 2005
 - Source unchanged since 2006, only minor changes/fixes to the interface
- ATLAS updates:
 - $B_s \to J/\psi(\mu^+\mu^-)$ $\phi(K^+K^-)$ model accounting weak phases to get mixing and CPV through interference
 - $\Lambda_b \rightarrow \Lambda(p,\pi) J/\psi(\mu^+\mu^-)$ polarization studies, describing spin configurations
 - Jscont model routine to generated e⁺e⁻ → qqbar using JetSet
 - $\Lambda_b \rightarrow \Lambda(\mathbf{p}, \pi) \mu^+ \mu^-$ semileptonic rare decay
 - All changes either found to be implemented (or have alternative) in newer upstream EvtGen, or were added during 2009 merging campaign

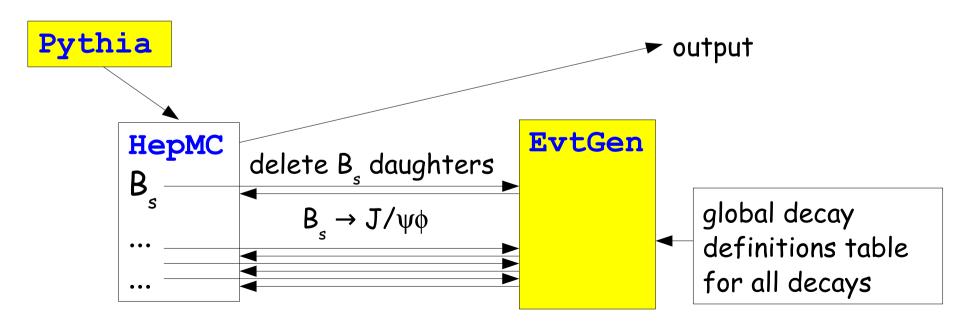
Issue with Sharing Pythia6 Common Blocks


- EvtGen calls back Pythia/JetSet to simulate generic decays
 - EvtGen needs specific Pythia configuration
 - Decay tables, showering of qqbar or gg pair or ggg triplet, B-oscillations, minimum remaining energy stopping fragmentation
 - Clashes with Pythia6 configuration within ATLAS SW when Pythia6 is used as the primary generator → changes from EvtGen propagates to subsequent Pythia event generation
- Symptoms:
 - Undecayed partons in the event records
 - Pythia error messages due to switching to old method of tracking color connections
- Possible fixes (both implemented in the ATLAS EvtGen version):
 - Backup the Pythia parameters before EvtGen Pythia model is used and restore the values afterward → requires to initialize Pythia parameters in EvtGen in each event → slowdown by ~ 30%)
 - Use build-in Pythia/JetSet with renamed common blocks
- ! Pythia parameters can also be changed via DECAY.DEC file → user have to take care of possible clashes with Pythia configuration in ATLAS SW

EvtGen Interface to ATLAS SW

Interface dedicated to B-decays:

- B-decays closed in preceding generator (PythiaB)
- The interface algorithm EvtGen_i/EvtDecay searches for not-decayed B-hadrons and lets them decay using EvtGen tables, results written back to HepMC (ATLAS event record format)
- Forcing a decay channel: all other B-decays denied in EvtGen, then filtering out events containing not-decayed B-hadrons
- Allows to set initial Λ_b polarization (its spin density matrix)



EvtGen Interface to ATLAS SW

Interface dedicated to inclusive mode:

- Preceding generator configured as if EvtGen was not used (all decays opened)
- The interface algorithm EvtGen_i/EvtInclusiveDecay searches for all particles that can be decayed by EvtGen, deletes their HepMC daughters tree and lets them decay by EvtGen. Results written back to HepMC.
 - Closing the decays at the preceding generator could be faster and would work with this interface, but complicated for configuration
- Allows to be switched also to mode for B-decays only

EvtGen Interface to ATLAS SW

Interface dedicated to inclusive mode:

- Preceding generator configured
- The interface algorithm EvtGen particles that can be decayed by and lets them decay by EvtGen.
 - Closing the decays at the preceding interface, but complicated for confi
- Allows to be switched also to mo

Random numbers passed through standard Athena service AtRndmGenSvc (similarly as all the other generators)

Pythia

HepMC delete B_s daughters B_s $B_s \rightarrow J/\psi \phi$ global decay definitions table for all decays

. tree

Miscellaneous

- Inconsistent particle definitions:
 - Particle masses evolve, some PDG codes have changed
 - Tables between EvtGen and other generators not synchronized
 - Particle properties in DECAY.DEC needs to be regularly updated or some ATLAS
 particle-properties service should be used to by the interface to update the
 mass in run-time
 - PDG codes presently translated before and back after EvtGen does the job
- Potential pitfalls
 - Double counting of processes (e.g. photon emission, B mixing)
 - How to avoid user configuration errors?
- Tau decays
 - Interface Tauola in EvtGen and use it for all tau decays?

Conclusions

- EvtGen presently used not too intensively in ATLAS (mainly by B-physics group for exclusive B-decays), but interests from individual users is growing
 - B-physics to produce inclusive MC samples for background studies
 - b-tagging group to use EvtGen to understand systematic uncertainties on calibration of the b-tagging efficiency (e.g. sensitivity to b-decay modeling)
- ATLAS uses quite old EvtGen version, which would need to be updated especially for inclusive use of EvtGen
- All ATLAS-specific updates already included during 2009 merging campaign. Migration to new EvtGen version should be straightforward, although detailed validation will be needed.
- Main issues when including EvtGen in ATLAS SW:
 - Problems of clashing Pythia configuration in EvtGen and Pythia used as primary generator
 - Particle properties not synchronized between EvtGen and other generators in ATLAS

Backup