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Pulsar Glitches
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● Pulsars: rapidly rotating neutron stars with 
strong magnetic fields. We can see some of 
them if beams intersect the Earth.

● A glitch takes places when a pulsar’s rotational 
frequency suddenly spins up; and freq. 
derivatives can also change. 

[J. van Leeuwen]

Vela pulsar, 2016-12-12
[Ashton+ 1907.01124]

http://www.astron.nl/astronomy-group/people/joeri-van-leeuwen/joeri-van-leeuwen
https://arxiv.org/abs/1907.01124


Theory of Pulsar Glitches: Two-Fluid Model

● Weak coupling between normal component 
and interior superfluid, spindown leads to
→ growing “lag” 𝚫𝛀 = 𝛀S - 𝛀 

● When lag reaches a critical value, some sort of 
instability occurs: transfer of angular 
momentum from superfluid to normal 
component
→ spin-up (i.e. glitch)

● Excess of energy is available to potentially 
produce GWs. 

● One model: GWs on the timescale of the 
after-glitch recovery, through transient 
mountain formation (e.g. Yim & Jones 
2007.05893)
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Credits: NASA’s Goddard Space Flight Center / Conceptual Image Lab

https://arxiv.org/abs/2007.05893
https://svs.gsfc.nasa.gov/20267


GWs from Pulsar Glitches: Energetics [Prix+ 1104.1704]

● indirect upper limit on emitted GW energy and 
amplitude: total energy released in glitch

● considering angular momentum conservation 
between the two fluids but an energy excess of 
the superfluid

● equate with total energy carried by CW-like 
GW of amplitude h0 and frequency f=2𝜈:

→ 
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glitch excess energy upper limit

● fixed energy regardless of transient 
duration 𝝉 . SNR increases with 
same sqrt(𝝉) as h0 upper limit
→ same basic detectability
for short or long transients

https://arxiv.org/abs/1104.1704


Previous GW glitch searches
● search for short-duration transients (bursts) from Vela glitch in 2006 [Abadie+ 1011.1357] 

● generic all-sky burst searches [e.g. Abbott+ 2107.03701] cover short post-glitch transients
(e.g. f-modes)

● search for long-duration transients from Vela & Crab glitches during O2 [Keitel+ 1907.04717] 
(using Prix+ 1104.1704 method)
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https://arxiv.org/abs/1011.1357
https://arxiv.org/abs/2107.03701
https://arxiv.org/abs/1907.04717
https://arxiv.org/abs/1104.1704


Previous GW glitch searches (O3) [Abbott+ arXiv:2112.10990]
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https://arxiv.org/abs/2112.10990


Search Methods for Long-Duration Transients

● Transient     -statistic: Known sky location, matched filter 
template grid in freq and spindown, search for peaks over 
transient map for each point. (used in O2, O3 searches)
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● Others: 
- Semicoherent searches, e.g. Viterbi
- Unmodeled searches, e.g. STAMP
- Machine learning

[Thrane+ 1501.06648]

https://arxiv.org/abs/1501.06648


Catalogs of Glitching Neutron Stars

● EM data: radio, X- and gamma-ray 
observations from Jodrell and ATNF glitch 
catalogs, combined with data from ATNF 
pulsar catalog

● GW detectors: Expected sensitivity of 
current and future detectors (aLIGO, Einstein 
Telescope and Cosmic Explorer) 
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● Population of glitching pulsars:

[Fuentes+ 1710.00952]

Jodrell catalog ATNF catalog

https://arxiv.org/abs/1710.00952
https://www.jb.man.ac.uk/pulsar/glitches.html
https://www.atnf.csiro.au/people/pulsar/psrcat/glitchTbl.html


Observed Population of Glitching Pulsars [Ashton+ 1704.00742]

● Two groups of glitching pulsars.

● Bimodal gaussian distribution of the glitch 
sizes: “Crab-like” and “Vela-like” glitches. 

● Ashton+2017: Δ𝜈 = 10−5.5 as division for both 
kinds of glitches, from a Gaussian Mixture Model.

● Vela-like glitches have also bigger changes on 1st 
order spindown than Crab-like pulsars.

● But no relation between original spindown of the 
pulsar and glitch size or change on spindown.
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https://arxiv.org/abs/1704.00742


Prospects of Beating Indirect ULs 

● Sensitivity depth:

[Dreissigacker+2018]

● Depth increases with 𝜏, 
but also the upper limits 
of h0 get worse: the 
whole plot rescales and 
we achieve the same 
detectability.
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https://arxiv.org/abs/1808.02459


Prospects of Beating Indirect ULs

● Determining the depth factor:
- Find the number of templates for search 

setup like [arXiv:2112.10990] that both a 
Crab-like and Vela-like search would need.

- Create fake noise-only distribution with 
that number of templates.

- Determine the threshold of this distribution 
with distromax method. [Tenorio+2022].

- Assume a detector network and duty 
factor of 66% and find sensitivity depth 
[Dreissigacker+2018].

- H1L1 case: Found 27.5 for Vela, 29 for 
Crab, use rounded 28.5 for both in plots.
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https://arxiv.org/abs/2112.10990
https://arxiv.org/abs/2105.13860
https://arxiv.org/abs/1808.02459


Prospects of Beating Indirect ULs
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aLIGO L+H:       + 

ET:       +         +

CE:

Virgo and KAGRA subdominant



Prospects of Beating Indirect Glitch ULs
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All known pulsars for which 
indirect glitch ULs could be 
beaten in future 2G runs.



Distance and Ellipticity Constraints (ET)
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Actual frequencies for Crab and Vela

depth = 30 Hz-1/2



Distance and Ellipticity Constraints (ET)
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1 32 1  =  2
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Threshold setting: distromax method [Tenorio+ 2111.12032]

Let us consider the resulting N detection-statistic values 
from evaluating a template bank on a datastream
(i.e. what one would call “search results”).

➔ BatchMax step: 
◆ Split the N results into B batches containing n 

elements each. (N = B * n)
◆ Retrieve the maximum from each batch and fit a 

Gumbel distribution to the histogram.
◆ The resulting distribution is that of the loudest 

candidate over n templates.

➔ MaxProp step: 
◆ The loudest candidate over the N 

(possibly correlated) samples is the 
loudest candidate over B independent 
BatchMax samples.

◆ Let us call the step from n to N the 
max-propagation operator (MaxProp).

◆ But Gumbel is max-stable: Just add 
two numbers!

MaxProp
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BatchMax

where

for Gumbel it’s easy:

https://arxiv.org/abs/2111.12032


Glitch Recovery and Transient Mountains

Yim & Jones 
2007.05893
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● simple model: mountain forms at glitch,
causes recovery through external torque,
slowly dissipates again

● key parameter: “healing”

● same energy and SNR for large glitches 
with small recovery or small glitches with 
large recovery

● GW signal duration linked to EM-observed
recovery time: ~24 d for Crab and ~298 d 
for Vela (exponential decay times)

● If instead buildup of a mountain causes 
the glitch, would expect much shorter 
signals (e.g. ~400 s for Vela).

https://arxiv.org/abs/2007.05893


Search Methods for Long-Duration Transients

● Transient     -statistic: Known sky location, template grid in freq 
and spindown, search for peaks over transient map for each point.
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● STAMP: For very long-lived transient GWs. Unmodeled, without 
imposed fixed starting time nor waveform model. Analyse 
spectrogram from cross-correlated data of detectors.

● Viterbi: Dynamic programming algorithm based on a hidden 
Markov model (HMM), identifies seed pixels in spectrogram that 
lay above a threshold, and add neighboring pixels to create 
contiguous clusters.

● Others: Semicoherent searches and machine learning


