Action-Angle formalism for geodesic motion in Kerr spacetime

Morteza Kerachian

Astronomical Institute of the CAS
Prague, Czech Republic

12th Iberian Gravitational Waves Meeting June 6, 2022

Outline

- What is the EMRI?
- Two timescale analysis.
- Action-angle (AA) formalism.
- Canonical perturbation theory.
- Kerr geodesic Hamiltonian in the AA variables.

What is an EMRI? and why EMRI's?

- Extreme mass ratio inspirals (EMRI's): a primary supermassive $\mathrm{BH} M$, and a secondary much lighter compact stellar object μ.

- The mass ratio $q=\frac{\mu}{M} \sim\left(10^{-7}-10^{-4}\right)$.

■ Inspirals occurs slowly, on the time scale $\tau \sim 1 / q$.

- Secondary spends $\sim 10^{4}-10^{5}$ orbits within LISA band.
- EMRI's are one the most promising sources of gravitational for LISA.
- Detailed map of the supermassive BH.

Modeling the EMRI's

To model an EMRI, we use the two time scale approximation. (T. Hinderer \& E E. Flanagan, PRD, 2008)

■ The slow time scale: evolution of the constants of motion $\left\{E, L_{z}, Q\right\}$.

- The fast time scale: orbital phases of the secondary. In the action-angle variables

■ Constants of motion $\boldsymbol{J}_{\boldsymbol{i}}=\left\{J_{t}, J_{r}, J_{\theta}, J_{\phi}\right\}$
■ Fundamental frequencies of geodesic motion $\Omega_{r}, \Omega_{\theta}, \Omega_{\phi}$.
From canonical perturbation theory, we derived a closed form expressions for the actions!

Hamiltonian in action-angle variables

For a bounded motion when the system is integrable, there exist a canonical transformation

$$
(\boldsymbol{q}, \boldsymbol{p}) \xrightarrow{\mathrm{CT}}(\boldsymbol{\psi}, \boldsymbol{J}) \quad \Longrightarrow \quad H(\boldsymbol{q}, \boldsymbol{p}) \rightarrow H_{A A}(\boldsymbol{J})
$$

where

$$
J_{i}=\frac{1}{2 \pi} \oint p_{i} d q_{i}
$$

From Hamilton equations:

$$
\begin{aligned}
\dot{J}_{i} & =-\frac{\partial H_{A A}}{\partial \psi_{i}}=0 & \Longrightarrow & J_{i}(\lambda)=\text { Const. } \\
\dot{\psi}_{i} & =\frac{\partial H_{A A}}{\partial J_{i}}=\Omega_{i} & \Longrightarrow & \psi_{i}(\lambda)=\Omega_{i} \lambda+\psi_{i}(0)
\end{aligned}
$$

Geodesic motion in Kerr background in AA variables

■ Hamiltonian In the Boyer-Lindquist coordinates \& Mino time

$$
\begin{gathered}
H_{\lambda}=\frac{1}{2}\left(\Delta p_{r}^{2}-\frac{\left(\left(r^{2}+a^{2}\right) p_{t}+a L_{z}\right)^{2}}{\Delta}+r^{2}\right) \\
+\frac{1}{2}\left(p_{\theta}^{2}+a^{2} \cos ^{2} \theta+\frac{\left(L_{z}+a \sin ^{2} \theta p_{t}\right)^{2}}{\sin ^{2} \theta}\right)
\end{gathered}
$$

■ Mino time is applied to separate the radial and angular parts.

$$
\begin{aligned}
J_{t} & =\frac{1}{2 \pi} \oint p_{t} d t=-E \\
J_{r} & =\frac{1}{2 \pi} \oint p_{r} d r=? \\
J_{\theta} & =\frac{1}{2 \pi} \oint p_{\theta} d \theta=? \\
J_{\phi} & =\frac{1}{2 \pi} \oint p_{\phi} d \phi=L_{z}
\end{aligned}
$$

Polar-nodal coordinates

Canonically transformed to polar-nodal coordinate

$$
\left\{r, \theta, \phi, p_{r}, p_{\theta}, p_{\phi}\right\} \rightarrow\left\{r, u, \nu, p_{r}, L, L_{z}\right\}
$$

Kerr geodesics in polar-nodal coordinates

Canonical perturbation theory

- In the Birkhoff normal form theory we assume:

$$
H^{(0)}\left(\psi_{i}, J_{i}\right)=Z_{0}\left(J_{i}\right)+\sum_{k=1}^{N} \epsilon^{k} H_{k}^{(0)}\left(\psi_{i}, J_{i}\right),
$$

■ We apply the Lie series to the Hamiltonian:
$H^{(1)}=L_{\chi} H^{(0)}=Z_{0}\left(J_{i}\right)+\epsilon Z_{1}^{(0)}\left(J_{i}\right)+\epsilon^{2} H_{2}^{(0)}\left(\psi_{i}, J_{i}\right)+\mathcal{O}\left(\epsilon^{3}\right)$,
where $L_{\chi} f=\sum_{k=0}^{\infty} \frac{\epsilon^{k}}{k!} \mathcal{L}_{\chi}^{k} f$ and $\mathcal{L}_{\chi} f=\{f, \chi\}$.

- In a similar fashion, we can apply n Lie series:

$$
\begin{aligned}
H^{(n)} & =L_{\chi_{n}}^{n} L_{\chi_{n-1}}^{n-1} \ldots L_{\chi_{2}}^{2} L_{\chi} H^{(0)} \\
& =Z_{0}\left(J_{i}\right)+\epsilon Z_{1}^{(n)}\left(J_{i}\right)+\ldots \epsilon^{n} Z_{n}^{(n)}\left(J_{i}\right)
\end{aligned}
$$

Why Lie series?

■ Lie series is are canonical transformations.

- We can express the old variables in terms of the new variables:

$$
\begin{aligned}
\psi_{i}^{(0)} & =L_{\chi_{n}}^{n} L_{\chi_{n-1}}^{n-1} \ldots L_{\chi_{2}}^{2} L_{\chi} \psi_{i}^{(n)} \\
J_{i}^{(0)} & =L_{\chi_{n}}^{n} L_{\chi_{n-1}}^{n-1} \ldots L_{\chi_{2}}^{2} L_{\chi} J_{i}^{(n)}
\end{aligned}
$$

- New variables in terms of the old ones:

$$
\begin{aligned}
\psi_{i}^{(n)} & =L_{-\chi} L_{-\chi_{2}}^{2} \ldots L_{-\chi_{n-1}}^{n-1} L_{-\chi_{n}}^{n} \psi_{i}^{(0)}, \\
J_{i}^{(n)} & =L_{-\chi} L_{-\chi_{2}}^{2} \ldots L_{-\chi_{n-1}}^{n-1} L_{-\chi_{n}}^{n} J_{i}^{(0)} .
\end{aligned}
$$

- The resulting relations from the Lie series are in closed form! There are simple analytical relations without any integral, Hypergeometric function and etc.

Results

- We applied 10 canonical transformation for the radial part and 7 canonical transformation for the angular part.
- We derived the new Hamiltonian in the action-angle variables:

$$
H_{A A}\left(J_{i}\right)=C_{1} J_{t}+C_{2} J_{r}+C_{3} J_{L}+C_{4} J_{z}
$$

- From the Hamilton equations the radial and angular frequencies are obtained:

$$
\Omega_{r}=\frac{\partial H_{A A}}{\partial J_{r}}, \quad \Omega_{L}=\frac{\partial H_{A A}}{\partial J_{L}} .
$$

■ We derived the relative errors of the new actions and frequencies with their numerical values.

Figure: The radial action J_{r} in terms of the old variables for different numbers of the CT for a system with $a=0.99, e=0.4, p=10$, and the initial inclination $\iota_{0}=\pi / 8$.

Figure: The angular action J_{L} in terms of the old variables for different numbers of the CT for a system with $a=0.99, e=0.4, p=10$, and the initial inclination $\iota_{0}=\pi / 8$.

Accuracy of the new system

- The relative errors for a system $\left\{p, \iota_{0}\right\}=\{10, \pi / 8\}$ for the Kerr parameter $0<a \leq 0.99$ and the eccentricity $0<e \leq 0.5$ are

$$
\begin{aligned}
\text { maximum error } & \Longrightarrow 0.1 \leq e \leq 0.5 \\
\mathcal{O}\left(\Delta J_{r}\right)_{\max } & \Longrightarrow\left\{10^{-10}, 10^{-4}\right\} \\
\mathcal{O}\left(\Delta \Omega_{r}\right)_{\max } & \Longrightarrow\left\{10^{-12}, 10^{-4}\right\} \\
\mathcal{O}\left(\Delta J_{L}\right)_{\max } & \Longrightarrow\left\{10^{-11}, 10^{-9}\right\}, \\
\mathcal{O}\left(\Delta \Omega_{L}\right)_{\max } & \Longrightarrow\left\{10^{-12}, 10^{-8}\right\}
\end{aligned}
$$

(phase shift error \times number of cycles) ~ 0.1 radian

Further researches \& summary

- EMRI's can be detected by LISA.
- Two timescale approximation provides efficient framework for generation waveforms.
- From Lie series we derived the Hamiltonian in the action variables.
- Our expressions are in closed forms with sufficient accuracy for LISA.
work in progress
■ Use Teukolsky equation to generates the fluxes.
- Study the whole inspirals in the LISA band.

Thanks for your attention!

