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Modeled search




Matched filtering to extract the signal

Optimal detection statistic — Likelihood of data containing a signal

Signal embedded in strain data s(t)

Modeled waveform filters h;(t)
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Search assumptions



Approximating the search statistic

|5 parameters (Likelihood
maximization)

o Masses my, my density
o Spins Sizs Soz

o Extrinsic parameters A, ¢,  analytically

o Signal arrival time t. FFTs ;
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Aligned-spin template bank

No. of Signal

Computational costs OC .
templates duration



Current template banks are missing

Precessing systems

Eccentric binaries

~100x bigger
template banks

Aligned spins
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Computationally limited

Huge astrophysical implications



Third generation detectors

Cosmic
Explorer

Better sensitivity at -

) Longer templates — Larger costs
low frequencies



Improving the search performance



Multirate sampling with reduced basis

Nyquist’s criterion
1

= df do

number of samples

[ 64Hz Bl 512 Hz
/1 128 Hz B 4096 Hz
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time relative to coalescence (s)

* Greatly reduces subsequent computations

* Used by GSTLaL, MBTA and SPIIR pipelines



(Continued) Reduced basis matched filtering

B (t) = IFFT((8[px))

Filter output from the basis
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Final output

O(NTlogN) < O(NpT)




Hierarchical methods Coarse bank

* Two stage filtering using coarse and fine template banks

* Only foreground triggers are followed from |t stage to 2™

Fine bank

* This results in poor background estimation which can result in
incorrect significance of an event

Number of templates

* Computational gain at the expense of sensitivity

Phys. Rev.D 105,064005



Reduced basis hierarchical method



Reconstructing SNR series (hierarchically)

Fully sampled
SNR time-series

First stage

Down-sampling SNR series

Second stage Recovered using basis

time (s)



Estimating the average SNR

Averaging of SNR series in time-domain can be performed in the Fourier-domain

w—1
(pc(t))y = —— Z Z H[Lﬂh“[]ﬂ 2mif (wbtr)/N Bin containing v samples

r=I()

N [ —

4!1&] Z 2mif' b

F'=0

vl G 4 R 4 p)

l T L1 1 J ‘-J'ﬂ'ftj E + IIFL
s e ——— , etV w TSN
P S 2

=0 w =)

=Q(f")
. N/w—1

li”Af Z [y - f-' LAY NPT
=2 Y emiR(p).
N FI—=0

* Thus, we need to perform IFFT of a frequency series of reduced length only

I\ N
* First stage costs are reduced by a factor of w — 0, (—log (—))
w %



Triggering criteria

No. of triggers

nriae(pr)  flat scheme

Nrinar(Pr1)  hierarchical scheme

103

Triggers
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Two free parameters
W, O

— Without hierarchigal
—— Hierarchical 2.0

No loss in sensitivity

Ptarget f w, Pr } — ( min [ P11 ] N final { P11 } = 0.99n flat [i_f-}II })



Second stage and cost estimation

o Follow up triggering bins

o Reconstruct sample points using the

—j(:] T 1 1 1
-30 =20 -10 0

Zfiar = NT(510gN +6) Baseline costs (FLOP)

5 I\ 2
Ztotar(W, p1) = NT (ng (W) + 6+ W) + 4pwf(w, p;) + Np(logN + 6)  Hierarchical costs (FLOP)



Implementation

Codebase in C language and operations on the GPU are performed using CL/DA by Nvidia

o Pre-compute the basis and store them on hard-drives

o Data is divided into smaller segments of |28s and
sampled at 2048 Hz
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o Highly parallelizable operations — Matrix multiplications,
FFTs

- R
2

o Optimized libraries -- cuBLAS, cuFFT

ATLAS computing center at AEI

Nvidia TeslaV 100 and RTX 2070



Results



Case-study

complete CBC region
case-study sub-region

M € [5.72,12.05]
g € [1.0,11.05]

6250 templates

Case-study performed on a sub-region
Conservative reduction in costs

We target for SNR 5 and above

Primarily tested on simulated data containing only
Gaussian noise

Also tested on a small population of BBH signals

Data generated using PyCBC



Total Costs
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Observed performance

* Improvement using GPUs

* Evaluate performance using of any method

secs of data filtered

Throughput = ( ) (No. of templates filtered) = NT/t

time taken for filtering

Method Throughput Throughput/ Throughput/
Euro W

cuFFT (in-situ) 4000 x 10° 400 14 x 10°
in real-time

Hierarchical scheme (expected) 3300 x 10 3300 116 x 10°

PyCBC live 6300 17 31

PyCBC offline 12,000




Conclusions and future prospects

* Demonstrated our new hierarchical scheme using simulated data.

* Achieved an improvement of 10x and 5x respectively for SNR = 6 and 5 respectively (without losing
sensitivity)

* Cost and energy efficient way of performing matched filtering using GPUs.

* Implement the scheme in PyCBC before O4.

* Use it to perform precessing/eccentric or sub-solar searches
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Reduced basis matched filtering

Consider | templates /1, and a basis

Any template can be represented as a linear combination of
the basis

Truncating the basis for an approximate representation

Matched filter in terms of reduced basis




PCA (in a nutshell)

v

* Obtain the basis Perform

* How to perform PCA?

|. Consider a set of 71 data points denoted as vectors v
2. Center the vectors and then normalize them v, =v —b

. . A T A
3. Create a covariance matrix C =V, V.

—20 -

4. Perform an EVD of C to get the orthonormal basis vectors p

~30 - : :
5. Decomposition coefficients D = pv, -30 -20 -10

~approx

6. Approximated vectors V. =D'p b= 1/nzvi




Aligned spin

PCA on a template bank

Sample waveforms using a non-uniform frequency list
(saves up lot of space and computation time)

Templates are whitened and normalized according to alLIGO
ZDHP PSD.

hrﬂfl}
f'-‘lifli

10’
Mass 1 [M ]

~ 400,000 templates MM = 0.97

h}r.l —1 U i'r J h!hl —1 U 1 ]

Covariance matrix for each sub-bank C™ = T x (T™)'
Diagonalisation using Lanczos algorithm

Obtain decomposition matrix D" and basis matrix P

6250
templates in
each sub-bank




Hierarchical Matched filtering

* Compute forward FFT of at a uniform sampling rate 1/dt
* Linearly interpolate at the uniform frequencies
~ w—1
 Filter data with every basis vector pj to obtain BI9t;] = Z Brltixwss]/w

3=0

* Average 3} in fixed bins of v samples to get

* Perform reconstruction to obtain averaged SNR time-series

* Perform reconstruction around the triggers from the first stage.

Methodology



Second stage filtering

* Requires the basis vectors

* Collect the first stage triggers using a threshold to then perform a finer reconstruction of the
triggering bins

* Triggering criteria for the first stage ?

Two parameters -- w and

time (s)




Low-pass filter as first stage

lowpass

first-stage

4.5 5.0
Target SNR




Cost Estimation

*  We compute the theoretical for filtering a data segment with N samples

* Consider 6 operations for multiplication and 2 operations for addition

* For FFTs we consider a split-radix method

— Template method

|. Forward real-to-half-complex FFT of data —_— 3/2 NlogN
2. Integrand for T templates —_— 6NT
3. Inverse complex-to-complex FFT to obtain the SNR time-series E— 5NT logN

Since T > 1 [ Zpasic = NT(51logN + 6) }




(Continued) Cost Estimation

Fast first stage Second stage
|. Forward FFT and 3/2 N logN + 6NT Assuming number of triggers f(w, p;) do not vary with
integrand computation template
2NT
2. Binned averaging w |. Compute the f’s Np(logN + 6)
3. IFFT to get averaged SNT 2. Second stage reconstruction 4pwf (w, pr)
SNR time-series log(N/w)

5 N 2
Ziotar = NT <Wlog (v_v) + 6 + W) + 4pwf (w, p;) + Np(logN + 6)

Fine-tune the parameters to minimize the total costs



Accuracy of the SNR

Two primary contributions to the loss in SNR

Truncation of the number of eigenvalues Interpolation of the basis/templates
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Comparing performance

) ) 5 (N 2
Number of required operations Zeotar = NT <wlog (W) +6+ ;) +4pwf(w, p) + Np(logN + 6)

 First obtain the f(w, p;)

Get the costs in terms of the target SNR
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Implementation

* Partially implemented on CPUs

¢ Matrix multiplications — Covariance computation,
Decomposition coefficients using cuBLAS

* Diagonalization on CPUs using Lanczos algorithm

* Results are compressed and stored on hard-drive

Completely implemented on GPUs

Data is divided into smaller segments of |28s and
sampled at 2048 Hz

FFTs are performed using cuFFT in parallel batches

First stage is implemented using basis with help of
cuBLAS

Second stage is using customized kernel



Fast First Stage Filtering using Templates

* Consider a single bin © of size v samples and we compute the averaged SNR for that bin

t =wb+r
r € [0O,w—1]

s [ ﬂ h 2rif(wb+r) /N

Methodology



