

The stochastic gravitational wave background from close hyperbolic encounters of primordial black holes in dense clusters

$\bullet \bullet \bullet$

Santiago Jaraba

Work in collaboration with Juan García-Bellido and Sachiko Kuroyanagi

12th Iberian Gravitational Waves Meeting, 8th June 2022

The stochastic gravitational wave background from close hyperbolic encounters of <u>primordial black holes</u> in dense clusters

$\bullet \bullet \bullet$

Santiago Jaraba

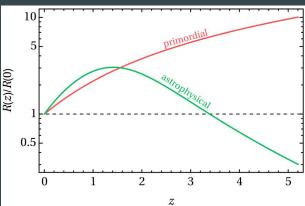
Work in collaboration with Juan García-Bellido and Sachiko Kuroyanagi

12th Iberian Gravitational Waves Meeting, 8th June 2022

Brief summary of PBHs

- Definition:
 - Produced shortly after inflation, in radiation dominated era.
 - Sufficiently large density perturbations collapse into a BH.
- Key differences with ABHs
 - PBHs produced much earlier -> different merger rate evolution
 - Increasing redshift eventually makes ABH mergers vanish, while PBHs would still remain
 - PBHs generated without spin, unlike ABHs
 - Proposed mechanisms for spin induction
 - \circ ABHs can't be generated between 50-130 M $_{\odot}$ (pair-instability supernova gap) or below a few M $_{\odot}$
 - PBH mass spectrum would be broader.

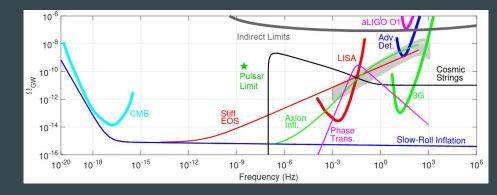
M. Raidal et al., arXiv:1812.01930



The <u>stochastic gravitational wave background</u> from close hyperbolic encounters of primordial black holes in dense clusters

The stochastic gravitational wave background

- Detectors as LIGO/Virgo detect intense GW signals from individual BBH
- Weaker, unresolved signals would form a continuous background: SGWB
- Lots of sources would also leave an imprint in this background: very rich field!
 Inflation model (slow-roll, axion, etc.), early universe phase transitions, <u>cosmic strings</u>, <u>preheating...</u>
- Interesting to look for this background in all possible frequencies.

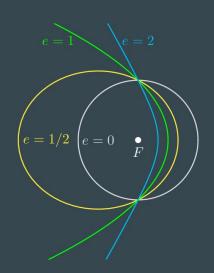


LIGO and Virgo collaborations, arXiv:0910.5772

The stochastic gravitational wave background from <u>close hyperbolic</u> <u>encounters</u> of primordial black holes in dense clusters

Binary black holes vs close hyperbolic encounters

- Keplerian motion:
 - 2-body problem is described by an ellipse (e<1), parabola (e=1) or hyperbola (e>1)



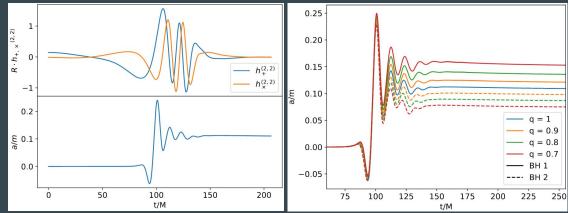
- General relativity:
 - \circ The energy loss in elliptic motion (BBH) leads to an eventual merger (unless disrupted)
 - In some "hyperbolic" encounters with e~1, BHs lose so much energy that they become bounded
 - In pure hyperbolic encounters, both BH have enough kinetic energy to overcome energy loss
 - If close enough (CHE), energy emission can still be notorious. Source of GW!

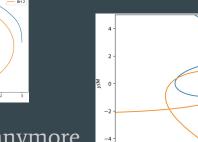
Binary black holes vs close hyperbolic encounters

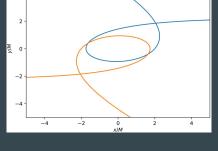
• Not only BBH have interesting dynamics...

- CHE also do! The trajectories don't follow hyperbolas anymore
- An interesting effect is spin induction. Some PBHs could acquire it just by moving nearby others!

S. Jaraba, J. García-Bellido, arXiv:2106.01436







BH 2

What about the CHE contribution to the SGWB?

J. García-Bellido, S. Jaraba, S. Kuroyanagi, arXiv:2109.11376

SGWB computation: general formalism

- The SGWB can be computed as $\Omega_{
 m GW}(f) \equiv rac{1}{
 ho_c} rac{d
 ho_{
 m GW}}{d\ln f} = rac{1}{
 ho_c} \int_0^\infty dz \, rac{N(z)}{1+z} rac{dE_{
 m GW}}{d\ln f_r}$
 - $\circ \quad f_r = (1+z)f \quad ext{frequency in source frame}$
 - $\circ dE_{
 m GW}/d\ln f_r$ GW energy emission / log. frequency bin in source frame
 - $\circ \quad N(z) = rac{ au(z)}{(1+z)H(z)}$ number density of GW events at redshift z
 - H(z) Hubble expansion rate

• $au(z) = \iint rac{dm_1}{m_1} rac{dm_2}{m_2} rac{d au}{d\ln m_1 d\ln m_2}$ event rate / (unit time x comoving volume)

• Both for BBH, CHE contributions, we need an <u>energy spectrum</u> and <u>event rate</u>

SGWB from binary black holes

• Merger rate (PBH)

$$\frac{d\tau^{\rm BBH}}{d\ln m_1 \, d\ln m_2} \approx 14.8 \ {\rm yr}^{-1} {\rm Gpc}^{-3} h_{70}^4 \left(\frac{\Omega_{\rm DM}}{0.25}\right)^2 \left(\frac{\delta_{\rm loc}}{10^8}\right) \left(\frac{v_0}{10 \ {\rm km/s}}\right)^{-11/7} f(m_1) f(m_2) \frac{M^{10/7}}{(m_1 \, m_2)^{5/7}}$$

- $\circ ~~ \delta_{
 m loc}, v_0$ cluster-dependent parameters
- $\circ \quad f(m_i) \quad ext{logarithmic mass distributions so that } \int f(m_i) d \log(m_i) = f_{ ext{PBH}}$
- $_\circ~\Omega_{
 m DM}, f_{
 m PBH}~$ cosmological parameters. We assume $f_{
 m PBH}=1$, but easy rescaling otherwise
- Energy spectrum $rac{dE^{ ext{BBH}}}{d\ln f_r} = rac{(\pi G)^{2/3}m_1\,m_2}{3c^2M^{1/3}}f_r^{2/3}\mathcal{F}(f_r)$

 $p = {\cal F}(f_r)$ — describes the deviation from the frequency dependence of the inspiral phase $-f_r^{2/3}$.

 \circ At low frequencies, ${\cal F}(f_r)pprox 1$ -> characteristic slope $\Omega_{
m BBH}(f)\propto f^{2/3}$

SGWB from close hyperbolic encounters

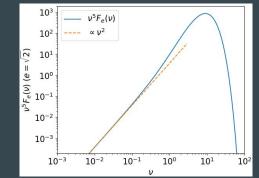
• Event rate (PBH)

$$\frac{d\tau^{\text{CHE}}}{dm_1 \, dm_2} \approx 25.4 \times 10^{-8} \text{ yr}^{-1} \text{Gpc}^{-3} h_{70}^4 \left(\frac{\Omega_{\text{DM}}}{0.25}\right)^2 \left(\frac{\delta_{\text{loc}}}{10^8}\right) \frac{f(m_1)}{m_1} \frac{f(m_2)}{m_2} \frac{M^2}{m_1 \, m_2} \frac{e^2 - 1}{(v_0/c)^3}$$

 $\sim v_0 = \sqrt{GM/a}$ relative asymptotic velocity

- $a_{
 m o} = a, e_{
 m o}$ orbital parameters. Usually we use $|y| = \sqrt{e^2 1} e_{
 m o}$
- Energy spectrum

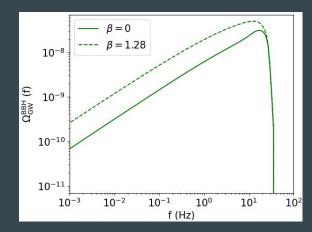
$$rac{dE_{
m GW}^{
m CHE}}{d\ln f_r} = rac{4\pi}{45} \ rac{G^3 m_1^2 m_2^2}{a^2 c^5
u_0} \
u^5 F_e(
u)$$



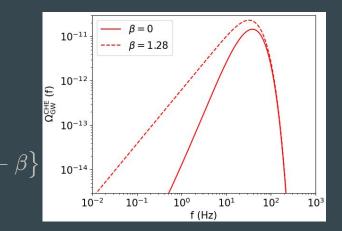
- \circ $u\equiv 2\pi
 u_0f_r$, $u_0^2\equiv a^3/GM$, $u^5F_e(
 u)$ polynomial with exponential suppression
- \circ At low frequencies, $\,\Omega_{
 m CHE} \propto f^2\,$. Different slope than BBH!

Redshift dependence of event rates

- M. Raidal et al., arXiv:1812.01930 redshift. z
- Previous event rates were assumed to be constant in redshift.
- We can add a $(1+z)^{\beta}$ dependence to match the figure for PBH evolution. $\beta \approx 1.28$
- Change for BBH: overall amplitude, no drastic shape change
- Change for CHE: low-f tail slope modified! Sensitivity to event rate evolution!



$$lpha=rac{2}{3} lpha=\minig\{2,rac{5}{2}+1\}$$



Differences and detection

- BBH contribution will be dominant in LIGO-LISA freqs. and eventually be detected.
- It is possible to produce a detectable CHE contribution for certain parameter sets.
- CHE contribution easier to produce the higher the frequency. Potential for UHF GW?

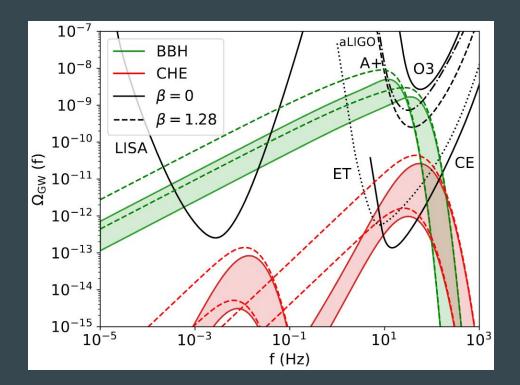


Figure: all parameters have log-normal distributions, σ =1. Median for masses ~100 M_{\odot}.

Conclusions

- Different frequency dependencies -> both contributions can be disentangled
- CHE component sensitive to event rate evolution, unlike BBH
 - Key to distinguishing between PBH and ABH sources!
- Some values of orbital parameters can make the CHE contribution detectable
- Possible extensions of this work:
 - Detailed modelling of ABH contribution
 - More detailed clustering profile of PBHs or orbital parameter distributions

Thank you for your attention!

Backup slide: full expressions of Omega_GW

$$\Omega^{
m BBH}_{
m GW}({\cal F}=1)pprox 2.39 imes 10^{-13}\,h_{70} \ imes \left(rac{\Omega_{
m DM}}{0.25}
ight)^2 \left(rac{\delta_{
m loc}}{10^8}
ight) \left(rac{v_0}{10~
m km/s}
ight)^{-11/7} \left(rac{f}{
m Hz}
ight)^{2/3} \ imes \int\! dm_1\, dm_2 rac{f(m_1)\,f(m_2)\,(m_1+m_2)^{23/21}}{(m_1\,m_2)^{5/7}}$$

$$egin{split} \Omega_{
m GW}^{
m CHE}(f) &pprox 9.81 imes 10^{-13} \, h_{70} igg(rac{\Omega_{
m M}}{0.3} igg)^{-1/2} igg(rac{\Omega_{
m DM}}{0.25} igg)^2 \ & imes igg(rac{\delta_{
m loc}}{10^8} igg) igg(rac{a}{0.1 \
m AU} igg) igg(rac{f}{10
m Hz} igg)^2 igg(rac{y}{0.01} igg) \ & imes \int rac{dm_1}{100 M_\odot} \, rac{dm_2}{100 M_\odot} f(m_1) \, f(m_2) \, e^{-2 x_0 \xi(y)} \, ilde{I} \, [y,x_0] \end{split}$$

$$egin{aligned} & \hat{I}[y,\,x_0] \simeq rac{2x_0^{5/2-eta}}{(2\xi)^{3/2+eta}}rac{1}{y(1+y^2)^2} imes \left[2(1-y^2+4y^4)\,\xi^2\,\Gamma\left(-rac{1}{2}+eta,\,2x_0\xi
ight) + 3y^3(-1+3y^2)\,\xi\,\Gamma\left(rac{1}{2}+eta,\,2x_0\xi
ight)+3y^6\Gamma\left(rac{3}{2}+eta,\,2x_0\xi
ight)
ight] \end{aligned}$$

Backup slide: peak expressions for CHE

$$\Omega_{
m GW}^{
m CHE}(f_{
m peak}) pprox 3.6 imes 10^{-13} h_{70}$$
 $\Omega_{
m GW}^{
m CHE}(f_{
m peak}) pprox 4.4 imes 10^{-13} h_{70}$
 $imes \left(\frac{\Omega_{
m M}}{0.3}\right)^{-1/2} \left(\frac{\Omega_{
m DM}}{0.25}\right)^2 \left(\frac{\delta_{
m loc}}{10^8}\right) \left(\frac{a}{0.1
m AU}\right)^{-2}$ $imes \left(\frac{\Omega_{
m M}}{0.3}\right)^{-1/2} \left(\frac{\Omega_{
m DM}}{0.25}\right)^2 \left(\frac{\delta_{
m loc}}{10^8}\right) \left(\frac{f_{
m peak}}{50
m Hz}\right)^{4/3}$
 $imes \left(\frac{y}{0.01}\right)^{-5} \frac{m_1}{100M_{\odot}} \frac{m_2}{100M_{\odot}} \frac{m_1 + m_2}{200M_{\odot}}$ $imes \left(\frac{y}{0.01}\right)^{-1} \frac{m_1}{100M_{\odot}} \frac{m_2}{100M_{\odot}} \left(\frac{m_1 + m_2}{200M_{\odot}}\right)^{1/3}$

$$f_{
m peak} \simeq 43 {
m Hz} igg(rac{y}{0.01} igg)^{-3} igg(rac{M}{200 M_{\odot}} igg)^{1/2} igg(rac{a}{0.1 \ {
m AU}} igg)^{-3/2}$$