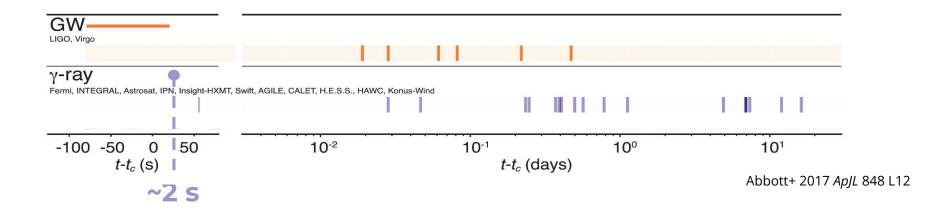
Rapid Online Estimation of Astrophysical Source Category and Compact Binary Parameters

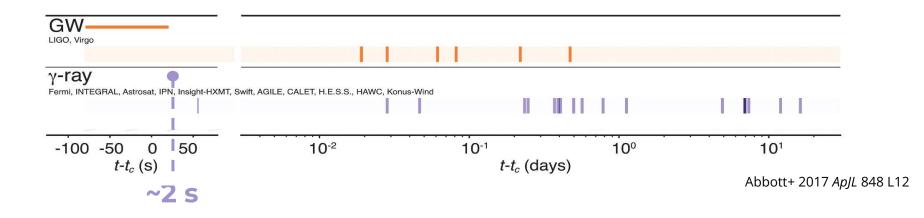
arXiv: 2203.10080

Verónica Villa-Ortega¹, T.Dent, A.Curiel

IGFAE, University of Santiago de Compostela

12th Iberian GW Meeting, 7th June 2022


¹veronica.villa@rai.usc.es


Motivation: Rapid Follow-up

First EM counterpart - GW170817: γ-ray burst with ~2 s latency

Motivation: Rapid Follow-up

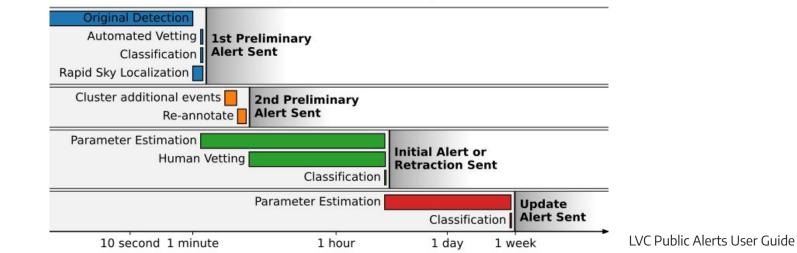
First EM counterpart - GW170817: γ-ray burst with ~2 s latency

Challenge

Look for events with potential EM or neutrino counterparts (high probability of containing a NS) in **very low-latency**

Candidates Identification

Searches perform candidate identification on two timescales:

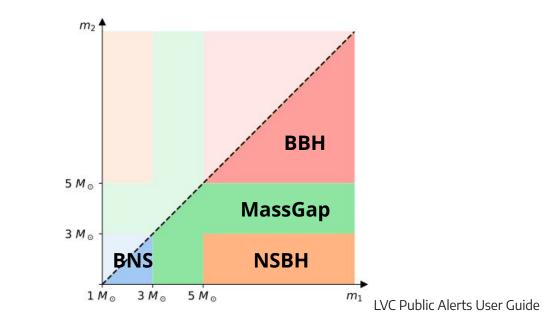

- **Low-latency** → Generates public alerts within minutes
- **Offline** → Reanalysis with better data quality and/or more detailed methods
 - Takes hours to weeks

Candidates Identification

Searches perform candidate identification on two timescales:

- Low-latency → Generates public alerts within minutes
- Offline → Reanalysis with better data quality and/or more detailed methods
 - Takes hours to weeks

Time since gravitational-wave signal

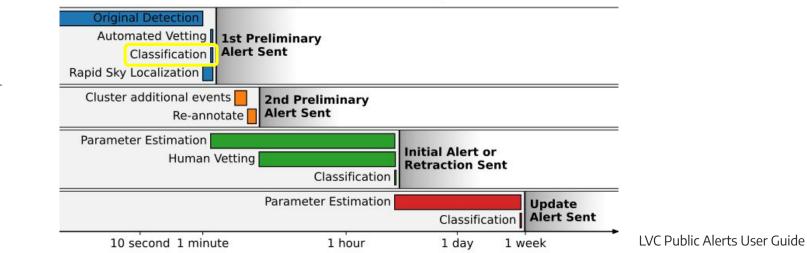


Source Classification of CBC

• Source Classification: probability that the source belongs to the different Astrophysical categories or is of Terrestrial origin

Source Classification of CBC

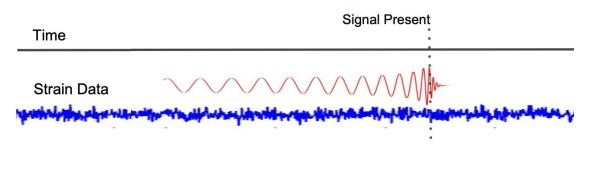
- Source Classification: probability that the source belongs to the different Astrophysical categories or is of Terrestrial origin
- Astrophysical Categories of CBC during O3: BNS, NSBH, MassGap, BBH

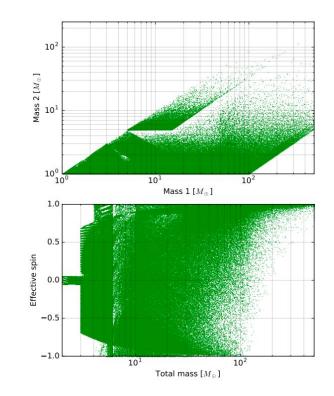


Candidates Identification

Searches perform candidate identification on two timescales:

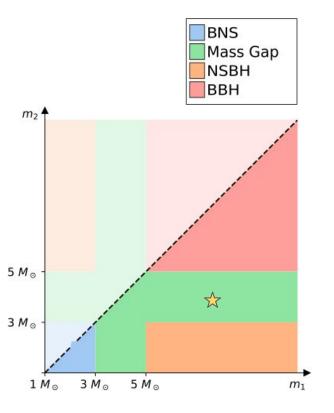
- Low-latency → Generates public alerts within minutes
- Offline → Reanalysis with better data quality and/or more detailed methods
 - Takes hours to weeks


Time since gravitational-wave signal

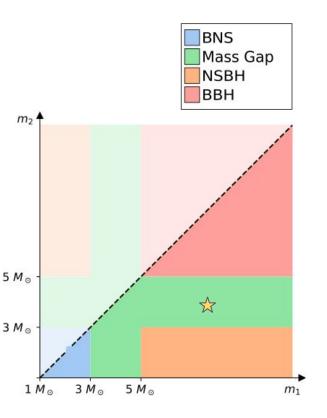

Source Classification in PyCBC Live

PyCBC Live:

- Online all-sky modelled search for CBC's
- Uses matched filtering with a bank of templates


• Each template has component masses and spins

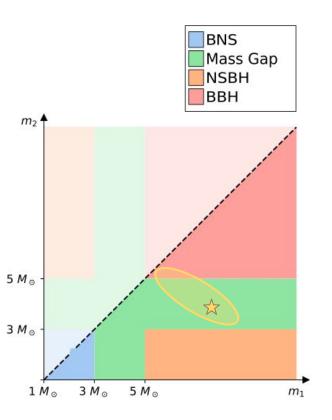
"Hard-cuts" method:


• Uses point (template) estimates of **component masses**

 $m_{1}^{} m_{2}^{}$

"Hard-cuts" method:

- Uses point (template) estimates of component masses
 m₁ m₂
- Assigns 100% to a single astrophysical class and 0% to the others

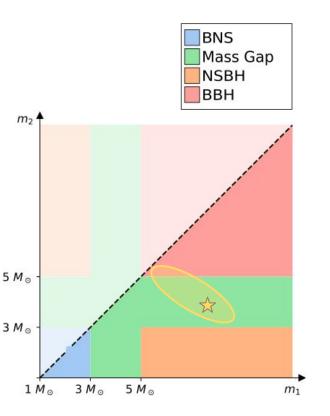


"Hard-cuts" method:

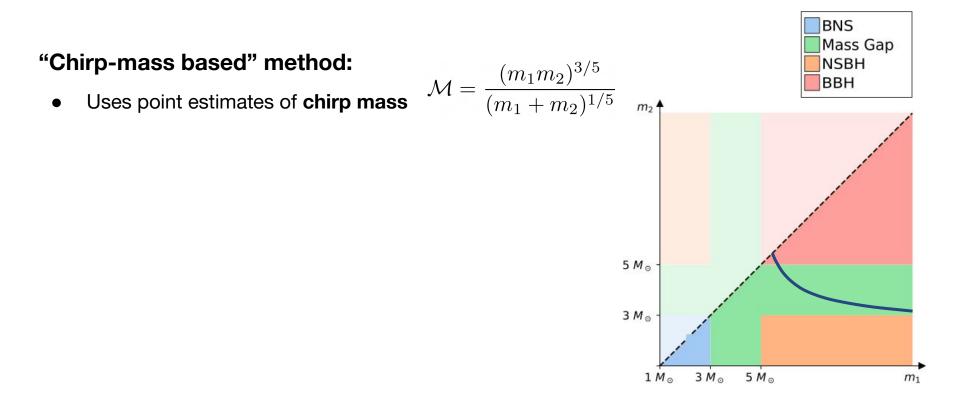
- Uses point (template) estimates of component masses
 *m*₁ *m*₂
- Assigns **100% to a single astrophysical class** and 0% to the others

Drawbacks:

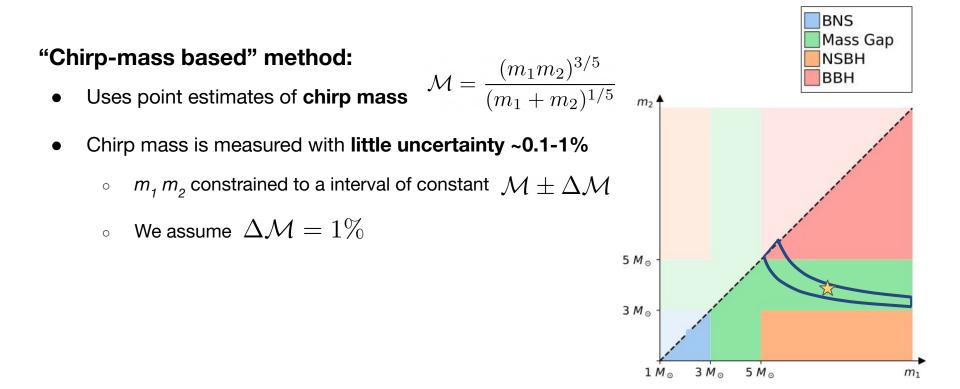
• Component masses have large uncertainties >10%

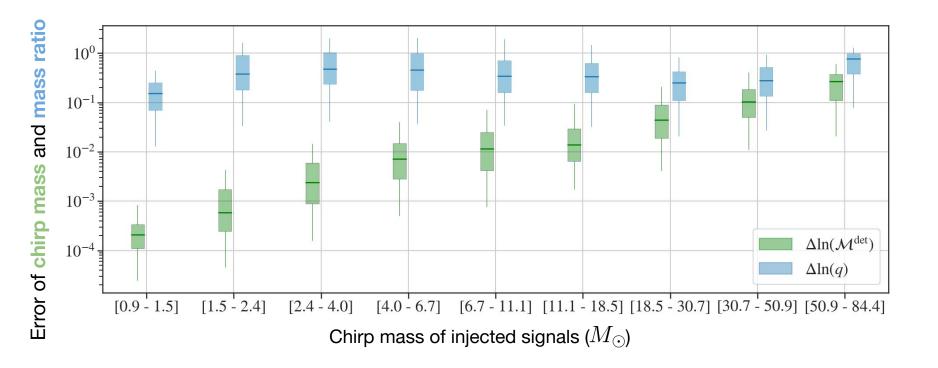


"Hard-cuts" method:

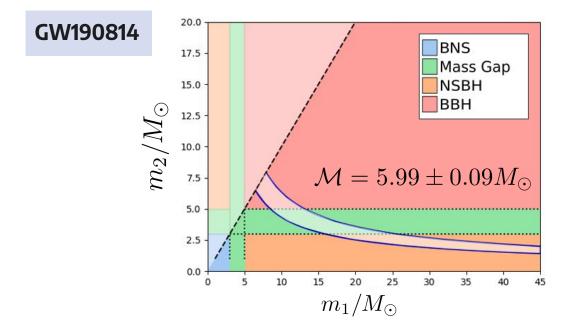

- Uses point (template) estimates of component masses
 *m*₁ *m*₂
- Assigns **100% to a single astrophysical class** and 0% to the others

Drawbacks:


- Component masses have large uncertainties >10%
- Does not account for redshift bias

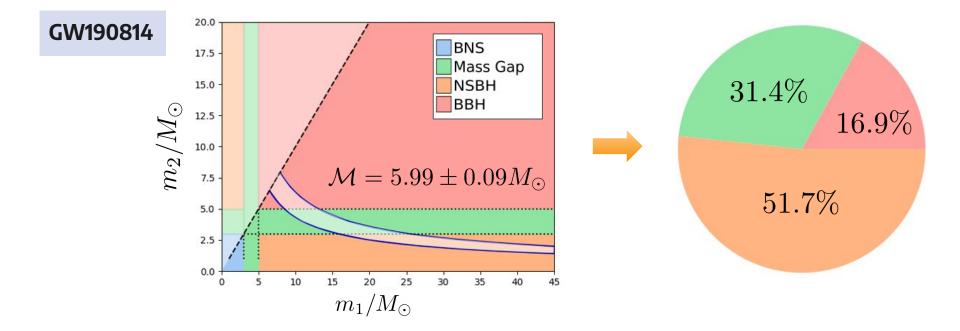

New Classification Method

New Classification Method


Uncertainties on template masses

Source Probabilities from Chirp Mass

Assuming **uniform density prior** of candidate signals over $m_1 m_2$ plane:


Probabilities proportional to the area of each region inside contour of chirp mass

Source Probabilities from Chirp Mass

Assuming **uniform density prior** of candidate signals over $m_1 m_2$ plane:

Probabilities proportional to the area of each region inside contour of chirp mass

• Pipeline template is **redshifted** compared to source chirp mass $\mathcal{M}_{tmpl} = \mathcal{M}_{src} \cdot (1+z)$

- Pipeline template is **redshifted** compared to source chirp mass $\mathcal{M}_{tmpl} = \mathcal{M}_{src} \cdot (1+z)$
- Redshift can be estimated from D_L (assuming a cosmology)

- Pipeline template is **redshifted** compared to source chirp mass $\mathcal{M}_{tmpl} = \mathcal{M}_{src} \cdot (1+z)$
- Redshift can be estimated from D_L (assuming a cosmology)
- **Problem:** PyCBC Live does not estimate D_L is computed later during Sky Localization

- Pipeline template is **redshifted** compared to source chirp mass $\mathcal{M}_{tmpl} = \mathcal{M}_{src} \cdot (1+z)$
- Redshift can be estimated from D_L (assuming a cosmology)
- **Problem:** PyCBC Live does not estimate D_L is computed later during Sky Localization

PyCBC Live recovers effective distances to the source:

$$D_{\text{eff},i} = D_{\text{L}} \left[F_{+,i}^2 \left(\frac{1 + \cos^2 \iota}{2} \right)^2 + F_{\times,i}^2 \cos^2 \iota \right]^{-1/2}$$

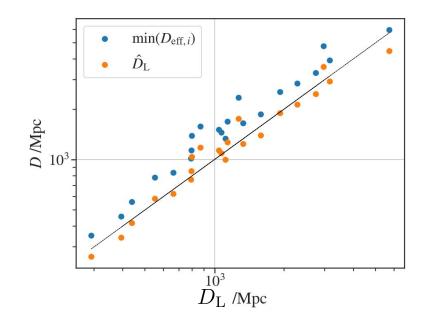
- Pipeline template is **redshifted** compared to source chirp mass $\mathcal{M}_{tmpl} = \mathcal{M}_{src} \cdot (1+z)$
- Redshift can be estimated from D_L (assuming a cosmology)
- **Problem:** PyCBC Live does not estimate D_L is computed later during Sky Localization

PyCBC Live recovers effective distances to the source:

$$D_{\text{eff},i} = D_{\text{L}} \left[F_{+,i}^2 \left(\frac{1 + \cos^2 \iota}{2} \right)^2 + F_{\times,i}^2 \cos^2 \iota \right]^{-1/2}$$

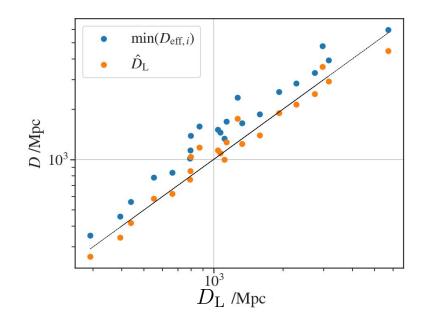
• One for each detector *i*

- Pipeline template is **redshifted** compared to source chirp mass $\mathcal{M}_{tmpl} = \mathcal{M}_{src} \cdot (1+z)$
- Redshift can be estimated from D_L (assuming a cosmology)
- **Problem:** PyCBC Live does not estimate D_L is computed later during Sky Localization

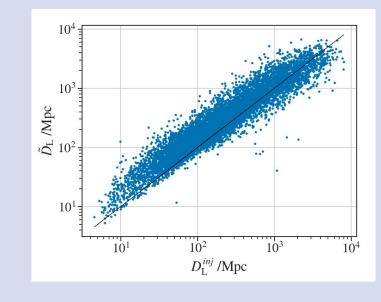

PyCBC Live recovers effective distances to the source:

$$D_{\text{eff},i} = D_{\text{L}} \left[F_{+,i}^2 \left(\frac{1 + \cos^2 \iota}{2} \right)^2 + F_{\times,i}^2 \cos^2 \iota \right]^{-1/2}$$

- One for each detector *i*
- $D_{\mathrm{eff},i} \geq D_\mathrm{L}$ so we can take the minimum one


Luminosity Distance Estimation

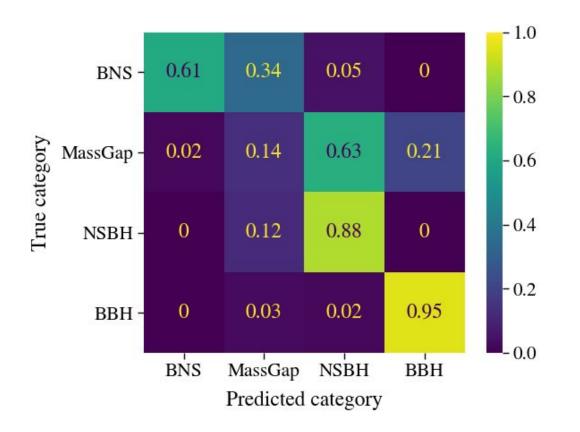
- We fit a relationship between estimated D_L and minimum effective distances
 - $\circ \quad \tilde{D}_{\rm L} = C_D \cdot \min(D_{{\rm eff},i})$
 - Data from O3a events



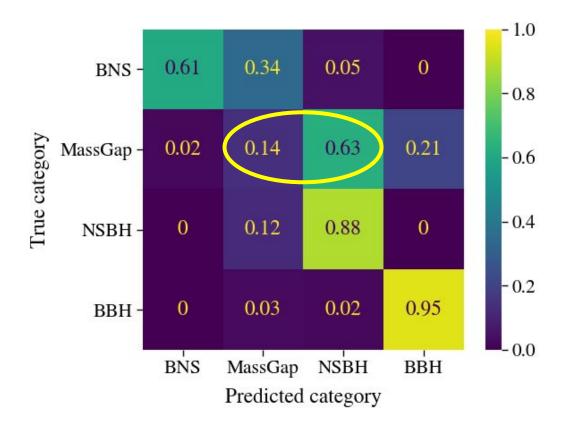
Luminosity Distance Estimation

- We fit a relationship between estimated D_L and minimum effective distances
 - $\circ \quad \tilde{D}_{\rm L} = C_D \cdot \min(D_{{\rm eff},i})$
 - Data from O3a events

Check with simulated signals

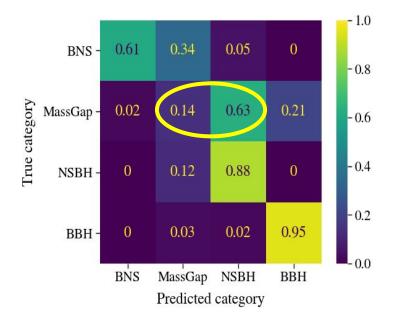


Method applied to simulated signals

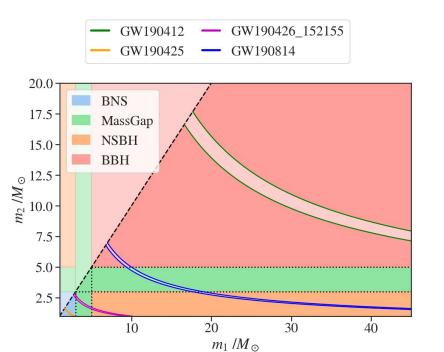

Simulated signals injected into O3a data recovered with PyCBC Live:

- m(NS) \in [1-3] M_{\odot}
- m(BH) ∈ [3-97] M_☉
- Uniform in chirp distance

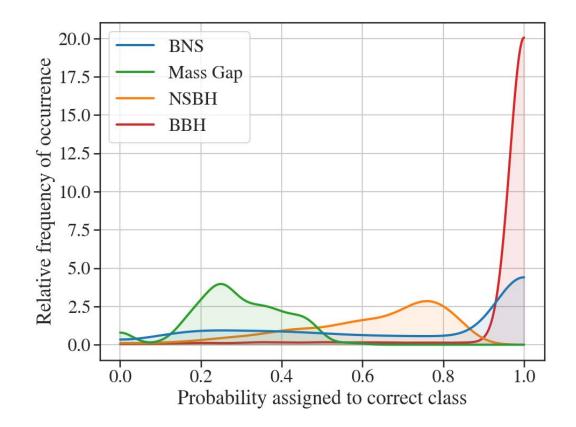
Confusion Matrix

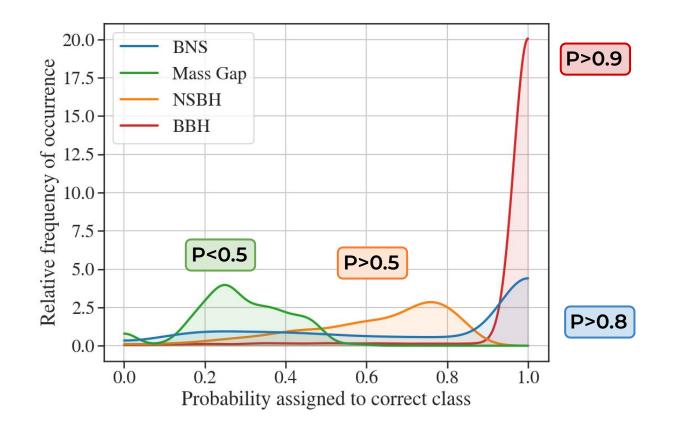


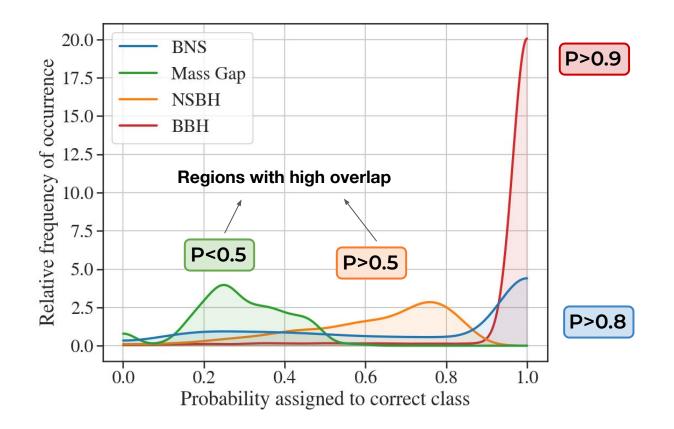
Confusion Matrix



MassGap and NSBH always overlap with other regions


Confusion Matrix


Overlap between regions


Kernel Density Estimation (KDE)

Kernel Density Estimation (KDE)

Kernel Density Estimation (KDE)

- Results for O3 events sent in LVC Public Alerts with chirp masses less than 9 M_o
- We compare probabilities (%) computed with **our method** with the ones sent on **LVC Public Alerts** and the ones from PE results for **catalogs GWTC-2** and GWTC-3

Event Name	Our method				Public Alerts				GWTC-2&3 PE					
	BNS	${ m MG}$	NSBH	BBH	BNS	\mathbf{MG}	NSBH	BBH	BNS	${ m MG}$	NSBH	BBH	$\mathcal{M}(M_{\odot})$	
GW190425	100	0	0	0	100	0	0	0	> 99	< 1	0	0	1.4	
$GW190426_{-}152155$	6	40	54	0	57	28	15	0^{a}	1	29	64	0	2.4	
					15	25	60	0^{b}						
GW190707_093326	0	46	7	47	0	0	0	100	0	< 1	0	> 99	8.5	
GW190720_000836	0	47	4	49	0	0	0	100	0	< 1	0	> 99	8.9	
GW190814	0	31	52	17	0	100	0	0^{a}	0	0	100	0	6.1	
					0	$<\!\!1$	> 99	0^{b}						
GW190924_021846	0	30	56	14	0	100	0	0	0	45	4	51	5.8	
$GW190930_{-}133541$	0	44	14	42	0	100	0	0	0	8	< 1	92	8.5	
GW200115_042309	7	41	52	0	0	100	0	0	< 1	28	71	0	2.4	
GW200316_215756	0	46	3	51	0	100	0	0	0	5	< 1	95	8.8	

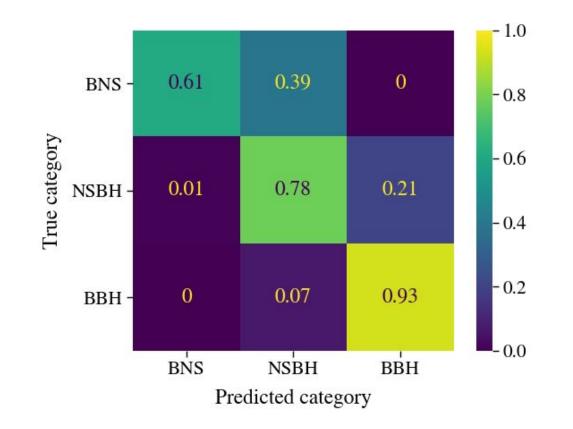
^a Initial Public Alert ^b Preliminary PE

Event Name		Our	method		Public Alerts				GWTC-2&3 PE				
	BNS	MG	NSBH	BBH	BNS	\mathbf{MG}	NSBH	BBH	BNS	MG	NSBH	BBH	$\mid \mathcal{M}(M_{\odot})$
GW190425	100	0	0	0	100	0	0	0	> 99	< 1	0	0	1.4
$GW190426_{-}152155$	6	40	54	0	57	28	15	0^{a}	1	29	64	0	2.4
					15	25	60	0^{b}					
GW190707_093326	0	46	7	47	0	0	0	100	0	< 1	0	> 99	8.5
GW190720_000836	0	47	4	49	0	8	0	100	0	< 1	9	> 99	8.9
GW190814	0	31	(52)	17	0	100	0	0^{a}	0	0	(100)	0	6.1
					0	H	> 99	0^{b}					
GW190924_021840	Û	30	56	14	Û	100	Û	Û	Û	45	4	51	$\overline{5.8}$
$GW190930_{-}133541$	0	44	14	42	0	100	0	0	0	8	< 1	92	8.5
$GW200115_042309$	7	41	52	0	0	100	0	0	< 1	28	71	0	2.4
$GW200316_{-}215756$	0	46	3	51	0	100	0	0	0	5	< 1	95	8.8

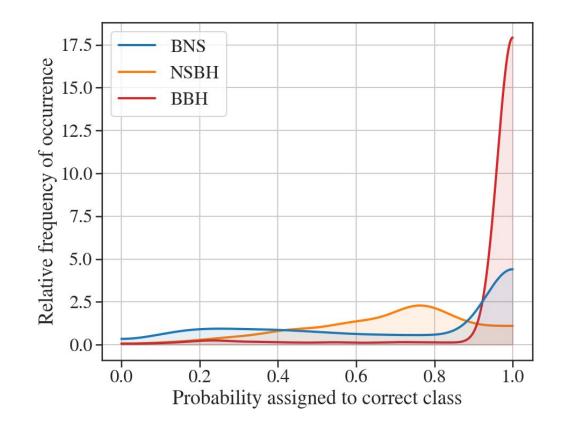
^a Initial Public Alert ^b Preliminary PE

Event Name	Our method				Public Alerts				GWTC-2&3 PE				
	BNS	${ m MG}$	NSBH	BBH	BNS	\mathbf{MG}	NSBH	BBH	BNS	${ m MG}$	NSBH	BBH	$\mid \mathcal{M}(M_{\odot})$
GW190425	100	0	0	0	100	0	0	0	> 99	< 1	0	0	1.4
GW190426_152155	6	40	54	0	57	28	15	0^{a}	1	29	64	0	2.4
					15	25	60	0^{b}					
GW190707_093326	0	46	7	47	0	0	0	100	0	< 1	0	> 99	8.5
GW190720_000836	0	47	4	49	0	0	0	100	0	< 1	0	> 99	8.9
GW190814	0	31	52	17	0	100	0	0^{a}	0	0	100	0	6.1
					0	$<\!\!1$	> 99	0^{b}					
GW190924_021846	0	30	56	14	0	100	0	0	0	45	4	51	5.8
GW190930 133541	0	44	14	42	0	108	0	0	0	8	<u>~1</u>	92	8.5
GW200115_042309	7	41	52	0	0	100	0	0	< 1	28	71	0	2.4
GW200316_215756	0	46	3	51	0	100	0	0	0	5	< 1	95	8.8

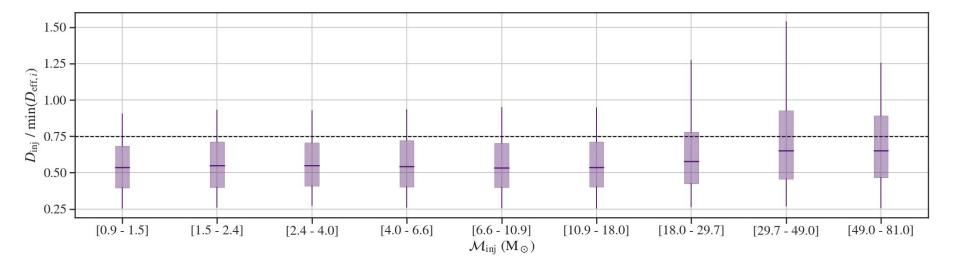
^a Initial Public Alert ^b Preliminary PE

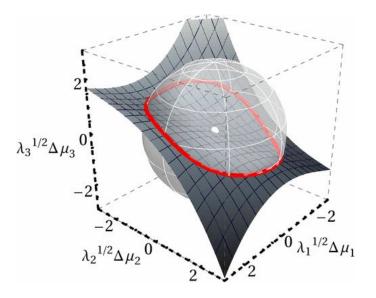

Summary

- We developed a new Source Classification method that improves the previous "hard-cuts":
 - Offers a spectrum of probabilities
 - Accounts for redshift bias by estimating the source distance
- The method is **implemented in PyCBC Live** and it is available to run in O4
- Only adds <50 ms to the latency of the pipeline very low-latency
- Next step:
 - To obtain a more accurate classification, we are investigating how to include information on the **binary mass ratio** *q* and account for **component spins**
 - For that we are considering a higher dimensional parameter space

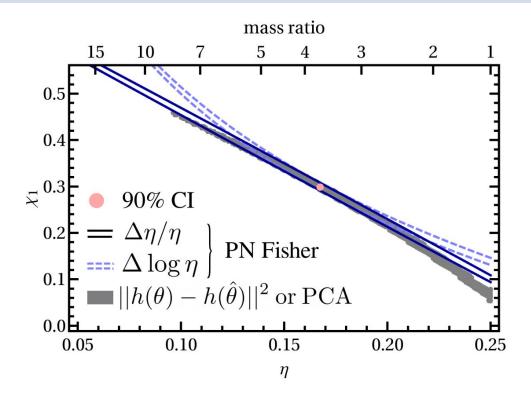

Thank you for your attention!

EXTRA SLIDES


Results without MassGap


Results without MassGap

Check of distance fit with injections



Future Work

Expect to get better estimates of parameter errors by computing template mismatches in higher dimensional space

- (space based on PN coefficients)

Ohme et al 2013 PRD 88 042002