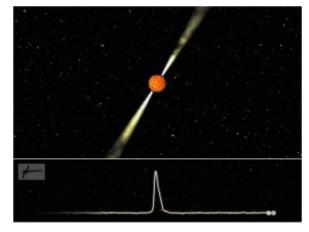


Joan Moragues, Luana M. Modafferi, David Keitel

(Universitat de les Illes Balears)

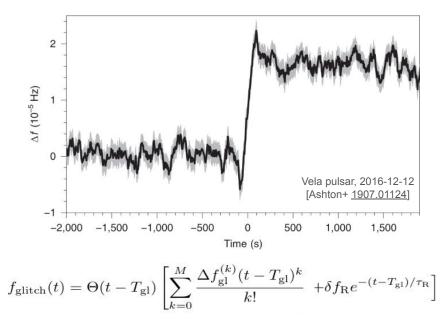
12th Iberian Meeting, June 7, 2022

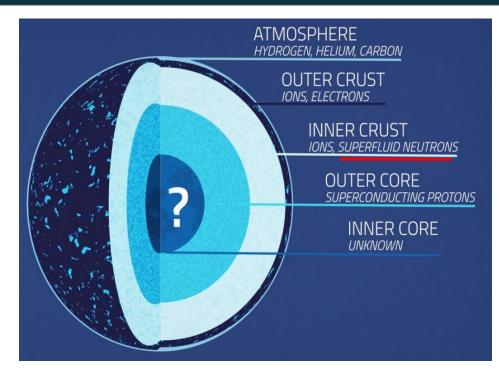


joan.moragues@uib.cat

DCC: <u>G2200941</u>

Pulsar Glitches


• Pulsars: rapidly rotating neutron stars with strong magnetic fields. We can see some of them if beams intersect the Earth.


[J. van Leeuwen]

$$f_{\text{Taylor}}(t) = \sum_{k=0}^{N} \frac{f^{(k)}(t - T_{\text{ref}})^k}{k!}$$

 A glitch takes places when a pulsar's rotational frequency suddenly spins up; and freq. derivatives can also change.

Theory of Pulsar Glitches: Two-Fluid Model

- Weak coupling between normal component and interior superfluid, spindown leads to \rightarrow growing "lag" $\Delta \Omega = \Omega_s - \Omega$
- When lag reaches a critical value, some sort of instability occurs: transfer of angular momentum from superfluid to normal component → spin-up (i.e. glitch)
- Excess of energy is available to potentially produce GWs.
- One model: GWs on the timescale of the after-glitch recovery, through transient mountain formation (e.g. Yim & Jones 2007.05893)

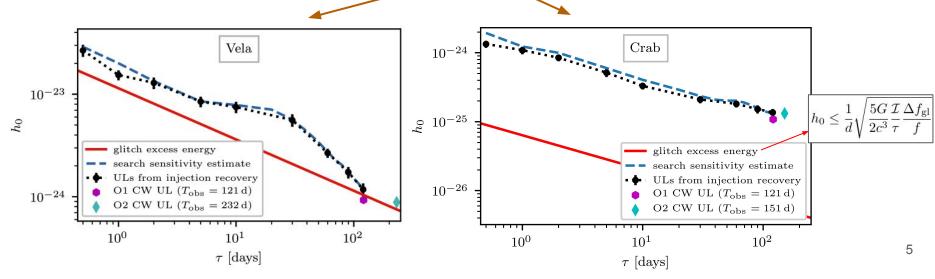
GWs from Pulsar Glitches: Energetics [Prix+ 1104.1704]

- indirect upper limit on emitted GW energy and amplitude: total energy released in glitch
- considering angular momentum conservation between the two fluids but an energy excess of the superfluid

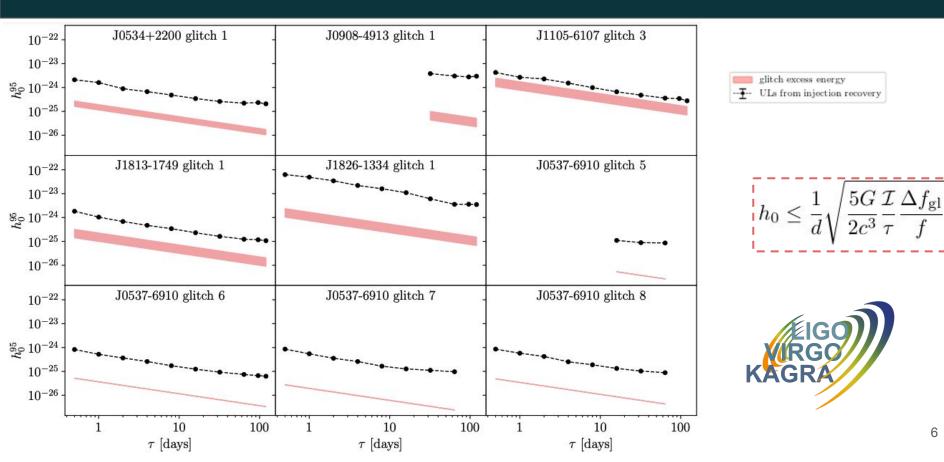
$$E_s = \frac{1}{2} I_s (\Omega_s^2 - \Omega^2) \approx 4\pi^2 I_s \nu \Delta \nu$$

• equate with total energy carried by CW-like GW of amplitude h_0 and frequency f=2 ν :

$$h_0 = \frac{4\pi^2 G}{c^4} \frac{I_z \epsilon}{d} f^2 \longrightarrow E_{\rm GW} = \frac{2\pi^2 c^3}{5G} f^2 d^2 \int^T h_0^2(t) dt,$$


glitch excess energy upper limit

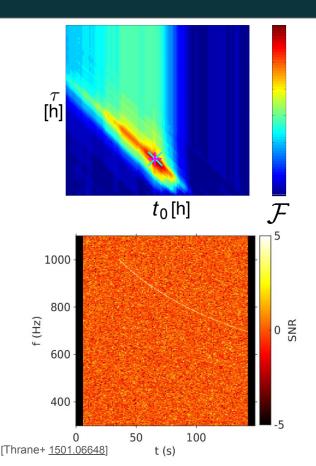
$$h_0 \leq \frac{1}{d} \sqrt{\frac{5G}{2c^3} \frac{I_z}{\tau} \frac{|\Delta f|}{f}}$$


fixed energy regardless of transient duration *τ* . SNR increases with same sqrt(*τ*) as *h*₀ upper limit
 → same basic *detectability* for short or long transients

Previous GW glitch searches

- search for short-duration transients (bursts) from Vela glitch in 2006 [Abadie+ 1011.1357]
- generic all-sky burst searches [e.g. Abbott+ 2107.03701] cover short post-glitch transients (e.g. f-modes)
- search for *long-duration transients* from Vela & Crab glitches during O2 [Keitel+ <u>1907.04717</u>] (using Prix+ <u>1104.1704</u> method)

Previous GW glitch searches (O3) [Abbott+ arXiv:2112.10990]

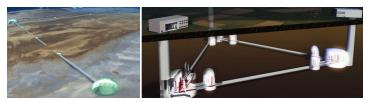


Search Methods for Long-Duration Transients

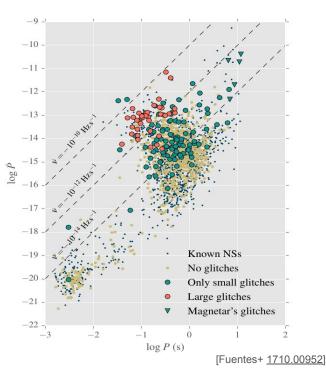
• **Transient** \mathcal{F} -statistic: Known sky location, matched filter template grid in freq and spindown, search for peaks over transient map for each point. (used in O2, O3 searches)

$$\mathbf{h}(t;\theta) = \underbrace{h(t,\lambda,\mathcal{A},\mathcal{T})}_{=} = \underbrace{\omega(t;\mathcal{T})}_{\bullet} \underbrace{h(t,\lambda,\mathcal{A})}_{=} = \underbrace{\omega(t;\mathcal{T})}_{\bullet} \underbrace{h(t,\lambda,\mathcal{A})}_{\bullet}$$

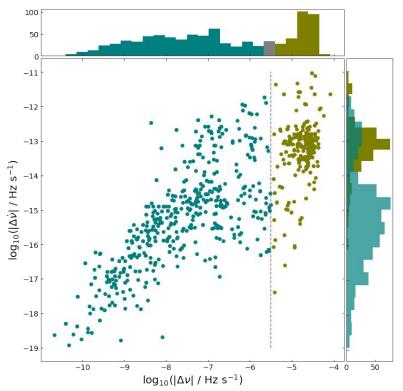
- Others:
- Semicoherent searches, e.g. Viterbi
- Unmodeled searches, e.g. STAMP
- Machine learning



Catalogs of Glitching Neutron Stars


• EM data: radio, X- and gamma-ray observations from Jodrell and ATNF glitch catalogs, combined with data from ATNF pulsar catalog

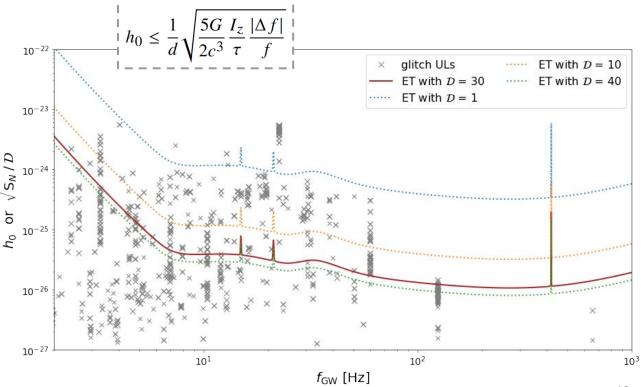
 GW detectors: Expected sensitivity of current and future detectors (aLIGO, Einstein Telescope and Cosmic Explorer)


• **Population** of glitching pulsars:

8

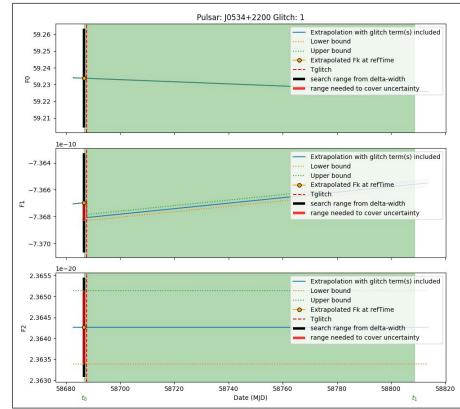
Observed Population of Glitching Pulsars [Ashton+ 1704.00742]

- Two groups of glitching pulsars.
- **Bimodal gaussian distribution** of the glitch sizes: "Crab-like" and "Vela-like" glitches.
- Ashton+2017: $\Delta v = 10^{-5.5}$ as division for both kinds of glitches, from a Gaussian Mixture Model.
- Vela-like glitches have also bigger changes on 1st order spindown than Crab-like pulsars.
- But no relation between original spindown of the pulsar and glitch size or change on spindown.

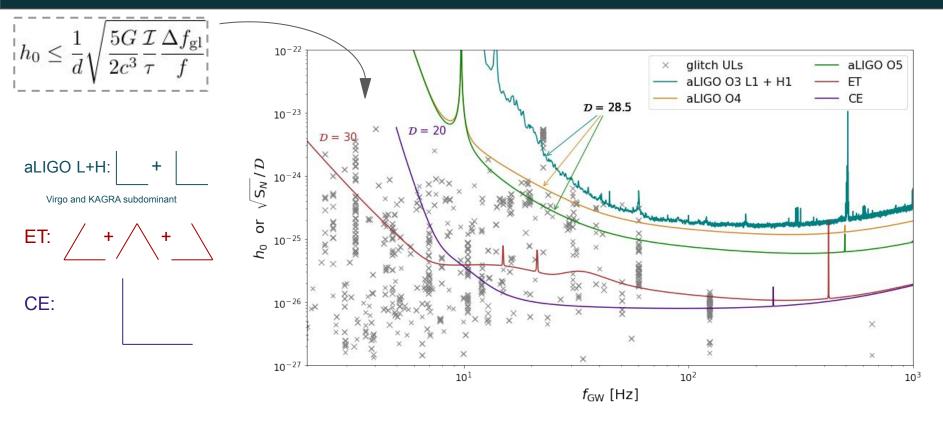

Prospects of Beating Indirect ULs

• Sensitivity depth:

 $\mathcal{D} = \frac{\sqrt{S_n}}{h_0}$

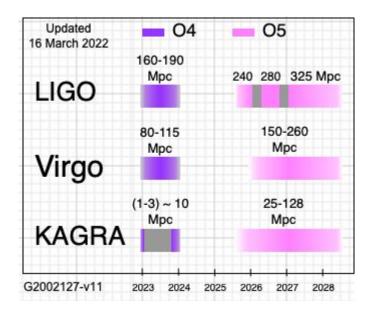

Dreissigacker+2018

 Depth increases with τ, but also the upper limits of h0 get worse: the whole plot rescales and we achieve the same detectability.



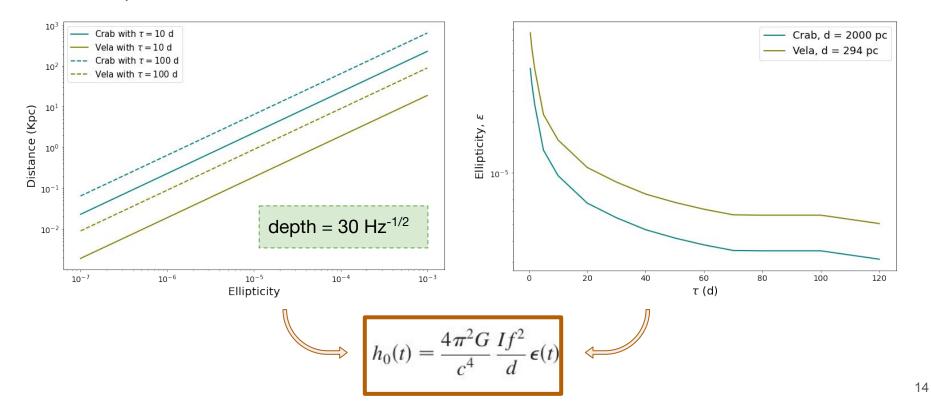
Prospects of Beating Indirect ULs

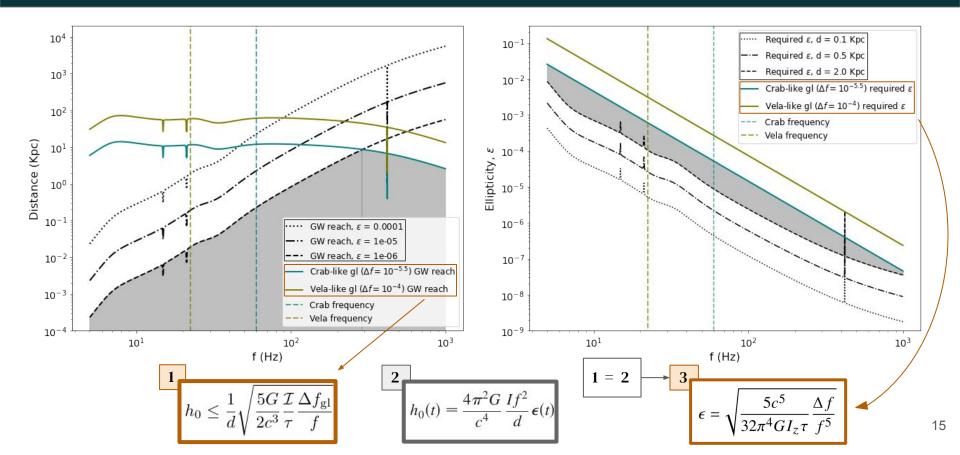
- Determining the depth factor:
- Find the number of templates for search setup like [arXiv:2112.10990] that both a Crab-like and Vela-like search would need.
- Create fake noise-only distribution with that number of templates.
- Determine the threshold of this distribution with distromax method. [Tenorio+2022].
- Assume a detector network and duty factor of 66% and find sensitivity depth [Dreissigacker+2018].
- H1L1 case: Found 27.5 for Vela, 29 for
 Crab, use rounded 28.5 for both in plots.



Prospects of Beating Indirect ULs

Prospects of Beating Indirect Glitch ULs


All known pulsars for which indirect glitch ULs could be beaten in future 2G runs.


	PSR	f (Hz)	max h0	<u>O</u> 4	05
1	J0205+6449	30.434	6.3e-25	4/15	5/15
2	J0358+5413	12.789	1.81e-24	0/8	2/8
3	J0534+2200	59.8938	1.2e-25	4/56	6/56
4	J0835-4510	22.3893	4.7e-24	37/41	39/41
5	J1023-5746	17.9417	7.9e-25	0/2	2/2
6	J1105-6107	31.6445	1.9e-25	3/12	8/12
7	J1112-6103	30.7873	2.6e-25	0/4	4/4
8	J1413-6205	18.2248	5.3e-25	0/2	2/2
9	J1420-6048	29.3342	2.2e-25	0/10	2/10
10	J1531-5610	23.7513	5.0e-25	0/2	2/2
11	J1709-4429	19.52	4.8e-25	0/10	6/10
12	J1809-1917	24.1676	3.4e-25	0/2	2/2
13	J1813-1246	41.604	3.6e-25	2/2	2/2
14	J1826-1334	19.707	4.6e-25	0/12	2/12
15	J1907+0602	19.2788	7.9e-25	0/2	1/2
16	J1952+3252	38.742	3.5e-25	1/11	1/11
17	J2021+3651	18.756	7.8e-25	0/7	5/7
18	J2229+6114	50.593	3.1e-25	4/10	6/10
	TOTAL			55/1026	97/1026

Distance and Ellipticity Constraints (ET)

Actual frequencies for Crab and Vela

Distance and Ellipticity Constraints (ET)

Acknowledgements

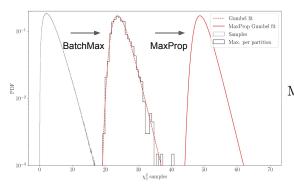
Thank you for listening!

joan.moraques@uib.cat

luana.modafferi@ligo.org

<u>david.keitel@ligo.org</u>

JM and LMM are supported by the Universitat de les Illes Balears.


DK is supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (ref. BEAGAL 18/00148) and cofinanced by the Universitat de les Illes Balears. We acknowledge support by European Union FEDER funds; the Spanish Ministerio de Ciencia e Innovación and the Spanish Agencia Estatal de Investigación grants No. PID2019-106416GB-I00/AEI/MCIN/10.13039/501100011033, RED2018-102661-T, RED2018-102573-E; the Comunitat Autònoma de les Illes Balears through the Conselleria de Fons Europeus, Universitat i Cultura and the Direcció General de Política Universitaria i Recerca with funds from the Tourist Stay Tax Law ITS 2017-006 (No. PRD2018/24, No. PRD2020/11); the Generalitat Valenciana (No. PROMETEO/2019/071); and EU COST Actions CA18108, CA17137, CA16214, and CA16104.

Threshold setting: distromax method [Tenorio+ 2111.12032]

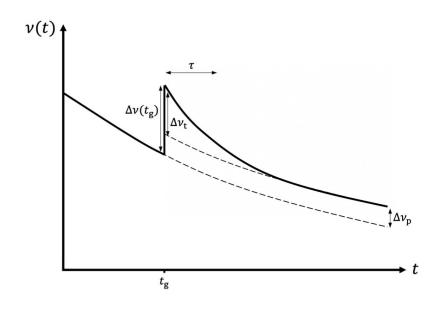
Let us consider the resulting *N* detection-statistic values from evaluating a template bank on a datastream (i.e. what one would call "search results").

- → BatchMax step:
 - Split the N results into B batches containing n elements each. (N = B * n)
 - Retrieve the maximum from each batch and fit a
 Gumbel distribution to the histogram.
 - The resulting distribution is that of the loudest candidate over *n* templates.

$$\operatorname{MaxProp}_B f(x) = Bf(x) \left[\int^x \mathrm{d}x' f(x') \right]^{B-1}$$

for Gumbel it's easy:

 $\sigma_* = \sigma_n$.

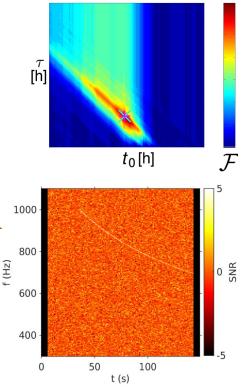

 $MaxProp_BGumbel(\circ; \mu_n, \sigma_n) = Gumbel(\circ; \mu_*, \sigma_*)$

 $\mu_* = \mu_n + \sigma_n \ln B ,$

$$egin{aligned} \mathsf{Gumbel}(\circ;\mu,\sigma) &= rac{1}{\sigma}e^{-(z+e^{-z})} \ & & & & \end{pmatrix} \ & & & & & \end{pmatrix}$$
 where $z = rac{\circ-\mu}{\sigma}$

- → MaxProp step:
 - The loudest candidate over the *N* (possibly correlated) samples is the loudest candidate over *B* independent BatchMax samples.
 - Let us call the step from *n* to *N* the max-propagation operator (MaxProp).
 - But **Gumbel is max-stable**: Just add two numbers!

Glitch Recovery and Transient Mountains


Yim & Jones 2007.05893

- simple model: mountain forms at glitch, causes recovery through external torque, slowly dissipates again $Q \equiv \frac{\Delta v_{\rm t}}{\Delta v(t_{\rm g})}$
- key parameter: "healing"
- same energy and SNR for large glitches with small recovery or small glitches with large recovery
- GW signal duration linked to EM-observed recovery time: ~24 d for Crab and ~298 d for Vela (exponential decay times)
- If instead buildup of a mountain causes the glitch, would expect much shorter signals (e.g. ~400 s for Vela).

Search Methods for Long-Duration Transients

• **Transient** \mathcal{F} -statistic: Known sky location, template grid in freq and spindown, search for peaks over transient map for each point.

- STAMP: For very long-lived transient GWs. Unmodeled, without imposed fixed starting time nor waveform model. Analyse spectrogram from cross-correlated data of detectors.
- Viterbi: Dynamic programming algorithm based on a hidden Markov model (HMM), identifies seed pixels in spectrogram that lay above a threshold, and add neighboring pixels to create contiguous clusters.
- Others: Semicoherent searches and machine learning

