Narrowband searches for continuous and long-duration transient gravitational waves from known pulsars in the LIGO-Virgo third observing run

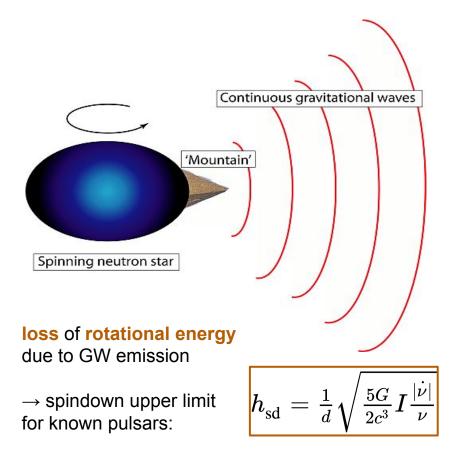
David Keitel on behalf of the LIGO-Virgo-KAGRA collaborations

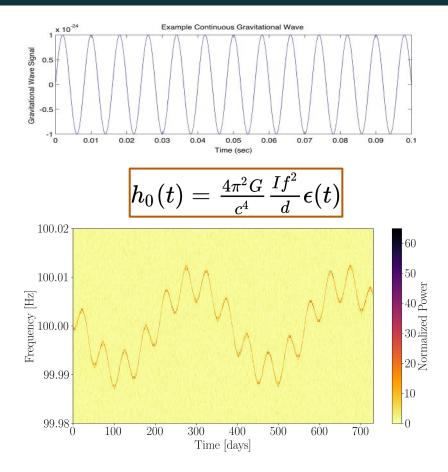
Universitat de les Illes Balears

based on results from Abbott et al., <u>arXiv:2112.10990</u> (ApJ accepted)

5

david.keitel@ligo.org DCC:LIGO-G2200833-v2 Iberian GW Meeting, 08 June 2022


[Submitted on 21 Dec 2021]

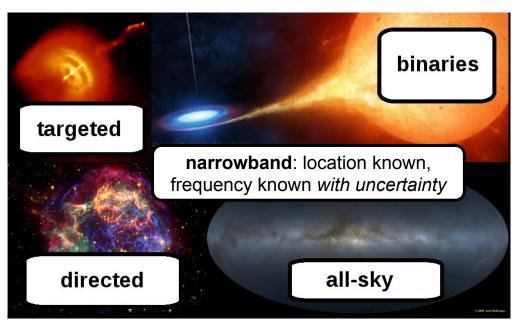

Narrowband searches for continuous and long-duration transient gravitational waves from known pulsars in the LIGO-Virgo third observing run

The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration: R. Abbott, T. D. Abbott, F. Acernese, K.

arxiv.org/abs/2112.10990

Gravitational waves from neutron stars

Gravitational waves from neutron stars


• Measured strain *h*(*t*) depends on intrinsic spin-down, Doppler effect between source and Earth, antenna response pattern:

 $\Rightarrow h(t, h_0, f, df/dt, \ldots, \alpha, \delta)$

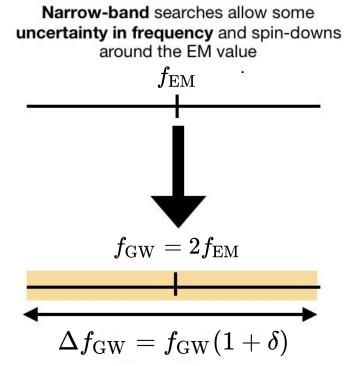
(+extra parameters for NSs in binaries)

- Matched-filter searches are effective, but need to sample parameter space very finely.
- Signal-to-noise increases with $\sqrt{T_{obs}}$, computing cost much faster.

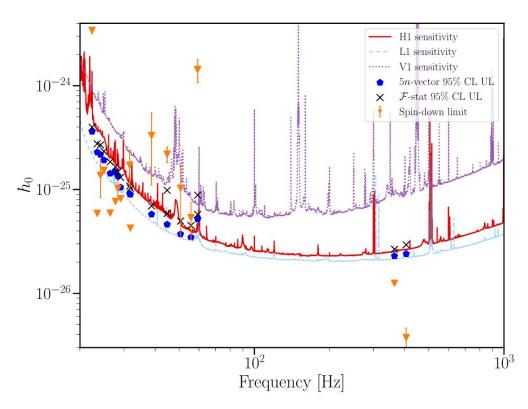
 Ideal search algorithm and strategy depends on target and computing budget.

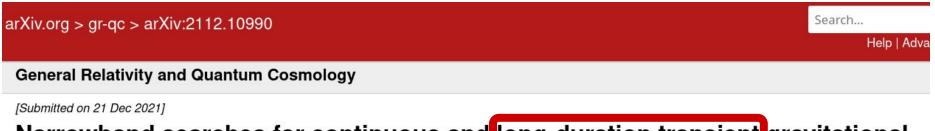
 recent review: Tenorio, Keitel & Sintes <u>Universe 2021, 7(12), 474</u>: "Search methods for continuous gravitational-wave signals from unknown sources in the advanced-detector era"

O3 narrowband searches [Abbott+ 2112.10990]


- 2 fully-coherent matched filter pipelines:
- 5n-vector search (Mastrogiovanni+ <u>1703.03493</u>, already used for O2, Abbott+ <u>PRD99,122002</u>)
- → search using *F* -stat (new for narrowband, code from Wette+ <u>1804.03392</u>)

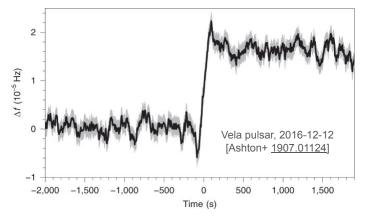
GW data: full 3rd observing run from 3 detectors (LIGO H+L, Virgo), April 2019 to March 2020 (break in October 2019)


EM data: ephemerides from Jodrell Bank Observatory, Nançay Radio Telescope, UTMOST, MeerTime, CHIME, NICER, Mt. Pleasant Observatory


selected **18 isolated pulsars**, including Crab and Vela, with GW frequencies between 20 and 700 Hz

CW narrowband results: upper limits

- No remaining outliers (after excluding detector artifacts).
- 95% confidence upper limits on strain h_0
- More constraining than spindown limits for 7 pulsars, J1105-6107 and J1913+1011 for the first time.



Narrowband searches for continuous and long-duration transient gravitational waves from known pulsars in the LIGO-Virgo third observing run

The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration: R. Abbott, T. D. Abbott, F. Acernese, K.

arxiv.org/abs/2112.10990

GWs from pulsar glitches [Prix+ 1104.1704]

Pulsar glitch: frequency suddenly increases!

- The glitch could be associated to a change in quadrupole moment of the pulsar, which could also lead to GW emission.
- Assuming all the energy is emitted through GWs, one can compute the indirect upper limit ' on emitted GW energy and amplitude: total energy released in glitch.

glitch excess energy upper limit

$$h_0 \leq rac{1}{d} \sqrt{rac{5G}{2c^3} rac{\mathcal{I}}{ au}} rac{\Delta f_{ ext{gl}}}{f}$$

SNR increases with same sqrt(τ) scaling as h₀ upper limit
 → same basic detectability
 for short or long transients

• compare with spindown UL for CWs:

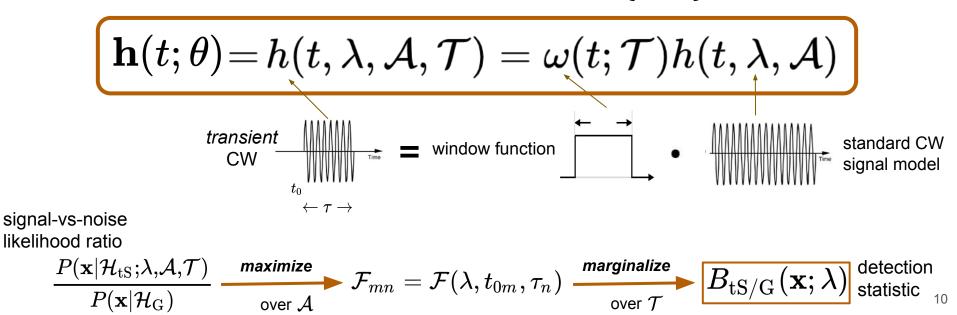
$$h_{
m sd}=rac{1}{d}\sqrt{rac{5G}{2c^3}Irac{|\dot
u|}{
u}}$$

Previous GW glitch searches

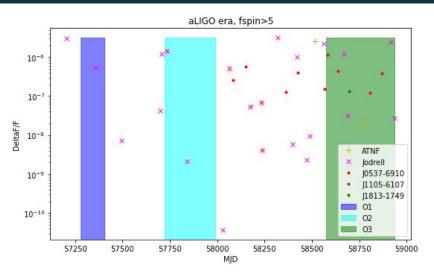
 h_0

- search for *short-duration transients* (bursts) from Vela glitch in 2006 [Abadie+ <u>1011.1357</u>], all sky search for short-duration transients [Abbott+ <u>2107.03701</u>]
- search for long-duration transients from Vela & Crab glitches during O2 [Keitel+ 1907.04717] (using Prix+ 1104.1704 method) Crab Vela 10^{-24} 10^{-23} $\stackrel{o}{\varkappa}$ 10^{-25} glitch excess energy glitch excess energy search sensitivity estimate search sensitivity estimate ULs from injection recovery ULs from injection recovery 10^{-26} O1 CW UL $(T_{obs} = 121 d)$ 10^{-24} O1 CW UL $(T_{obs} = 121 d)$ O2 CW UL $(T_{obs} = 232 d)$ O2 CW UL $(T_{obs} = 151 \, d)$ 10^{2} 10^{0} 10^{1} 10^{0} 10^{1} 10^{2} τ [days] τ [days]

O3 search based on procedures in Keitel+ <u>1907.04717</u>.


Detecting "transient continuous waves" [Prix+ 1104.1704]

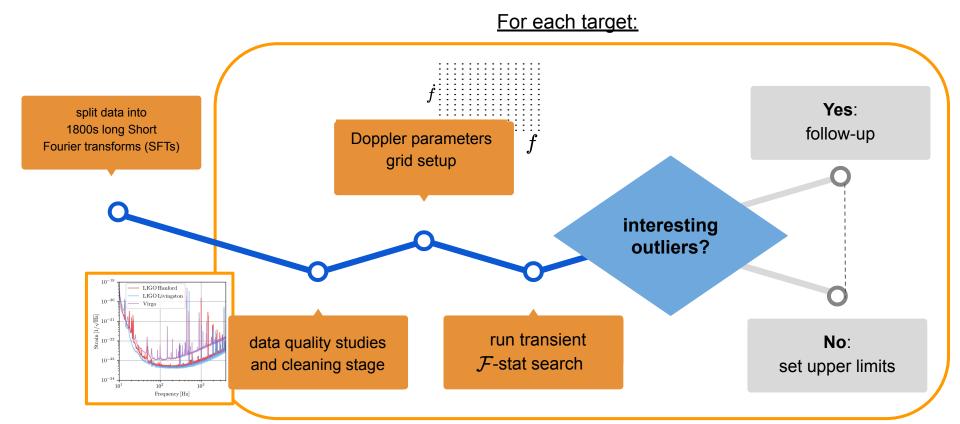
CW signals depend on phase (Doppler effect due to Earth's motion, source frequency and spindowns)


and amplitude parameters (signal amplitude, source orientation):

$$\lambda = \{lpha, \delta, f, \dot{f}, \ddot{f} \dots \} \qquad \mathcal{A} = \{h_0, \cos \iota, \psi, \phi_o\}$$

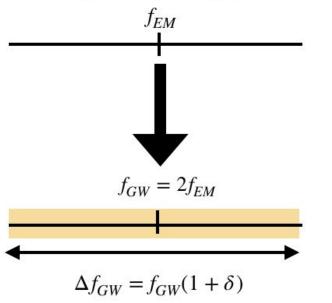
add transient parameters: $\mathcal{T} = \{t_0, au\}$

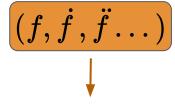
O3 Post-glitch target selection

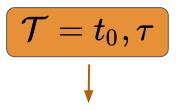

Glitching pulsars are rare, so we target all during O3 with decent f_{GW} , regardless of energy constraint [Prix+ <u>1104.1704</u>].

Ephemerides provided by radio and X-ray observing partners (Jodrell Bank, UTMOST, NICER).

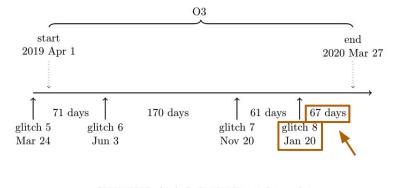
J0534+2200 "the Crab"	J0537-6910 "big glitcher"	J0908-4913	J1105-6107	J1813-1749	J1826-1334
$f_{\scriptscriptstyle GW}$ ~ 60 Hz	<i>f_{GW}</i> ∼ 123 Hz	$f_{\scriptscriptstyle GW}$ ~ 19 Hz	<i>f_{GW}</i> ∼ 31 Hz	<i>f_{GW}</i> ∼ 45 Hz	<i>f_{GW}</i> ∼ 20 Hz
glitched on 2019/07/23	4 glitches for O3, ± (3–8) days	glitched ~ 2019/10/09 ± 4.5 days	glitched ~ 2019/04/09 ± 2 days	glitched ~ 2019/08/03 ± 1 day	glitched ~ 2020/01/31 ± 21 days

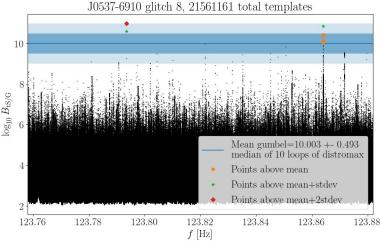

extra targets not searched: J2021+3651 (glitch time too uncertain: ±114 days); J1801-2451 (glitched before O3, low freq)


Transient search: general procedure


Transient search: setup [Modafferi+ 2201.08785]

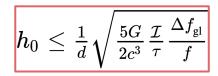
Narrow-band searches allow some uncertainty in frequency and spin-downs around the EM value

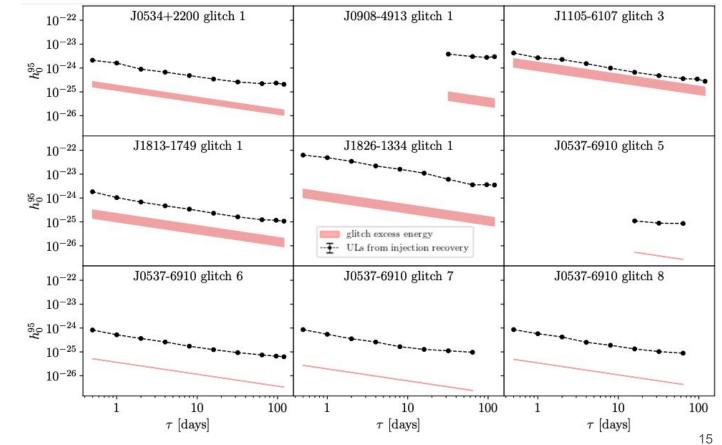

- narrow-band approach: allow mismatch between the true GW frequency and its nominal value
- **template bank**: metric grid in $(f, \dot{f}, \ddot{f}...)$ where the number of spindowns depends on the ephemerides



- search for transients starting in a range centered at the glitch time with width ΔT_{glitch} (~days)
- transient durations τ up to 4 months
- window function: rectangular (no amplitude evolution)

Transient search: results and outliers


- get detection threshold from the expected distribution in the absence of a signal (distromax method [Tenorio+ 2111.12032])
- 8 out of 9 searches: no outliers above threshold
- J0537-6910 glitch 8 search: found 2 marginal outliers
- signal durations of 60 and 45 days, signal-to-noise ratios 6 7
- **they pass several vetoes**: no known/unknown lines nearby, time evolution of spectra also clean, H1–L1 consistency...
- multiple follow-ups with independent codes also see these, but at low/negligible significance
 - \rightarrow cannot be ruled out decisively, but not exciting.



Transient search: upper limits results

- injections of simulated signals at different durations τ
- for each τ get h_0^{95}

glitch excess energy [Prix+ <u>1104.1704</u>]

O3 narrowband CW & tCWs conclusions arxiv.org/abs/2112.10990

- Narrow-band searches for continuous gravitational waves from 18 pulsars:
 - **No evidence for GWs**, no remaining outliers.
 - Upper limits for 7 target below indirect spin-down limits (including 2 pulsars for the first time).
- Narrow-band searches for **post-glitch transient gravitational waves** from 6 pulsars (9 glitches):
 - Two remaining marginal outliers, **but no clear evidence of GWs**.
 - Upper limits were set, all above indirect energy constraints.
 (closest to beating those: within factor 1.6 for J1105–6107)
- Future outlook: O4 run will make all CW searches more sensitive, and should also bring first glitches within reach of beating indirect limits. (details in slides from Joan Moragues' talk yesterday)

Acknowledgements

Thank you for listening!

david.keitel@ligo.org

David Keitel is supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (ref. BEAGAL 18/00148) and cofinanced by the Universitat de les Illes Balears, and acknowledges support by European Union FEDER funds; the Spanish Ministerio de Ciencia e Innovación and the Spanish Agencia Estatal de Investigación grants No. PID2019-106416GB-I00/AEI/MCIN/10.13039/501100011033, RED2018-102661-T, RED2018-102573-E; the Comunitat Autònoma de les Illes Balears through the Conselleria de Fons Europeus, Universitat i Cultura and the Direcció General de Política Universitaria i Recerca with funds from the Tourist Stay Tax Law ITS 2017-006 (No. PRD2018/24, No. PRD2020/11); the Generalitat Valenciana (No. PROMETEO/2019/071); and EU COST Actions CA18108, CA17137, CA16214, and CA16104.

See https://dcc.ligo.org/P2100218/public for LVK acknowledgments.

