Comparison of eccentric numerical relativity simulations to small mass-ratio perturbation theory

Antoni Ramos-Buades, Harald Pfeiffer and Maarten van de Meent

12th Iberian Gravitational Wave meeting 2022
June 7, 2022
$\overline{\text { MAX-PLANCK-GESELLSCHAFT }}$

Gravitational-wave detections

- Analysis of the third observing run (O3) recently out (Abbot+2021, Nitz+2021, Olsen+2021).
- Quasi-circular waveform models used in searches and parameter estimation studies.
- Mass-ratio, $\mathrm{Q}=\mathrm{m}_{1} / \mathrm{m}_{2}$, for binary black holes (BBHs) mostly consistent with comparable masses.
- In O4 and future detectors, more detections of mass asymmetries as well as eccentric binaries.

Bridging the mass-ratio gap

LVK

Numerical relativity (NR)
$q \geq 20$

Intermediate mass BH

$$
(10+1000) M_{\odot}
$$

$$
\left(10^{3}+10^{6}\right) M_{\odot}
$$

EMRI
$\left(10+10^{6}\right) M_{\odot}$

Small-mass-ratio approximation (SMR)
expansion in symmetric mass-ratio $v=q /(1+q)^{2}$

Bridging the mass-ratio gap

Intermediate mass BH $(10+1000) M_{\odot}$ $\left(10^{3}+10^{6}\right) M_{\odot}$

Mass ratio q

EMRI

$$
\left(10+10^{6}\right) M_{\odot}
$$

Small-mass-ratio approximation (SMR)
expansion in symmetric mass-ratio $v=\mathrm{q} /(1+\mathrm{q})^{2}$

- This work extends on eccentric non-spinning BBHs.

Small Mass-Ratio (SMR) evolutions

- Equations of motion as a perturbative series in symmetric mass-ratio $\boldsymbol{v}=m_{1} m_{2} /\left(m_{1}+m_{2}\right)^{2}$.
- At zero-th order, just geodesics around Kerr. Geodesic frequencies are known analytically.

$$
\frac{d q_{r}}{d t}=\Omega_{r}, \quad \frac{d \phi}{d t}=\Omega_{\phi}
$$

- At next order energy dissipation drives inspiral. Orbit-averaged fluxes on the right-hand-side are functions of eccentricity, e, and semi-latus rectum, p,

$$
\frac{d p}{d t}=\nu\left\langle F_{p}\right\rangle, \quad \frac{d e}{d t}=\nu\left\langle F_{e}\right\rangle
$$

- The fluxes are determined numerically at any (p, e) value using a frequency domain Teukolsky code.

Numerical Relativity (NR) simulations

- We produced 52 new eccentric non-spinning simulations with the Spectral Einstein Code (SpEC), numerical relativity (NR) code :

$$
Q=1 / q=m_{1} / m_{2}=[1-10], \quad e_{\omega_{22}}=[0.01-0.7]
$$

- Long simulations, [20-50] GW cycles.
- 3 different resolutions for each simulation.
- Typical wall clock times:

$$
\begin{aligned}
& \mathrm{o} \quad \mathrm{q}=1: \sim 5-10 \text { days } \\
& \circ \quad \mathrm{q}=10: \sim 2-3 \text { months. }
\end{aligned}
$$

Calculation of frequencies, eccentricity, and fluxes

- Need coordinate-invariant definition of eccentricity which is applicable to both NR and SMR.
- Define eccentricity from the frequency of the quadrupole GW (2,2)-mode. $\omega_{22}=\frac{d}{d t} \operatorname{Arg}\left[h_{22}(t)\right], \quad e_{\omega_{22}}=\frac{\omega_{22, p}^{1 / 2}-\omega_{22, a}^{1 / 2}}{\omega_{22, p}^{1 / 2}+\omega_{22, a}^{1 / 2}}, \begin{aligned} & \omega_{22, p}: \omega_{22} \text { at periastron. } \\ & \omega_{22, a}: \omega_{22} \text { at apastron. }\end{aligned}$ $\left\langle\omega_{22}\right\rangle \equiv\left\langle\Omega_{\phi}^{22}\right\rangle_{i}=\frac{1}{t_{\max }^{i+1}-t_{\max }^{i}} \int_{t_{\max }}^{t_{\max }^{i+1}} \omega_{22}(t) d t, \quad\left\langle\dot{E}_{G W}\right\rangle_{i}=\frac{1}{t_{\max }^{i+1}-t_{\max }^{i}} \int_{t_{\max }^{i}}^{t_{\max }^{i+1}} \dot{E}_{G W}(t) d t$.

SMR : $m_{1} / m_{2}=1$

$$
\mathrm{NR}: m_{1} / m_{2}=6
$$

- Use orbit-average procedure to extract frequencies and fluxes from NR simulations [Lewis+2017].
- Also use periastron-passages to compute additional orbit-averaged quantities.

Comparing NR with SMR

- To compare NR with SMR, one must map between "NR configuration" and "SMR geodesic" in a gauge invariant manner.
- The two characteristic frequencies (orbital \& radial motion) are not suitable, because the frequencies of NR often fall outside the range spanned by geodesic results.
- We identify NR with SMR by (a) same orbit-averaged orbital frequency, $\left\langle\Omega_{\phi}^{22}\right\rangle$, and (b) same eccentricity $e_{\omega_{22}}$

Comparison between SMR and NR results. Energy flux

Data at fixed $\left\langle\Omega_{22}^{\phi}\right\rangle_{\text {ref }}$

Interpretation:
\rightarrow Collapsed curve gives next-to-leading order contribution $\nu^{3} \quad$ also known as 1-PA \rightarrow unknown before
\rightarrow Nearly vanishing spread: next-to-next-to-leading-order contribution is small

$$
\nu^{4} \quad \text { also known as 2-PA } \rightarrow \text { insignificant }
$$

Conclusions and future work

- Presented new 52 eccentric (≥ 20 orbits) non-spinning simulations with $e_{\omega 22} \leq 0.7$ and $\mathrm{Q}=[1-10]$.
- Developed tools to map eccentric SMR configurations and $N R$ simulations.
- Analyze energy and angular momentum fluxes, and periastron advance.
- Our NR-SMR comparisons indicate that:
- At LO 0-PA ($\left.v^{2}\right)$ good agreement.
- At NLO 1-PA (v^{3}) collapsed curve indicates contribution small (unknown before) \rightarrow NNLO 2-PA (v^{4}) probably small.

