EvtGen inside the PandaRoot Framework

Björn Spruck

II. Physikalisches Institut, University Gießen, Germany bjoern.spruck@exp2.physik.uni-giessen.de

Outline

- PANDA and PandaRoot
- EvtGen inside PandaRoot
- PANDA Requirements

The PANDA Experiment - Very Short Introduction

- Proton anti-proton fixed target experiment
- FAIR facility in Darmstadt Germany (host lab GSI)
- Energy sqrt(s)<5.5GeV => charmonium region
- Anti-proton cooled in HESR storage ring
 - Resonance scans

PandaRoot

- Developed since 2006
- Detector simulation, reconstruction and analysis framework
- root based (5.26)
- Shares common code and packages with other FAIR experiments, "FairSoft"
 - utilities, root, geant, pythia
 - base classes
- > 100.000 lines of code
- 400.000 geometry volumes
 - in root, G4 format
- based upon VMC
 - easy switch between G3 and G4

- Source code distribution!
- Buildsystem: cmake
- running on >20 platforms
 - Suse, Debian (Ubuntu), SLC4, SLC5, OSX
 - 32 bit, 64 bit
- GRID (alien middleware)

Status up to last year (before modifications)

- EvtGen code shipped within PandaRoot svn
- But: User has to compile it himself!
- Result:
 - standalone binary, f.e. simpleEvtGen
 - text output, read in later by a PandaRoot task
- Problems:
 - Depend on cernlib
 - to be installed by the user
 - versions, 32/64, compiler
 - Mix of C and Fortran code
 - g77/gfortran problem (better: libgfortran, libg2c)
 - g77 not (officially) supported anymore since gcc 4.0

Main Goal

- Get it compiled automatically on all systems
 - with different compilers and platforms, 32/64, g77/gfortran
 - compile it together with PandaRoot
 - Cmake make system
 - Shared Lib
- Have a PandaRoot Task
 - usable inside macros
 - keep standalone binary (optional)

How to provide Cernlib?

- Automatically install (correct) precompiled Cernlib?
 - many versions, depending on compiler and system
 - future support?
 - a lot of problems
- Automatically compiling Cernlib from source?
 - on "any" system?
 - even more complicated!
 - Again:
 - g77/gfortran problem (better: libgfortran, libg2c)
 - g77 not (officially) supported anymore since gcc 4.0
- Not a solution yet.

The Solution (for PandaRoot)

- Get rid of (precompiled) Cernlib!!!
- What is EvtGen depending on?
 - Pythia
 - Photos
 - and a few more things...
- And:
 - Pythia is already in FairSoft as shared lib, why not use it?
 - Cernlib available as source code
 - use/copy only needed parts

Making It Compile

- Use existing libPythia instead of Cernlib
- Photos not depending on other Cernlib modules
 - Add as source code and build shared libPhotos
- EvtGen contains "unused" code which depend on Cernlib
 - Testing and debugging code
 - Get rid of it (hbook...)
- Left over:
 - ddilog and ranf function missing
 - add als source code
- Works!!!

Short Summary

- No dependence on precompiled Cernlib anymore!!!
- Ships and compiles with PandaRoot
 - using Cmake
 - on all tested system
 - gcc 3&4, g77/gfortran/ifort
 - 32/64 bit, SLC4&5, Ubuntu 9&10, Suse ...
- What you get:
 - Shared library
 - Standalone binary (simpleEvtGen and others)
 - PandaRoot task (taking the same parameters as simpleEvtGen)

Things done for the PandaRoot version

- For Cernlib free version:
 - (nearly) no change on EvtGen package code
 - "old" way of compiling/linking against cernlib still works
 - all changes are by defines in CMakeFile.txt
- Code cleanup
 - deprecated include files etc
 - warnings
 - hidden variables
- Interface to output to a root tree (TParticle based)
- Interface to use simulated data directly in VMC
- Using TRandom from root (still open issue)

Requirements and Wishes for the Future

- Technical:
 - No dependence on any precompiled libraries (cernlib)!
 - Source code distribution, compiling on huge variety of systems
- Suggestion:
 - subversion repository
 - different branches for developers/experiments
 - sharing of "private" models
- Wishes:
 - Support/Models for particles with spin>1 (initial state is <u>not</u> a photon in PANDA!)
 - Support for (external) Random engines.

Checks done sor far

- old way simpleEvtGen with CernLib against new SimpleEvtGen ... compare output.evt
- Simple decay J/psi->ee,mumu including photos, 1000Evts
 - SLC 4.7 (32), "old" cernlib 2005?
 - SLC 5.4 (64), Ubuntu 9.10(64), cernlib2006
 - no difference between old and new!
 - one rounding(?) error difference between the SLC4 and other systems
- Pythia decays not done
 - same error on all systems... decay file problem?
 - either "pythia cannot decay this particle" or "no requested process has non-vanishing cross-section."

More Checks done...

- using runtime checks: -fstack-protector -fbounds-check -fcheck-array-temporaries -frange-check -fcheck-data-deps
 - (-fcheck=all not supported?)
- No error detected on running without Photos
 - Psi(3770) all decays from DECAY.DEC
- But with Photos: (solved!)
 - At line 64 of file /home/bjoern/pandaroot/trunk/pgenerators/EvtGen/photos/photos make.F
 - $lue{}$ Fortran runtime error: Array reference out of bounds for array 'jmohep', lower bound of dimension 2 exceeded (0 < 1)
 - IF (JDAHEP(1,I).NE.0.AND.JMOHEP(1,JDAHEP(1,I)).EQ.I) THEN
 - for me the code looks o.k. if and is done left before right nad righ only if left succeeded (like in C code).
 - But this is fortran!
 - Error is gone if code is splitted into two lines
 - IF (JDAHEP(1,I).NE.0) THEN
 - IF (JMOHEP(1,JDAHEP(1,I)).EQ.I) THEN
- check in old precompiled version not possible...
 - however the interface can be compiler with flags, they do not show an error!
- Other fortran compilers might have more thorough checks.
 - ifort ... works

Code structure

- /trunk/pgenerators/
 - EvtGen/
 - photos/ contains code for libPhotos, but could be put anywhere
 - EvtGenBase/ -> libEvtGen
 - EvtGenModels/ -> libEvtGen
 - Cernlib/ (only two files) -> libEvtGen
 - EvtGenDirect/
 - PndEvtGenDirect.cxx/h -> libEvtGen
- Note:
 - The whole EvtGen Directory can be put to any location, e.g. fairroot

Example:

- Using example code from tutorials/charmonium/
 - run_sim_tpccombi.C
 - Before simulation (same in both cases):
 - Prepare your user.dec, DECAY.DEC and evt.pdl file (optional)
 - See EvtGen Manual / Wiki / Torino Tutorial
 - esp the one for simpleEvtGen

```
Old Way:
    run simpleEvtGen particle userdecayfile #nrevts [mom] [seed]
    (the file output.evt is created)
    in the macro, use:
    FairEvtGenGenerator* evtGen = new FairEvtGenGenerator("output.evt");

New Way:
    in the macro, use:
    PndEvtGenDirect* evtGen = new PndEvtGenDirect("particle", "userdecayfile"[,mom,seed]);
```

Try out and check

- If you want to try:
 - Add to rootlogon.C (to be done in svn)
 - if(isLibrary("libPhotos"))gSystem->Load("libPhotos");
 - if(isLibrary("libEvtGen"))gSystem->Load("libEvtGen");
 - if(isLibrary("libEvtGenDirect"))gSystem->Load("libEvtGenDirect");
 - ... and change the generator line in your macro.

- Check it!!!
 - old way simpleEvtGen with CernLib against new SimpleEvtGen
 - can be done on text output basis without analysis

INTELs FORTRAN compiler ifort

- add library path, compiler name and path to CMakeLists
- w/o additional parameters -> compiler and runs
- with "-fltconsitency -zero auto" -> compiles and run
- with "-check all" -> Problem, but why???
 - compiles but does not run
 - Error: Symbol #include is not defined in current scope

19

Known Problems

- Due to global fortran variables, only <u>one</u> EvtGen can be run at the time! (but why would you like to run two at the same time?)
- There is no real error msg in that case, but maybe one can set a flag to prevent this?