12th Iberian Gravitational Waves Meeting

Hierarchical approach to matched filtering using a reduced basis

Rahul Dhurkunde, Henning Fehrmann and Alexander H. Nitz

Phys. Rev. D 105, 103001

Leibniz Universität Hannover

4-OGC: Open Gravitational-wave Catalog 2015-2020

Matched filtering to extract the signal

Optimal detection statistic — Likelihood of data containing a signal

Signal embedded in strain data **s(t)**

$$\rho(\zeta) = \frac{\left(\tilde{s}|\tilde{h}_{\zeta}\right)}{\sqrt{(h|h)}}$$

$$a|b) = 4 \int_{-\infty}^{\infty} \frac{\tilde{a}(f)\tilde{b}^*(f)}{S_n} df$$

Search assumptions

Approximating the search statistic

Current template banks are missing

Precessing systems

Eccentric binaries

~100x bigger template banks

Computationally limited

Huge astrophysical implications

Third generation detectors

Better sensitivity at low frequencies

Longer templates

Larger costs

Improving the search performance

Multirate sampling with reduced basis

- Greatly reduces subsequent computations
- Used by GSTLaL, MBTA and SPIIR pipelines

80 f (Hz) Templates T

P < T

Basis P

(Continued) Reduced basis matched filtering

Hierarchical methods

• Two stage filtering using coarse and fine template banks

• Only foreground triggers are followed from 1st stage to 2nd

• This results in poor background estimation which can result in incorrect significance of an event

• Computational gain at the expense of sensitivity

Phys. Rev. D 105, 064005

Reduced basis hierarchical method

Reconstructing SNR series (hierarchically)

Fully sampled SNR time-series 287.80 SNR 5 First stage 0 -87.80 4 Second stage 2

Down-sampling SNR series

Recovered using basis

Estimating the average SNR

Averaging of SNR series in time-domain can be performed in the Fourier-domain

$$\left< \rho_{\zeta}(t) \right>_{b} = \frac{1}{Nw} \sum_{r=0}^{w-1} 4\Delta f \sum_{f=0}^{N-1} \frac{\tilde{s}[f]\tilde{h}_{\zeta}^{*}[f]}{S_{n}[f]} e^{2\pi i f(wb+r)/N}$$

Bin containing w samples

$$\begin{split} \left< \rho_{\zeta}(t) \right>_{b} &= \frac{4w\Delta f}{N} \sum_{f'=0}^{N/w-1} e^{2\pi i f' \frac{w}{N} b} \\ &\times \underbrace{\frac{1}{w^{2}} \sum_{l=0}^{w-1} \frac{\tilde{s}[l\frac{N}{w} + f']\tilde{h}_{\zeta}^{*}[l\frac{N}{w} + f']}{S_{n}[l\frac{N}{w} + f']} \sum_{r=0}^{w-1} e^{2\pi i (l\frac{N}{w} + f')\frac{r}{N}} \\ &= \underbrace{\frac{4w\Delta f}{N} \sum_{f'=0}^{N/w-1} e^{2\pi i f'\frac{w}{N} b} \Omega(f'). \end{split}$$

- Thus, we need to perform IFFT of a frequency series of reduced length N/w only
- First stage costs are reduced by a factor of w

$$\longrightarrow \mathcal{O}\left(\frac{N}{w}\log\left(\frac{N}{w}\right)\right)$$

Triggering criteria

Two free parameters $w, \rho_{\rm I}$

No loss in sensitivity

 $\rho_{target}(w, \rho_{\rm I}) = \left(\left. \min(\rho_{\rm II}) \right| n_{final}(\rho_{\rm II}) \ge 0.99 n_{flat}(\rho_{\rm II}) \right)$

Second stage and cost estimation

- Follow up triggering bins
- Reconstruct sample points using the basis

Principal component analysis (PCA)

 $\overline{z_{flat}} = NT(5\log N + 6)$

Baseline costs (FLOP)

 $z_{total}(w,\rho_{\rm I}) = NT\left(\frac{5}{w}\log\left(\frac{N}{w}\right) + 6 + \frac{2}{w}\right) + 4pwf(w,\rho_{\rm I}) + Np(\log N + 6)$ Hierarchical costs (FLOP)

Implementation

Codebase in C language and operations on the GPU are performed using CUDA by Nvidia

- Pre-compute the basis and store them on hard-drives
- Data is divided into smaller segments of 128s and sampled at 2048 Hz
- Highly parallelizable operations Matrix multiplications, FFTs
- Optimized libraries -- cuBLAS, cuFFT

ATLAS computing center at AEI

Nvidia Tesla V100 and RTX 2070

Case-study

 $M \in [5.72, 12.05]$ $q \in [1.0, 11.05]$ 6250 templates

- Case-study performed on a sub-region
- Conservative reduction in costs $p = 254 \sim \langle p \rangle$
- We target for SNR 5 and above

- Primarily tested on simulated data containing only Gaussian noise
- Also tested on a small population of BBH signals
- Data generated using PyCBC

Total Costs

Observed performance

- Improvement using GPUs
- Evaluate performance using throughput of any method

Throughput = $\left(\frac{\text{secs of data filtered}}{\text{time taken for filtering}}\right)$ (No. of templates filtered) = NT/t

Method	Throughput	Throughput/ Euro	Throughput/ W
cuFFT(in-situ)	$4000 \ge 10^3$	400	$14 \ge 10^{3}$
Hierarchical scheme (expected)	$3300 \ge 10^4$	3300	$116 \ge 10^3$
PyCBC live	6300	17	31
PyCBC offline	12,000	32	60

in real-time

Conclusions and future prospects

- Demonstrated our new hierarchical scheme using simulated data.
- Achieved an improvement of I0x and 5x respectively for SNR = 6 and 5 respectively (without losing sensitivity)
- Cost and energy efficient way of performing matched filtering using GPUs.

What's next

- Implement the scheme in PyCBC before O4.
- Use it to perform precessing/eccentric or sub-solar searches

Thank you for your attention

References

- 1. <u>https://www.nature.com/articles/548397a</u>
- 2. <u>https://towardsdatascience.com/visualizing-principal-component-analysis-with-matrix-transforms-d17dabc8230e</u>
- 3. Kipp Cannon, et. al "TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE," The Astrophysical Journal 748, 136 (2012)

Backup slides

Reduced basis matched filtering

- Consider T templates \tilde{h}_{ζ} and a basis \tilde{p}_k \bullet
- Any template can be represented as a linear combination of the basis

$$\tilde{h}_{\zeta}(f) = \sum_{k=0}^{p_t-1} c_{k,\zeta} \tilde{p}_k$$

complete representation $p_t = T$

p < *T*

Truncating the basis for an approximate representation

Matched filter in terms of reduced basis

•

$$\rho_r(t) = \sum_{k=0}^{p-1} 4 \int_0^\infty \frac{\tilde{s}(f) c_{k,\zeta}^* \tilde{p}_k^*(f)}{S_n(f)} e^{2\pi i f t} df$$

PCA (in a nutshell)

• Obtain the basis

Perform principal component analysis (PCA)

- How to perform PCA ?
- 1. Consider a set of n data points denoted as vectors \mathbf{v}
- 2. Center the vectors and then normalize them $\mathbf{v}_s = \mathbf{v} \mathbf{b}$
- 3. Create a covariance matrix $\mathbf{C} = \hat{\mathbf{v}}_{S}^{\mathsf{T}} \hat{\mathbf{v}}_{S}$
- 4. Perform an EVD of C to get the orthonormal basis vectors p
- 5. Decomposition coefficients $\mathbf{D} = \mathbf{p}\hat{\mathbf{v}}_s$

6. Approximated vectors
$$\hat{\mathbf{v}}_{s}^{\text{approx}} = \mathbf{D}^{\mathsf{T}}\mathbf{p}$$
 $\mathbf{b} = 1/p$

PCA on a template bank

- Sample waveforms using a non-uniform frequency list (saves up lot of space and computation time)
- Templates are whitened and normalized according to aLIGO ZDHP PSD.

(${ ilde h_0(f_0) \over ilde h_1(f_0)}$	${ar h_0(f_1) \ ilde h_1(f_1)}$	 $egin{array}{c} ilde{h}_0(f_{N_t-1}) \ ilde{h}_1(f_{N_t-1}) \end{array}$
	•	•	 •
$\langle \tilde{h} \rangle$	$_{T/64-1}(f_0)$	$ ilde{h}_{T/64-1}(f_1)$	 $\tilde{h}_{T/64-1}(f_{N_t-1})$

- Covariance matrix for each sub-bank $\mathbf{C}^m = \mathbf{T}^m \times (\mathbf{T}^m)^{\mathsf{T}}$
- Diagonalisation using Lanczos algorithm
- Obtain decomposition matrix \mathbf{D}^m and basis matrix \mathbf{P}^m

 $[M_{\odot}]$

Mass 2

10 ¹		
101		
	10 ¹	

sub-bank	parameter	p
index	$ au_0$	
1	[0.1, 5.1]	64
		•
		•
34(case study)	[98.0, 103.4]	254
		•
		•
64	[442.5, 595.7]	200

6250 templates in each sub-bank

Hierarchical Matched filtering

Primary idea – Split the reconstruction stage

- Compute forward FFT of s(t) at a uniform sampling rate 1/dt
- Linearly interpolate $\tilde{p}(f)$ at the uniform frequencies
- Filter data with every basis vector \tilde{p}_k to obtain β_k
- Average β_k in fixed bins of w samples to get β_k^{avg}
- Perform first stage reconstruction to obtain averaged SNR time-series
- Perform second stage reconstruction around the triggers from the first stage.

$$\rho_r(t) = \sum_{k=0}^{p-1} 4 \int_0^\infty \frac{\tilde{s}(f) c_{k,\zeta}^* \tilde{p}_k^*(f)}{S_n(f)} e^{2\pi i f t} df$$

$$\beta_k^{avg}[t_i] = \sum_{j=0}^{w-1} \beta_k[t_{i \times w+j}]/w$$

Methodology

Second stage filtering

- Requires the basis vectors
- Collect the first stage triggers using a threshold to then perform a finer reconstruction of the triggering bins

$$\rho_r(t) = \sum_{k=0}^{p-1} c_{k,\zeta}^* \beta_k$$

Partial reconstruction

• Triggering criteria for the first stage ?

Two parameters -- w and $\rho_{\rm I}$

Low-pass filter as first stage

Cost Estimation

- We compute the theoretical FLOP for filtering a data segment with N samples
- Consider 6 operations for multiplication and 2 operations for addition
- For FFTs we consider a split-radix method

Baseline comparison – Template method

١.	Forward real-to-half-complex FFT of data		>	3/2 <i>N</i> logN
2.	2. Integrand for <i>T</i> templates			6NT
3.	Inverse complex-to-complex FFT to ob	otain the SNR time-series		5 <i>NT</i> logN
	Since $T \gg 1$	$z_{basic} = NT(5 \log N + 6)$		

(Continued) Cost Estimation

Fast first stage

- I. Forward FFT and integrand computation
- 2. Binned averaging
- 3. IFFT to get averaged SNR time-series

 $\frac{2NT}{w}$ $\frac{5NT}{w}\log(N/w)$

 $3/2 N \log N + 6NT$

Second stage

Assuming number of triggers $f(w, \rho_{I})$ do not vary with template

- I. Compute the β 's $Np(\log N + 6)$
- 2. Second stage reconstruction $4pwf(w, \rho_{\rm I})$

$$z_{total} = NT\left(\frac{5}{w}\log\left(\frac{N}{w}\right) + 6 + \frac{2}{w}\right) + 4pwf(w,\rho_{\rm I}) + Np(\log N + 6)$$

Fine-tune the parameters to minimize the total costs

Accuracy of the SNR

Two primary contributions to the loss in SNR

Truncation of the number of eigenvalues

Interpolation of the basis/templates

Comparing performance

Number of required operations

$$z_{total} = NT\left(\frac{5}{w}\log\left(\frac{N}{w}\right) + 6 + \frac{2}{w}\right) + 4pwf(w,\rho_{\rm I}) + Np(\log N + 6)$$

• First obtain the $f(w, \rho_{\rm I})$

• Get the costs in terms of the target SNR

Implementation

Preparation stage PCA

- Partially implemented on CPUs
- Matrix multiplications Covariance computation, Decomposition coefficients using cuBLAS
- Diagonalization on CPUs using Lanczos algorithm
- Results are compressed and stored on hard-drive

Matched filtering

- Completely implemented on GPUs
- Data is divided into smaller segments of 128s and sampled at 2048 Hz
- FFTs are performed using cuFFT in parallel batches
- First stage is implemented using basis with help of cuBLAS
- Second stage is using customized kernel

Fast First Stage Filtering using Templates

- Average the matched filter before computing the IFFT
- Consider a single bin b of size w samples and we compute the averaged SNR for that bin

$$\langle \rho_{\zeta}(t) \rangle_{b} = \frac{1}{Nw} \sum_{r=0}^{w-1} 4\Delta f \sum_{f=0}^{N-1} \frac{\tilde{s}[f]\tilde{h}_{\zeta}^{*}[f]}{S_{n}[f]} e^{2\pi i f(wb+r)/N} \qquad \begin{array}{l} t = wb + r \\ r \in [0, w-1] \end{array}$$

• Split the summation into a double sum

$$\sum_{f=0}^{N-1} ilde{g}[f] = \sum_{f'=0}^{N/w-1} \sum_{l=0}^{w-1} ilde{g}[lrac{n}{w} + f'],$$

Methodology