Tracking the origin of black holes with
the stochastic gravitational wave
background popcorn signhal

Sachiko Kuroyanagi
(IFT UAM-CSIC / Nagoya University)
8 June 2022

arXiv: 2201.13414

in collaboration with
Matteo Braglia and Juan Garcia-Bellido (IFT UAM-CSIC)



GWs from Binary Black Holes (BBHs)

Masses In the Stellar Graveyard
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90 BBHs have been observed! Event rate: 17.3 - 45 Gpc-3 yr-!



Stochastic GW background from BBHs

BBH event rate indicates the existence of
the stochastic GW background (SGWB)

possibly detectable by upgraded LVK detectors
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Stochastic GW background

Waveform

strain
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Continuous and random gravitational wave (GW) signal

coming from all directions — very similar to noise



Popcorn GW background

BBHs events do not overlap.
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Popcorn = Non-Gaussian background

Figure from Thrane, PRD 87, 043009 (201 3)

Does it help to tell whether the SGWB is
astrophysical or primordial BBH origin?



R(z)/R(0)

Primordial Black Holes (PBHs)

The difference from astrophysical BHs (ABHSs)
can be seen in the merger rate and mass function
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For PBH mass function, we consider

2. Standard-Model Thermal history (TM)
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For ABHs, we use
Pi(m1) oc 1/m7
Ps(m2) o< 1/mao
(Primary and Secondary mass)




Astrophysical Duty Cycle

How do we characterize a popcorn background?

AT : average time interval between two events
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For BBH, dD / dR dT
dz

we define df dz df
N s s
1 AT ~ — — z /3 11/3
AT o (B “mergerrate =7 ™ g T 9g.8/3 (G&C_) /
dz chirp mass

Fmax d_D £ <1 popcorn

Total duty cycle § = df

fmin

df £ > 1 continuous




Detector-dependent Duty Cycle

Things to take into account for real data

1. Mixture of large and small events

ﬁﬂm .

2. Existence of noise
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Do they contribute to the Duty Cycle? — No



Redshift

Detector-dependent Duty Cycle

New definition
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remove high redshift events with SNR < 1

Zzup IS determined by the horizon distance
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for a popcorn background (& <<1)

When &>>1, even events with SNR < 1
could accumulate and overcome the noise
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Result: SGWB spectrum

ABHs Astrophysical

Note: normalization is taken to explain
the rate of individual BBH events
(45 Gpc3yrt)
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dD/df[Hz ]

dD/df [Hz ]

Result: Duty Cycle (dD/df)
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Imagine the situation...

We detect a GW background by ET, but many models can predict
similar amplitude by tuning the model parameters.
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— Can we distinguish them by measuring the Duty Cycle?



dD/df[Hz ]

Yes, Duty Cycle helps

Solid: detector-independent Duty Cycle
Dotted: detector-dependent Duty Cycle (for ET)
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Almost an order of magnitude difference
— can be distinguished by GW experiments



Minimum detectable SNR

Paose

How do we measure the Duty Cycle?

1. CCI (Cross-Correlation search for Intermittent backgrounds): Drasco & Flanagan 2003
2. Use of sub-threshold events in template search: Smith & Thrane 2018
3. Machine Learning: with T. Yamamoto & G.G. Liu (paper in preparation)

1.4

1.2

1.01

0.8

0.6

NG

shallower CNN
deeper CNN
resnet

ol |- =i

T

k
;

ﬁ ;
—3.0 2.8 —2.6 24

2.2 —2.0
l0g10&

Duty cycle

Duty cycle
estimation

class index = <

(classification)

80

N
1

60

-40

True class

-20

1 2 3 4

Predicted class



Minimum detectable SNR

Paos

How do we measure the Duty Cycle?

1. CCI (Cross-Correlation search for Intermittent backgrounds): Drasco & Flanagan 2003
2. Use of sub-threshold events in template search: Smith & Thrane 2018
3. Machine Learning: with T. Yamamoto & G.G. Liu (paper in preparation)
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Advantage

1. CCI (Cross-Correlation search for Intermittent backgrounds): Drasco & Flanagan 2003

3. Machine Learning: with T. Yamamoto & G.G. Liu (paper in preparation)

CCI: Optimal detection statistics
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— ML is O(104-105) faster! Method Speed-up factor
Maximum likelihood 1
Shallower CNN 1.6 x 10°
Deeper CNN 48 x 104
Residual network 59 x 104




Summary

GWs from BBHs form a popcorn stochastic background

Astrophysical and Primordial origin predicts different
redshift distributions and mass functions of BBHs, which
make a difference in popcorn characteristics and help us to
distinguish the origin of BBHSs.

M. Braglia et al. arXiv: 2201.134 14

We have estimated the duty cycle for different BBH populations and
found that PBH tends to predict a larger duty cycle than astrophysical
BHs. The difference is sufficiently large to be distinguished by the
future GW observation.

T. Yamamoto et al. in prep.
We have applied machine learning for the detection of a popcorn
background and estimation of the duty cycle. It performs as well as the

conventional method and dramatically speed-up the computation!



