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Data quality checks

Filtering data

Glitch vetoing

Coincidence test

Ranking significance
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Optimal detection statistic Likelihood of data containing a signal 

Signal embedded in strain data s(t)
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Aligned spins Quasi circular orbits Dominant mode of GW emission

15 parameters

o Masses                        𝑚1,  𝑚2

o Spins                           𝑺1𝑧,  𝑺2𝑧

Aligned-spin template bank

(Likelihood 

maximization)

FFTs

analytically

o Signal arrival time           𝑡𝑐

o Extrinsic parameters    𝐴 , 𝜙0

Computational costs 

density

∝ No. of 

templates

Signal 

duration



Current template banks are missing

Precessing systems 

1

Eccentric binaries

Computationally limited Huge astrophysical implications
~100x bigger 

template banks



Better sensitivity at 

low frequencies
Longer templates Larger costs





𝑁 =
1

(𝑑𝑓 𝑑𝑡)
number of samples

• Greatly reduces subsequent computations

• Used by GSTLaL, MBTA and SPIIR pipelines

Nyquist’s criterion

Templates

T

Basis

P

3

P <T



𝛽0

𝛽1

𝛽2

𝛽𝑝−1

Basis
Final output

Reconstruction

!! Expensive !!

𝛽𝑘 𝑡 = IFFT ǁ𝑠 ෤𝑝𝑘

Filter output from the basis 

𝒪(𝑁Tlog𝑁) <  𝒪(𝑁𝑝𝑇)



Coarse bank

Fine bank

• Two stage filtering using coarse and fine template banks

• Only foreground triggers are followed from 1st stage to 2nd

• This results in poor background estimation which can result in 

incorrect significance of an event  
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• Computational gain at the expense of sensitivity





Fully sampled 

SNR time-series

First stage 

Second stage

Average SNR

Down-sampling SNR series

Recovered using basis 



Averaging of SNR series in time-domain can be performed in the Fourier-domain

• Thus, we need to perform IFFT of a frequency series of reduced length 𝑁/𝑤 only

• First stage costs are reduced by a factor of 𝑤 𝒪
N

w
log

𝑁

𝑤

Bin containing 𝑤 samples



𝑛𝑓𝑙𝑎𝑡 𝜌II flat scheme

𝑛𝑓𝑖𝑛𝑎𝑙(𝜌II) hierarchical scheme

No. of triggers 

No loss in sensitivity

Two free parameters

𝑤, 𝜌I

(𝑤, 𝜌I) = (8, 2)



o Follow up triggering bins

o Reconstruct sample points using the basis

Principal component analysis (PCA)

𝑧𝑡𝑜𝑡𝑎𝑙(𝑤, 𝜌I) = 𝑁𝑇
5

𝑤
log

N

w
+ 6 +

2

𝑤
+ 4𝑝𝑤𝑓 𝑤, 𝜌I + 𝑁p log𝑁 + 6 Hierarchical costs (FLOP) 

𝑧𝑓𝑙𝑎𝑡 = 𝑁𝑇(5 log𝑁 + 6) Baseline costs (FLOP)



Codebase in C language and operations on the GPU are performed using CUDA by Nvidia

o Pre-compute the basis and store them on hard-drives

o Data is divided into smaller segments of 128s and 

sampled at 2048 Hz

o Highly parallelizable operations – Matrix multiplications, 

FFTs

o Optimized libraries  -- cuBLAS,  cuFFT

Nvidia Tesla V100 and RTX 2070 

ATLAS computing center at AEI 





• Case-study performed on a sub-region 

• Conservative reduction in costs  𝑝 = 254 ~ 𝑝

• We target for SNR 5 and above

𝑀 ∈ 5.72, 12.05
𝑞 ∈ [1.0, 11.05]

• Primarily tested on simulated data containing only 

Gaussian noise

• Also tested on a small population of BBH signals

• Data generated using PyCBC
6250 templates 



Improvement of 
10x 5x

for SNR = 6 for SNR = 5

Total Costs



• Improvement using GPUs

• Evaluate performance using throughput of any method 

Throughput = 
secs of data filtered

time taken for filtering
No. of templates filtered = 𝑁𝑇/𝑡

in real-time



• Demonstrated our new hierarchical scheme using simulated data.

• Achieved an improvement of 10x and 5x respectively for SNR = 6 and 5 respectively (without losing 

sensitivity)

• Cost and energy efficient way of performing matched filtering using GPUs.

What’s next

• Implement the scheme in PyCBC before O4.

• Use it to perform precessing/eccentric or sub-solar searches





https://www.nature.com/articles/548397a
https://towardsdatascience.com/visualizing-principal-component-analysis-with-matrix-transforms-d17dabc8230e




• Any template can be represented as a linear combination of 

the basis

• Consider 𝑇 templates ෨ℎ𝜁 and a basis ෤𝑝𝑘

complete representation

𝑝𝑡 = 𝑇

• Truncating the basis for an approximate representation 

• Matched filter in terms of reduced basis 

𝑝 < 𝑇



• Obtain the basis  Perform principal component analysis (PCA)

2• How to perform PCA ?

1. Consider a set of 𝑛 data points denoted as vectors 𝐯

2. Center the vectors and then normalize them    𝐯𝑠 = 𝐯 − 𝐛

3. Create a covariance matrix    𝐂 = ො𝐯𝑠
⊺ ො𝐯𝑠

4. Perform an EVD of 𝐂 to get the orthonormal basis vectors 𝒑

5. Decomposition coefficients 𝐃 = 𝐩ො𝐯𝑠

6. Approximated vectors    ො𝐯𝑠
approx

= 𝐃⊺𝐩 𝐛 = ൗ1 𝑛෍

𝑖=0

𝑛−1

𝑣𝑖



Aligned spin

~ 400,000 templates

• Sample waveforms using a non-uniform frequency list 

(saves up lot of space and computation time)

• Templates are whitened and normalized according to aLIGO

ZDHP PSD.

• Covariance matrix for each sub-bank 𝐂𝑚 = 𝐓𝑚 × (𝐓𝑚)⊺

• Diagonalisation using Lanczos algorithm

• Obtain decomposition matrix 𝐃𝑚 and basis matrix 𝐏𝑚

6250 

templates in 

each sub-bank

MM = 0.97



• Compute forward FFT of 𝑠(𝑡) at a uniform sampling rate 1/𝑑𝑡

• Linearly interpolate  ෤𝑝 𝑓 at the uniform frequencies

• Filter data with every basis vector ෤𝑝𝑘 to obtain 𝛽𝑘

• Average 𝛽𝑘 in fixed bins of 𝑤 samples to get 𝛽𝑘
𝑎𝑣𝑔

• Perform first stage reconstruction to obtain averaged SNR time-series

• Perform second stage reconstruction around the triggers from the first stage.

Primary idea – Split the reconstruction stage  

Methodology



• Requires the basis vectors

• Collect the first stage triggers using a threshold to then perform a finer reconstruction of the 

triggering bins

Partial reconstruction

• Triggering criteria for the first stage ?

Two parameters -- 𝑤 and 𝜌I





• We compute the theoretical FLOP for filtering a data segment with 𝑁 samples 

• Consider 6 operations for multiplication and 2 operations for addition

• For FFTs we consider a split-radix method

Baseline comparison – Template method

1. Forward real-to-half-complex FFT of data

2. Integrand for 𝑇 templates 

3. Inverse complex-to-complex FFT to obtain the SNR time-series

Τ3 2𝑁logN

5𝑁𝑇 log𝑁

6𝑁𝑇

Since 𝑇 ≫ 1 𝑧𝑏𝑎𝑠𝑖𝑐 = 𝑁𝑇(5 log𝑁 + 6)



Fast first stage Second stage

1. Forward FFT and 

integrand computation 

2. Binned averaging 

3. IFFT to get averaged 

SNR time-series

Assuming number of triggers 𝑓(𝑤, 𝜌I) do not vary with 

template

1. Compute the 𝛽’s 

2. Second stage reconstruction

Τ3 2𝑁 log𝑁 + 6𝑁𝑇

2𝑁𝑇

𝑤

5𝑁𝑇

𝑤
log(N/w)

𝑁p log𝑁 + 6

4𝑝𝑤𝑓(𝑤, 𝜌I)

𝑧𝑡𝑜𝑡𝑎𝑙 = 𝑁𝑇
5

𝑤
log

N

w
+ 6 +

2

𝑤
+ 4𝑝𝑤𝑓 𝑤, 𝜌I + 𝑁p log𝑁 + 6

Fine-tune the parameters to minimize the total costs 



Two primary contributions to the loss in SNR 

Truncation of the number of eigenvalues Interpolation of the basis/templates



Number of required operations 𝑧𝑡𝑜𝑡𝑎𝑙 = 𝑁𝑇
5

𝑤
log

N

w
+ 6 +

2

𝑤
+ 4𝑝𝑤𝑓 𝑤, 𝜌I + 𝑁p log𝑁 + 6

• First obtain the 𝑓 𝑤, 𝜌I • Get the costs in terms of the target SNR



Preparation stage

PCA 

Matched 

filtering

• Partially implemented on CPUs

• Matrix multiplications – Covariance computation, 

Decomposition coefficients using cuBLAS

• Diagonalization on CPUs using Lanczos algorithm

• Results are compressed and stored on hard-drive

• Completely implemented on GPUs

• Data is divided into smaller segments of 128s and 

sampled at 2048 Hz

• FFTs are performed using cuFFT in parallel batches

• First stage is implemented using basis with help of 

cuBLAS

• Second stage is using customized kernel



• Average the matched filter before computing the IFFT

• Consider a single bin 𝑏 of size 𝑤 samples and we compute the averaged SNR for that bin

𝑡 = 𝑤𝑏 + 𝑟
𝑟 ∈ [0,𝑤 − 1]

• Split the summation into a double sum 

Methodology


