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GWTC-3: the family is getting larger
When:  Incorporate events detected in the 

second half of the 3rd observing run, from 1 

November 2019, 15:00 UTC and 27 March 
2020, 17:00 UTC 
Where: Livingston, Hanford, Virgo (Kagra will 

join in O4, brief observing run of two weeks 
in April 2020) 
What: 35 new compact binaries, 17 of which 

reported for the first time -> Total number of 
events for GWTC-3 is 90!



Better instruments, better data
- Constant improvements to the instruments 

Increased duty cicle: full network was in observing mode 
for 51.0% of the time in O3b (vs 44.5% in O3a) 
Increased BNS inspiral range (the maximum distance at 
which a fiducial BNS system could be detected)

Credit: LIGO-Caltech



Black holes of all sizes

LIGO-Virgo-Kagra 
Collaboration arXiv: 

arXiv:2111.03606

- All three types of ‘canonical’ compact binaries have 
been observed in different observing runs 

- Huge variety of source parameters, lots of stress-tests 
for current models —> big motivation for constant 
upgrades!



Implications for tests of GR

• More stringent combined bounds expected due to the increased number of 
events 

 

• Increased computational burden -> need to focus on loudest / most suitable 
events (depending on type of test) 

• More non-vanilla events for which even GR models deliver contrasting results

NEGATIVE

POSITIVE



Was Einstein wrong? 

• Through genuine beyond-GR/exotic templates 
Scarcity of templates, though catalogs of exotic waveforms are growing.  Can deep 
learning come to the rescue? [Freitas+ arXiv:2203.01267v1] 

PE on real data was using non-BH templates: e.g. GW190521(Bustillo+ PRL 126, 081101 (2021)). 
Discreteness of templates makes Bayesian inference tasks more subtle 

• Common concerns raised about alternative theories of GR: 

• Stability  

• Well-posedness? Progress made in the weak-coupling limit (Okounkova+ PRD 96, 
044020 (2017), Kovács&Reall, PRD 101, 124003 (2020)) 

• Parametrised tests are common but they come with caveats



Where can we look for 
departures from GR?



Caltech/MIT/LIGO Lab



...or...?
h+, h×

APS/Alan Stonebraker

Consistency tests

Inspiral-
merger-ringownResiduals

Polarization

Generation

Tests of BH nature

?
Propagation



Tests based on PN

Ringdown tests, 
echoes...

LIGO-Virgo PRL 116, 061102 (2016) 




Residuals tests
• Compute 90% credible upper limit on the left-

over coherent network SNR after subtraction 
of  of fiducial template in a window of 
~1s around the trigger 

• For each event perform hundreds (200 for 
GWTC-3) additional runs on time segments 
near the trigger -values: 

 

• Measurements consistent with null hypothesis 
within current uncertainties

max ℒ

→ p
p = P(SNRn

90 ≥ SNR90)
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SNRs for individual events, which is equal to the probability
of obtaining a background value of SNR90 higher than that of
the event. We perform the analysis on all the events listed in
Table II.

The results from the residual analysis are summarized in
Table III. For each event, we have presented the SNR of
the best-fit waveform SNRGR, SNR90, fitting factor FF90 =
SNRGR /(SNR2

90 + SNR2
GR)1/2, and p-values calculated from

the background analysis. To analyze the trends between
SNR90 and SNRGR, in Fig. 1 we present the scatter of SNR90
and SNRGR. The absence of correlation between SNR90
and SNRGR in the figure indicates that data is consistent
with GR templates and the values of SNR90 depend purely
on the noise levels in the detectors at the detection of in-
dividual events. GW191222 033537 shows the highest p-
value = 1.0 with SNR90 = 4.87 and FF90 = 0.93. Even though,
GW200219 094415 has the lowest fitting factor FF90 = 0.74
with SNR90 = 10.23, its p-value = 0.1 is slightly above
the lowest p-value = 0.05 which corresponds to the event
GW200225 060421.

If the left-over coherent network SNR were purely from
detector noise, we should expect the SNR90 p-values to be
uniformly distributed within [0, 1]. To demonstrate the consis-
tency of the observed p-values with the noise (null) hypothesis,
in Fig. 2, we present a probability–probability (PP) plot of
the p-values 2. To produce the PP plot, we have considered
all the events in GWTC-3 that pass the FAR threshold. The
measurement of p-values is subjected to uncertainty due to
the finite size of background runs. If N is the total number of
background trials around an event, and if n of them produce
SNR90 greater than that of the event, then the likelihood of the
estimated p-value p̂ = n/N is a binomial function,

L ( p̂) =
 
N
n

!
pn (1 � p)N�n, (1)

where p is the true p-value [11]. Assuming uniform prior, we
can obtain posterior distribution of p-value as a Beta distribu-
tion,

P(p|N, n) = Beta(n + 1,N � n + 1) . (2)

In Fig. 2, the light-blue band around the PP curve represents
the 90% uncertainty region of the p-value posteriors. The diag-
onal dashed line denotes the prior hypothesis with surrounding
light-gray band representing 90% uncertainty region of the null
hypothesis due to the finite number of events [151, 152].

The PP plot is well with in the 90% credible region of the
null hypothesis indicating no significant deviation in the resid-
ual data from the expected incoherent noise distribution in the
individual instruments.

2 Note, however, that in [11], the equivalent plot was between the observed
p-values and the predicted p-values. See Appendix A of [11] for details.

FIG. 1. Results of the residuals analysis (Sec. IV A). Scatter plot of
the maximum-likelihood template (SNRGR) and the upper limit on the
residual network SNR (SNR90) for each event. The colorbar denotes
the p-values of individual events. Solid (empty) circles represent the
O3b (pre-O3b) events. The O3b events with highest (lowest) p-values
are highlighted by green (purple) diamonds.
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FIG. 2. Results of the residuals analysis (Sec. IV A). The blue curve
shows the fraction of events with p-values of the residual SNR less
than or equal to the abscissa (PP plot). The light-blue band represents
the 90% credible interval of the observed p-values. The diagonal
dashed line denotes the null hypothesis with the surrounding light-
grey area denoting the 90% uncertainty region of the null hypothesis
due to the finite number of events.

B. Inspiral–merger–ringdown consistency test

The IMR consistency test checks the consistency of the mass
and spin of the remnant BH inferred from the low- and high-
frequency parts of the signal. To achieve this, we divide the
GW signal into two parts in the frequency domain at the cuto↵
frequency f IMR

c which is the dominant mode GW frequency

Finite number of 
events

Finite number of 
background 
simulations 

LVC Collaboration, PRL, 116, 221101 (2016), LVC Collaboration, PRD, 100, 104036 
(2019)[GWTC-1], LVC Collaboration PRD 103, 122002 (2021)[GWTC-2]


 

LVK Collaboration, arXiv 2112.06861 [gr-qc]
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Inspiral-merger-consistency tests

• Compare inferred final mass and spin of the remnant 
using only inspiral or post-inspiral part of the signal 

 

• Expect consistency between the two measurements 
when SNR is high enough in both regions
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Propagation effects
Modified dispersion relationship

• Consider propagation of GWs on cosmological background and assume 
generalized dispersion relation, assuming generation effects are suppressed 
by powers of    

 

• For , can put bound on graviton mass [Will, PRD 57, 2061 (1998)]    

    (requires ) 

Fisher-matrix analysis gives  

Mirshekari+ PRD 85, 024041 (2012) 

• Non-birefringent analysis  

• Allows to test modified dispersion relations even in the absence of 
electromagnetic counterpart

r/λg

E = p2c2 + Aαpαcα

α = 0

mg = A0c
−2 A0 > 0

7

where h̃1 and h̃2 are the Fourier transforms of signals 1
and 2 respectively and star superscript stands for com-
plex conjugation. The SNR for a given signal h is simply

⇢[h] = (h|h)1/2 . (36)

If the signal depends on a set of parameters ✓
a that we

wish to estimate via matched filtering, then the root-
mean-square error on parameter ✓

a in the limit of large
SNR is (no summation over a implied here)

�✓
a
⌘

p
h(✓a � h✓ai)2i =

p

⌃aa . (37)

The quantity ⌃aa is the (a, a) component of the variance-
covariance matrix, which is the inverse of the Fisher in-
formation matrix, �ab, defined as

�ab ⌘

✓
@h

@✓a

�� @h
@✓b

◆
. (38)

The o↵-diagonal elements of the variance-covariance ma-
trix give the parameter correlation coe�cients, which we
define as

c
ab

⌘ ⌃ab
/

p

⌃aa⌃bb . (39)

We will work with an angle-averaged response func-
tion, so that the templates depend only on the parame-
ters:

✓
a = (lnA,�c, f0tc, lnM, ln ⌘,�, ⇣) , (40)

where each component of the vector ✓a is dimensionless.
We recall that A is an overall amplitude that contains in-
formation about the gravitational-wave polarization and
the beam-pattern function angles. The quantities �c and
tc are the phase and time of coalescence, where f0 is a fre-
quency characteristic of the detector, typically a “knee”
frequency, or a frequency at which Sn(f) is a minimum.
The parameters M and ⌘ are the chirp mass and sym-
metric mass ratio, which characterize the compact binary
system under consideration. The parameters (�, ⇣) de-
scribe the massive graviton and Lorentz-violating terms
respectively.

The SNR for the templates in Eq. (25) is simply

⇢ = 2 ✏ A (M⇡)�7/6
f
�2/3
0 I(7)1/2S�1/2

0 , (41)

where we have defined the integrals

I(q) ⌘

Z 1

0

x
�q/3

g(x)
, (42)

with x ⌘ f/f0. The quantity g(x) is the rescaled power
spectral density, defined via g(x) ⌘ Sh(f)/S0 for the de-
tector in question, and S0 is an overall constant. When
computing the Fisher matrix, we will replace the ampli-
tude A in favor of the SNR, using Eq. (41). This will then
lead to bounds on (�, ⇣) that depend on the SNR and on
a rescaled version of the moments J(q) ⌘ I(q)/I(7).

In the next subsections, we will carry out the in-
tegrals in Eq. (42), but we will approximate the lim-
its of integration by certain xmin and xmax [15]. The
maximum frequency will be chosen to be the smaller
of a certain instrumental maximum threshold frequency
and that associated with a gravitational wave emit-
ted by a particle in an innermost-stable circular or-
bit (ISCO) around a Schwarzschild black hole (BH):
fmax = 6�3/2

⇡
�1

⌘
3/5

M
�1. The maximum instrumen-

tal frequency will be chosen to be (105, 103, 1) Hz for
Ad. LIGO, ET and LISA-like, respectively. The mini-
mum frequency will be chosen to be the larger of a cer-
tain instrumental minimum threshold frequency and, in
the case of a space mission, the frequency associated with
a gravitational wave emitted by a test-particle one year
prior to reaching the ISCO. The minimum instrumen-
tal frequency will be chosen to be (10, 1, 10�5) Hz for
Ad. LIGO, ET and a LISA-like mission, respectively.
Once the Fisher matrix has been calculated, we will

invert it using a Cholesky decomposition to find the
variance-covariance matrix, the diagonal components of
which give us a measure of the accuracy to which pa-
rameters could be constrained. Let us then define the
upper bound we could place on (�, ⇣) as �� ⌘ �1/2

/⇢

and �⇣ ⌘ �̄1/2
/⇢, where � and �̄ are numbers. Com-

bining these definitions with Eqs. (29) and (30), we find,
for ↵ 6= 1, the bounds:

�g >

s
⇢D0 M

(1 + Z)

⇡

�1/4
, (43)

�
↵�2
A <

|1� ↵|

⇡2�↵

�̄1/2

D↵⇢

M
↵�1

(1 + Z)↵�1
, (44)

Notice that the direction of the bound on �A itself de-
pends on whether ↵ > 2 or ↵ < 2; but because A =
(�A/h)↵�2, all cases yield an upper bound on A. For the
case ↵ = 1 , we find

�A↵=1 >
⇡D1

�̄1/2
⇢ , (45)

In the remaining subsections, we set � = 0 and ⇣ = 0 in
all partial derivatives when computing the Fisher matrix,
since we derive the error in estimating � and ⇣ about the
nominal or a priori general relativity values, (�, ⇣) =
(0, 0).

B. Detector Spectral Noise Densities

We model the Ad. LIGO spectral noise density via [66]

Sh(f)

S0
=

8
>>>><

>>>>:

1016�4(xf0�7.9)2 + 2.4⇥ 10�62
x
�50

+0.08x�4.69

+123.35

✓
1�0.23x2+0.0764x4

1+0.17x2

◆
, f � fs,

1, f < fs,

(46)
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Dispersion tests with bright sirens
• GWs are dark sirens: they give information on 

luminosity distance but not redshift (redshift 
can be inferred by assuming a certain 
cosmological model) 

• Bright sirens: events with EM counterpart 

• Redshift: counterpart (e.g. GW170817) or 
statistical association to host galaxy to 
produce probabilistic constraint on it 

• Measuring the interval between the arrival 
time of GWs and electromagnetic radiation, 
we can put limits on Lorentz invariance (LIGO-
Virgo, Astrophys. J. Lett. 848, L13 (2017))



Dispersion tests with bright sirens
• GWs are dark sirens. Bright sirens: events with 

EM counterpart 

• Good sky localisation helps: best localised 
source in O3b was had  90% credible area of 30 
deg2 (was observed with all three detectors 
(LVK  arXiv:2111.03606v2 [gr-qc]).   

• Only a few percent of the sources detected until 
now have a localisation within 20 deg2.  

• Median sky-localisation during O4 expected to 
be down to a few tens of square degrees during 
O4 (LVK Living Rev Relativity 23, 3 (2020)) 

• Measuring the interval between the arrival time 
of GWs and electromagnetic radiation, we can 
put limits on Lorentz invariance (LIGO-Virgo, 
Astrophys. J. Lett. 848, L13 (2017))

https://arxiv.org/abs/2111.03606v2


Tests of extra dimensions
• In higher-dimensional theories of gravity, propagation of GWs might be 

affected by their leakage into extra dimensions beyond a certain screening 
radius  

• This effect was constrained with GW170817 (LIGO-Virgo PRL 123, 011102 
(2019)) 

• Magaña-Hernandez (arXiv:2112.07650v1) analysed GWTC-3 events (redshifts 
informed by population model): updated constraints on D both with and 
without screening are consistent with propagation in four dimensions

Rc

https://arxiv.org/abs/2112.07650v1


Constraints on massive graviton
• Yukawa suppression of the gravitational potential applies in linearised regime of some massive gravity 

theories 

• Solar system bound test from Bernus+, PRD 102, 021501 (2020): 

Fit planetary ephemeris to GR plus correction due to Yukawa suppression, for various Compton 
wavelengths -> Use likelihood threshold to determine bound on  ( ) at 90% C.L. 

•   Solar System  

•   GWs 

• Will (Class Quantum Grav Letters, 17, 17LT01 (2018)) derives a bound of  using solar system 
data. Bernus+ argue fits should depend on  as beyond-GR parameters are highly correlated to other 
parameters of the ephemeris

λg mg

mg ≤ 3.16 × 10−23eV/c2

mg ≤ 1.27 × 10−23eV/c2

O(10−24)
λg



Other tests of Lorentz violations
• CPT violation can be related to Lorentz violation (Greenberg PRL 89:231602,2002) 

• In the most general case, Lorentz-violating corrections can lead to anisotropic, birefringent and dispersive 
propagation of GWs 

• Study gravitational waves in the presence of Lorentz-violating operators of arbitrary dimension, and compute 
covariant dispersion relation [Kostelecký&Mewes Physics Letters B,757,510-514 (2016)] 

• Asymmetry in the propagation speed and amplitude damping between left and right-hand polarizations of a 
GW, which leads to phase and amplitude birefringence, respectively. 

• Tests performed on GWTC-3 events  

Zhao+ ApJ 930:139, 2022 (birefringence disfavoured) 

Wang+ arXiv:2109.09718: for GW190521 and GW191109, find evidence in support of GW birefringence, 
however, authors underlines possible role of waveform systematics in interpreting results 

https://arxiv.org/abs/2109.09718


Lensing and propagation effects

• Birefringent propagation can introduce time delays between different metric polarisations, leading 
to effect qualitatively similar to those expected for lensed signals  

• Even if there's no perfect degeneracy between strong lensing and MDR effects lensing might be 
mistaken for MDR Ezquiaga+ arXiv:2203.13252 [gr-qc] 

• Waveform morphology of lensed dispersive GWs depends on the graviton mass more sensitively 
than unlensed waves.  

Chung&Li PRD 104 124060 (2022): conclude that 1 lensed signal could constrain graviton's mass 
as tightly as ~1000 unlensed events. Considered microlensing (point-mass lenses), which is 
expected to be rare for LIGO



Parametrised tests of GR

• Additional fields in alternative theories of gravity might get activated in the 
strong-field region, providing new radiative channels  

• No monopole or dipole radiation in GR due to due to the conservation of the 
stress-energy tensor 

• No longer true in beyond-GR models. E.g.: scalarized objects ->dipole radiation-
>faster inspiral (Barausse+ 2013, Palenzuela+ 2014, Sennett+ 2017) 

• Flexible, though implicitly requires a certain smoothness in the activation of 
beyond-GR effects: might not capture more abrupt changes, induced by e.g. 
dynamical scalarization, resonances 



Parametrised PN tests in LIGO-Virgo analyses
• In the inspiral, introduce theory-agnostic deviations at individual PN orders in the phasing 

resulting from applying the stationary phase approximation to the chirp 

•  

• LIGO/Virgo analyses constrain -1PN plus orders in the [0 PN,3.5 PN] interval, in terms of 
fractional/absolute deviations  

• -1PN has been used to place constrain on dipole radiation. Other types of negative terms might 
come from environmental effects [Cardoso&Maselli Astron.Astrophys. 644 (2020)], time-varying 
G or extra dimensions (see Chamberlain&Yunes PRD 96, 084039)

φPN = 2π f tc − φc −
π
4

+
3

128η (π f̃)−5/3
7

∑
i=0

[φi + φi l log(π f̃ )] (π f̃)i/3

δφ̂i

Terms scaling like  at -th PN order ≈ f̃ (−5+i)/3 i/2



PN-based inspiral tests

Credit: LIGO


Terms scaling like 
 at -th PN 

order 
≈ f̃ (−5+i)/3 i/2

High order PN 
terms

Low order PN 
terms



Expected improvements with 3G detectors

• Estimate on individual events, compared to aLIGO design sensitivity 

• Combined bounds will be in general stronger by a factor ~ N

Extreme gravity tests with gravitational waves… Page 23 of 45 46

Fig. 3 Projected fractional improvement of constraints on modified gravity effects as a function of ppE
PN order at which they first enter for a variety of detectors (relative to aLIGO at design sensitivity). The
shaded regions are the same as in Fig. 2. Observe that 3G detectors improve constraints by more than an
order of magnitude even for single detectors. From [260]

will be many orders of magnitude more stringent than current constraints (represented
here with the aLIGO observation of GW150914 in cyan). These constraints would be
enhanced by a factor of roughly

√
N given N observations, where one should keep in

mind that ground-based and space-based detectors are not expected to see the same
number of events; although this is strongly dependent on the uncertain event rate, one
expects to see roughly 104 sources with ground-based instruments, and roughly 102

sources with space-based instruments (see e.g. [262]).
A related question is how the strength of the constraint changes with different third-

generation (3G) detector configuration. Fig. 3 shows the fractional improvement of
projected constraints as a function of ppE PN order at which modified gravity effects
first enter [260] for a variety of detectors (relative to aLIGO at design sensitivity).
Although minor upgrades, like A+ and Voyager, will only lead to modest improvements
in constraints, 3G detectors can achieve improvements that are better than an order of
magnitude. The fractional improvement dramatically increases at negative PN order
in the ET case, simply because of this detector’s greatly improved sensitivity at low
frequencies [260].

Given these more stringent constraints, the natural question to ask is: what new
physics will be probed in the future? Multi-wavelength observations with space- and
ground-based instruments will allow for constraints on violations of the strong equiv-
alence principle that are 8 orders of magnitude more stringent than all current bounds
[259]. Single observations with future instruments will allow for constraints on the
size of a large extra-dimension (in Randall–Sundrum type models) that are 5 orders
of magnitude more stringent than current bounds with aLIGO [260]. Similarly, con-
straints on the mass of the graviton from propagation effects in the dispersion relation
will be about 5 orders of magnitude better than current bounds [260]. These constraints
would begin to approach the natural value of the mass of the graviton in eV that one
would expect if such a mass is somehow connected to a solution to the dark-energy

123

From: Chamberlain&Yunes PRD 96, 084039



LIGO vs double-pulsar constraints
• Double-pulsar constraints obtained with double pulsar PSR J0737–

3039A/B in Kramer+ PRX 11, 041050 (2021)  

• Complementary tests 

• different regimes (mildly vs strongly relativistic) 

• different binary systems (BNS vs BBH/NSBH): in some scalar-tensor 
theories, source for scalar field might depend also on matter-
independent terms (Yagi+ PRD 93, 024010 (2016)) 

• DP tests degrade at high frequencies (higher PN orders) 

PN levels, allowing for possible GR violations at different
PN levels (i.e., different powers of frequency), one at a
time. Note that Fig. 7 uses the “relative” PN order in the
radiation reaction (i.e., PN order beyond the Einstein
quadrupole formula), where the leading order, i.e., 0PN,
occurs at the 2.5PN order in the binary equations of motion
(see, e.g., Ref. [123] for a detailed discussion). Because of
the many orbits since 2003 (approximately 60 000), which
can be tracked with high precision in a phase-coherent
timing solution, the double pulsar leads to considerably
tighter constraints at low PN orders, whereas it becomes
very quickly less constraining for higher PN orders, due to
its comparatively small velocity (v ∼ 0.002c).
While Fig. 7 certainly serves as a comparison on how

much a given PN parameter of the inspiral phase evolution
can (each at a time) deviate from its GR value in the
different experiments, that figure has to be taken with a
grain of salt when it comes to interpreting these bounds as
limits on deviations from GR predicted by alternative
theories of gravity. First, such a comparison mixes tests
from two different types of compact objects, i.e., NSs and
BHs, which might behave quite differently depending on

how GR is broken. Hence, constraints from experiments
with material bodies might not apply to BH dynamics
and vice versa. Particularly obvious cases are alternative
theories where BH binaries behave like in GR (e.g.,
Ref. [183]) or alternative theories where NSs do not carry
any scalar charge, while BHs do [184]. Second, the double
pulsar tests a different gravity regime (mildly relativistic
strong field) compared to the GW merger events (highly
relativistic strong field). For instance, the double pulsar test
would generally be insensitive to modifications of GR that
lead only to short-range effects (e.g., Refs. [185,186]); see
also Ref. [187]. Nevertheless, at least to some extent, such a
comparison illustrates the complementarity of binary pulsar
experiments and merger observations by GW detectors, as
long as one keeps in mind the qualitative differences of the
various experiments, which are closely linked to the details
of a given theory of gravity.

3. Lense-Thirring effect and equation of state

In Sec. VI B 1, we use constraints on the MOI of pulsar
A, IA, derived from the multimessenger analysis in
Ref. [112], in order to obtain the best mass estimates for
the double pulsar, as given in Eqs. (36)–(38). In this
section, at first, we ignore any existing constraints on
the EOS of NSs and simultaneously determinemA,mB, and
IA, following the procedure outlined in Ref. [110]. As in
Sec. VI B 1, we assume GR to be the correct theory of
gravity and use the three best PK parameters to simulta-
neously calculate the individual masses of the double pulsar
and the MOI of A. From the calculations in Sec. VI B 1, it is
already obvious that the combination of the PK parameters
k, s, and _Pb is expected to give by far the best results. In a
way, we use s and _Pb to determine the masses mA and mB
and then usemA to extract IA from the observed advance of
periastron kobs (see _ω≡ nbk in Table IV), a procedure
already proposed for the double pulsar in Ref. [33]. In
practice, the calculations are slightly more complicated, as
_Pb also has a contribution proportional to IA [see Eq. (20)].
Although that contribution is still smaller than the error in
_Pb, we nevertheless account for it and follow the procedure
in Ref. [110], i.e., calculate mA, mB, and IA by simulta-
neously solving the three equations kobs ¼ kðmA; mB; IAÞ,
sobs ¼ sðmA; mBÞ, and _Pint

b ¼ _PbðmA; mB; IAÞ. By this, we
obtain probability distributions for the double pulsar
masses and the MOI of pulsar A. For the MOI, we find
IA < 3.0 × 1045 g cm2 with 90% confidence. Figure 8
compares our result with those derived from the
GW170817 LIGO/Virgo merger and from NICER x-ray
timing. Using a universal relation, like the one in
Ref. [114], one can convert the probability distribution
of IA into a probability distribution for A’s radius. With
90% confidence, this gives an upper limit for A’s radius of
22 km, a value outside any physically valid EOS and
clearly exceeding the range used in Ref. [114].

FIG. 7. Update of Fig. 6 in Ref. [178] (including data from
Refs. [180,181]), which shows the 90% upper bounds on the
absolute magnitude of the GR violation parameters δφ̂i, from
0PN through 3.5PN (“relative” order) in the inspiral phase (see,
e.g., Ref. [182] for the definition of the PN phase coefficients and
Ref. [178] for further details on the method). As discussed in
Ref. [178], the 0.5PN parameter is zero in GR and, therefore,
understood not as a relative but as an absolute shift. Black circles
show the combined limits from the double BH mergers, blue
squares are the limits from the double-NS merger GW170817,
and red triangles give the limits derived from the double pulsar
GW test in this paper. The PN order on the x axis is in the GR
radiation reaction, where the leading contribution (0PN) corre-
sponds to the dissipative 2.5PN term in the equations of motion.
Note that such a comparison of tests with different compact
objects (BHs vs NSs) as well as different gravity regimes (mildly
relativistic vs highly relativistic strong field) does come with a
caveat, which is explained in more detail in the text.
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Constraints on dipole radiation
• If we parametrise deviations from GR emission as 

  

GW170817 :   LIGO-Virgo PRL 123, 011102 (2019) 

Double pulsar:     Kramer+ PRX 11, 041050 (2021)

ℱGW = ℱGR(1 + Bv2/c2)

B ≤ 1.2 × 10−5

B ≤ 4 × 10−10

• Better sensitivity of double-pulsar tests at low PN orders (low frequencies) 
due to the large number of cycles observed: approximately 60000 since 
2003 for the double pulsar! Observed cycles for GW170817 were one order 
of magnitude less.



Parametrised post-Newtonian tests 

• Bounds depend on many details: PSDs, internal choices of the analysis, characteristics 
of the events, waveform model used to approximate GR signal etc... 

• Parametrised deviations can be strongly correlated with source parameters
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FIG. 10. Posterior distributions of several binary’s parameters for the simulated GW190814–like signal (upper panel) and the
GW190412–like signal (lower panel) when the GR SEOBNRHM model and the pSEOBNRHM model with deviations parameters �'̂�2,
�'̂0, and �'̂1 are used to recover the signal. The vertical dashed lines represent the true value of the injections. The strong
correlation between these deviation parameters and the chirp mass M leads to the broadening of the chirp mass posteriors and
sometime causes a bias as well.

a bias in the measurement of the GR parameters. These
biases, however, reduce if a tapering frequency higher
than the current default of 0.35fpeak

22 is used for the anal-
ysis, as demonstrated in the previous subsection. Hence,
the biases appear to be the consequence of an insu�cient
number of GW cycles or SNR.

The fact that the chirp-mass measurement is heavily
correlated or degenerate with the measurement of some
non-GR parameters can be understood by looking at the
FTI formulation itself. Restricting ourselves to the (2, 2)-
mode, using the definition of v from Eq. (8), the n/2-PN-
order coe�cient in Eq. (11) that contributes to the total
phase correction is

 n(f ;✓) =
3

128(M⇡f)5/3
 (GR)

n (✓)(1 + �'̂n), (19)

where �'̂n is the n/2-PN-order deviation parameter. For
the leading-order term n = 0, this implies

 0(f ;✓) =
3

128(M⇡f)5/3
(1 + �'̂0) (20)

since  (GR)
0 = 1. For the -1PN and 0.5PN phase cor-

rections (i.e., n = �2, 1), which are absolute corrections

since they are absent in GR, the expressions read

 �2(f ;✓) =
3

128(M⇡f)5/3
�'̂�2, (21)

and

 1(f ;✓) =
3

128(M⇡f)5/3
�'̂1. (22)

It becomes clear from Eqs. (20), (21), and (22) that the
deviation parameters �'̂�2, �'̂0 and �'̂1 are degenerate
with the chirp mass, as Fig. 8 shows. There are also
correlations between the chirp mass (and other binary
parameters) and the deviation parameters at higher PN
orders, but they are milder. Indeed the addition of �'̂2,
�'̂3, �'̂4, �'̂5l and �'̂6l do not a↵ect estimates of GR
parameters in any noticeable fashion, as we have verified
using the results in Figs. 10 and 11.

However, for the highest PN-order deviation parame-
ters, �'̂6 and �'̂7, posterior distributions of GR param-
eters can show features like bimodalities, depending on
the underlying signal, see Fig. 11. This is because, un-
like the cases of n = �2, 0, 1, for values of n � 2 the

PN coe�cients  (GR)
n also depend on the intrinsic prop-

erties, in particular the symmetric mass ratio and the

Mehta+  arXiv:2203.13937 [gr-qc] (2022)
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FIG. 11. Same as Fig. 10 but for the deviation parameters �'̂6 and �'̂7. The dotted lines represent the posteriors obtained
with the non-spinning (noS) pSEOBNRHM waveforms. The bimodalities in the GR parameters arise as a consequence of strong
correlations between masses and spins induced by the deviation parameters �'̂6 and �'̂7.

spins. In fact, the bimodalities observed in the �'̂6 and
�'̂7 cases disappear when we perform the analysis with
non-spinning waveforms, shown by the dotted lines in
Fig. 11. This suggests that the deviation parameters �'̂6

and �'̂7 induce strong correlations between the GR pa-
rameters when the binary is spinning. We notice that
the amount of bimodality also depends on the tapering
frequency, notably on the GW cycles and SNR.

V. APPLICATION OF THE FTI APPROACH TO
A BINARY NEUTRON STAR

Here we consider the application of the FTI approach
to a specific alternative theory of GR: the Jordan–Fierz–
Brans–Dicke (JFBD) scalar–tensor theory [62–64]. Ini-
tially formulated in the mid-20th century, JFBD gravity
was the very first scalar-tensor theory—a theory in which
gravity is mediated by both a tensor (the metric) and a
scalar. Since then, significant work has been done to ex-
tend this notion beyond JFBD theory to broader, more
generic classes of scalar-tensor theories (e.g., Horndeski
theories [65], Beyond Horndeski theories [66], Degener-
ate Higher-Order Scalar-Tensor theories [67, 68]). Yet,
despite its simplicity, JFBD gravity remains relevant to-
day, though more as a pedagogical archetype of modified

gravity than as a truly viable alternative to GR. In this
vein, constraining JFBD theory with a particular exper-
iment o↵ers an easily understood benchmark of its sen-
sitivity to deviations from GR.

The action for JFBD gravity written in the Jordan
frame is given by

S =

Z
d4x

p
�g̃

16⇡

✓
�R̃ � !BD

�
g̃µ⌫@µ�@⌫�

◆
+ Sm[g̃µ⌫ , ],

(23)

where � is a massless scalar field, !BD is a dimensionless
coupling constant9, and Sm represents the action for mat-
ter fields  minimally coupled to the metric g̃µ⌫ . (Here
 should not be confused with the GW modes  `m intro-
duced earlier.) Alternatively, the action can be rewritten
in the Einstein frame by performing the conformal trans-
formation gµ⌫ ⌘ �g̃µ⌫

S =

Z
d4x

p
�g

16⇡
(R � 2gµ⌫@µ'@⌫') + Sm[e�2↵0'gµ⌫ , ],

(24)

9 JFBD is also commonly known as simply Brans-Dicke gravity
(BD); following the standard convention in the literature, we
adopt this abbreviation when denoting the coupling constant
!BD.

https://arxiv.org/abs/2203.13937


• Bounds on individual PN deviation coefficients, but in 
alternative theories of gravity multiple coefficients will be 
different from GR 

• Multiparameter tests: Multiband observations of stellar-mass 
binary black holes will help [Gupta+ PRL 125, 201101 (2020)] 

• Can use PCA to find linear combinations of parameters 
yielding best constraints. Diagonalization of covariant matrix 
is event-dependent so "combined" PCA parameters need to 
be computed from  combined N-dimensional posterior (for N 
event). [Pai&Arun, CQG 30, 025011 (2013), Saleem+ 
PRD 105, 084062 (2022)] 

• Neglect of physical information, such as eccentricity, might 
lead to biases in the PN deviation coefficients [Saini+ 
arXiv:2203.04634]

Parametrised post-Newtonian tests 
(The tricky parts II) 4

Results and Discussions: Our main results combining
LISA and CE observations of stellar-mass BBHs are summa-
rized in Fig. 2. As we increase the number of PN coe�cients
that are simultaneously tested, starting from the Newtonian
order, the 1� upper bounds on them are presented in the figure.
For instance, the filled circles are the bounds where only one
PN deformation parameter is estimated at a time, whereas the
octagons denote the bounds when all the eight parameters are
simultaneously estimated. In the eight parameter case, all the
parameters are measured with an accuracy ⇠20%, of which the
first three may be measured with an accuracy better than 1%,
whereas the first two PN coe�cients may yield bounds ⇠0.1%.

One may notice interesting trends in the bounds as we add
more and more parameters. The bounds on 0PN and 1PN
deformation coe�cient from 2-parameter estimation case are
< 0.01%. The inclusion of the 1.5PN deformation coe�cient
results in a sudden worsening of the bounds by an order of
magnitude. This may be understood by noting that 1.5PN is
the order at which spins first appear in the phasing formula.
Adding a deformation parameter at that order, that is com-
pletely degenerate with spins, adversely a↵ects the overall
parameter estimation, which gets reflected in the bounds on the
first two PN coe�cients. The gradual worsening of the bounds
as we go to even higher multiparameter tests is simply due to
the increasing degeneracy brought in by each of the additional
PN deformation parameters. Nevertheless, multiband observa-
tions of stellar-mass BBHs would permit us to test modified
theories of gravity, which predict deviations at orders below
3PN to a precision less than 1%.

It can be seen that even in the era of 3G detectors we cannot
obtain meaningful constraints with multiparameter tests. As
is evident from Fig. 2, for golden binaries in CE—binaries
that have the smallest error for the multiparameter tests— the
errors on ��a, are ⇠100% only for a = 1, . . . , 4; if we vary
more than four parameters at a time then the errors on PN
coe�cients with a , 0 are larger than 100%. In a year’s time
CE will observe a handful of such golden binaries and the joint
error that one can obtain by combining golden binaries will
still not be significantly smaller. Consequently, ground-based
detectors alone cannot break the degeneracy among di↵erent
PN coe�cients. The same is true with LISA observations
of supermassive BBHs. Even with a golden supermassive
BBH we can perform the multiparameter test with only five
parameters and LISA is not likely to observe more than a
handful of such binaries over a five-year period. Having said
this, in this paper we do not consider other ways to compute the
combined bounds on ��a, such as by combining all the events
observed in CE and LISA, as our method already achieves the
desired accuracy needed for the multiparameter test.

Conclusions: To conclude, we have shown the importance
of multiband observations of GWs to carry out the multiparam-
eter tests of GR. From our systematic study of a representative
set of systems, we have also found that even for the best case
scenario, observations of supermassive BBHs in the LISA band
or stellar- or intermediate-mass BBHs in the CE band would
not be able to place constraints as good as the one reported
here. Hence multibanding would, perhaps, be the only way to
carry out this test which in turn is necessary to make meaning-
ful constraints on the parameter space of modified theories of
gravity. As LIGO and Virgo detect several more BBHs in the
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FIG. 2. Multiparameter tests using multiband observations with LISA
and CE. Shown are combined 1� bounds on various PN coe�cients
starting from 0PN through 3.5PN in the inspiral phase of the signal
while measuring many of them together at a time. Di↵erent types
of markers symbolize how many PN deformation parameters were
constrained simultaneously. For example, ‘ ’ represents ‘one PN
deformation parameter at a time’, ‘_’ represents ‘two PN deformation
parameters at a time’, and so on. The figure represents results for the
BBH population having Gaussian spin distribution, we get similar
estimates for a uniform spin distribution. The filled diamonds and
pentagons are bounds obtained with CE and LISA, respectively, on
the first four and five PN deformation parameters from their respective
golden binaries, respectively. The total masses of the CE and LISA
golden binaries are 200 M� and 6.6⇥ 105 M�, both binaries are 1 Gpc
away and have component spins �1 = 0.6, �2 = 0.5.

future observing runs, the merger rate and the mass distribution
would be more tightly constrained which is likely to further
tighten the bounds derived here making this test an excellent
science case for multiband observations.
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Appendix: Supplemental Materials

In this Supplement we provide a discussion of the detectabil-
ity of gravitational waves from stellar-mass binary black holes
(BBHs) by the Laser Interferometer Space Antenna (LISA),
an alternative to the multiparameter test presented in the paper
and the accuracy of Fisher matrix inversion.

From: Gupta+ PRL 125, 201101 (2020)
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Polarizations
• Generic metric theory of gravity can have up to 6 

polarisation states 

• Longitudinal and breathing modes for 
interferometers are not linearly independent  

• Detector has a specific response to different 
polarisations encoded in the antenna pattern 
functions 

• The addition of new detectors to the network 
(KAGRA, LIGO India) will improve the sensitivity to 
different polarisations 

Tensor

Scalar

Vector

Will, Living Rev. Relativity 17 (2014)
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eralized ppE framework that allows for the existence of
additional polarizations modes. Section VI discusses the
construction of null streams for generic waveforms with 6
polarization modes. Section VII concludes and discusses
possible future research directions.

We follow here the conventions of Misner, Thorne
and Wheeler [28]: Greek letters stand for spacetime
time indices, while Latin letters in the middle of the al-
phabet (i, j, k, . . .) stand for spatial indices only; com-
mas in index lists stand for partial derivatives and
semi-colons for covariant derivatives; parentheses and
square brackets in index lists stand for symmetrization
and anti-symmetrization respectively such as A(↵�) =
(1/2)(A↵� + A�↵) and A[↵�] = (1/2)(A↵� � A�↵); the
metric is denoted via gµ⌫ with signature (�,+,+,+);
the Einstein summation convention and geometric units
with G = c = 1 is assumed, unless otherwise specified.

II. FOURIER TRANSFORM OF A GENERIC
RESPONSE FUNCTION

In this section, we construct the response function for
a generic modified gravity theory, given the GW metric
perturbation. We then briefly explain how the SPA to
the Fourier transform of this response can be calculated.
We conclude the section by showing how the algorithm
works in the standard GR limit.

A. Polarizations from the Metric Perturbation

In this subsection, we mainly follow Will [6, 7, 29]. The
response function of a detector to a wave with all possible
polarizations is

h(t) = F+h
++F⇥h

⇥+Fseh
se+Fsnh

sn+Fbh
b+FLh

L
, (1)

where F· are angular pattern functions and h
· are wave-

form polarizations. The former are given by [29]

F+ =
1

2
(1 + cos2 ✓) cos 2 cos 2�� cos ✓ sin 2 sin 2� ,

(2)

F⇥ =
1

2
(1 + cos2 ✓) sin 2 cos 2�+ cos ✓ cos 2 sin 2� ,

(3)

Fsn = � sin ✓(cos ✓ cos 2� cos � sin 2� sin ) , (4)

Fse = � sin ✓(cos ✓ cos 2� sin + sin 2� cos ) , (5)

Fb = �
1

2
cos 2� sin2 ✓ , (6)

FL =
1

2
cos 2� sin2 ✓ . (7)

The waveform polarizations can be computed from the
contraction of certain basis vectors (e+ij , e

⇥
ij , e

x
i , e

y
i ) (see

e.g. [29, 30] noting that in [29] (exi , e
y
i ), ie. the basis vec-

tors orthogonal to N̂
i, the unit vector pointing from the

source to the detector, are denoted as (✓̂i, �̂i)) with the
waveform amplitudes A·, namely

h
b = Ab , h

L = AL , (8a)

h
sn = e

x
i A

i
V , h

se = e
y
iA

i
V , (8b)

h
+ = e

+
ijA

ij
TT , h

⇥ = e
⇥
ijA

ij
TT . (8c)

In these equations, Ab is the amplitude of the scalar
breathing mode, AL is the amplitude of the scalar longitu-
dinal mode, Ak

V are the amplitudes of the vectorial modes
and A

ij
TT are the amplitudes of the transverse-traceless

modes.
The usual way to find the waveform amplitudes A·

is to compute the linearized Riemann tensor evaluated
with the trace-reversed metric perturbation [28, 29]. A
more straightforward way to accomplish the same re-
sult, however, is to construct operators that act on the
trace-reversed metric perturbation directly and return
the waveform amplitudes. In terms of these, the am-
plitudes are given by

Ab =
1

2
(N̂jN̂kh̄

jk
� h̄

00) , (9a)

AL = N̂jN̂kh̄
jk + h̄

00
� 2N̂j h̄

0j
, (9b)

A
k
V = P

k
j (N̂ih̄

ij
� h̄

0j) , (9c)

A
ij
TT = P

i
mP

j
l h̄

ml
�

1

2
P

ij
Pmlh̄

ml
, (9d)

where Pij = �ij � N̂iN̂j is a projection operator orthog-

onal to N̂
i, a unit vector pointing from the source to the

detector, while h̄
µ⌫ is the trace-reversed metric pertur-

bation and �ij is the Kronecker delta.
One might wonder whether we can reconstruct the full

metric perturbation from the GW polarization modes in
Eq. (9). Notice, though, that Eq. (9) contains only 6
degrees of freedom (1 in Ab, 1 in AL, 2 in A

k
V because it

is transverse and 2 in A
ij
TT because it is transverse and

traceless), while the full metric perturbation generically
contains 10 degrees of freedom. Thus, for the inversion
to be unique one must make a gauge choice, such as a
pure traceless (yet not fully transverse) gauge. Doing so,
the metric perturbation can be written as

h̄
00 = 0 ,

h̄
0i =

N̂
i

D

✓
Ab �

1

2
AL

◆
,

h̄
ij =

3Ab

D

✓
N̂

i
N̂

j
�

1

3
�
ij

◆
+

2N̂ (i
A

j)
V

D
+

A
TT
ij

D
. (10)

Of course, such a metric reconstruction is unnecessary
for our purposes because the observable is the response
function and we can project out the relevant degrees of
freedom (those in Eq. (9)) without making any gauge
choice.



Null streams
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FIG. 2: Geometry of the null stream construction for the 3-
detector case. The null stream is obtained by projecting the
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For D non-aligned detectors A has D − 2 dimensions.

This implies that each z̃α is a Gaussian random process of
unity variance and is uncorrelated with z̃β, for all β != α.
This is the main advantage of the null-stream formalism
over other techniques: the noise distribution of the pro-
jected network data is known a priori, regardless of the
form of h+,×, under the assumption that a GWB from a
particular direction is present. This allows us to perform
statistically significant tests of the network data, in par-
ticular to test the hypothesis that a GWB from a given
direction is present.
Since data from gravitational-wave detectors are sam-

pled and digitized, in what follows we will consistently
use discrete notation in our analysis of the statistics of
the null stream. Our conventions for discretely sampled
data are as follows: the Fourier-transform pair becomes

x̃[k] =
N−1∑

j=0

x[j] e−i2πjk/N ,

x[j] =
1

N

N−1∑

k=0

x̃[k] ei2πjk/N , (21)

where N is the number of data points in the time domain.
Denoting the sampling rate by fs, we can convert from
continuous to discrete notation using x(t) → x[j], x̃(f) →
f−1
s x̃[k],

∫
dt → f−1

s

∑
j ,
∫
df → fsN−1

∑
k, δ(t− t′) →

fsδjj′ , and δ(f − f ′) → Nf−1
s δkk′ . For example, the

one-sided strain noise power spectrum Sα[k] is

〈ñ∗

α[k]ñβ [k
′]〉 =

N

2
δαβδkk′Sα[k] . (22)

We will whiten the data by applying a zero-phase whiten-
ing filter [18, 19], and our normalization convention for
whitened data is

〈ñ∗

wα[k]ñwβ [k
′]〉 = δαβδkk′ . (23)

The total energy in the null streams is

Enull ≡
D−r∑

α=1

N−1∑

k=0

|z̃α[k]|
2 . (24)

Using (20) and (23) it follows that at the true source
position 2Enull is χ2-distributed with 2N(D− r) degrees
of freedom. In this case the expectation value of the null
energy and its variance are both N(D − r).
Although our considerations so far have assumed the

sky position Ω̂s of the GWB source to be known a priori,
in practice this may not be the case. Since we know that
at the correct source location the null energy will not con-
tain any contribution from the signal, a straightforward
procedure is to scan over a grid of sky positions in search
of the minimum of the null energy. Gürsel and Tinto [13]
used time-delay estimates to limit their search to two
possible regions of the sky (the regions around points S
and S′ in Figure 1). This approach may fail when the
duration of the signals (or the timing uncertainty) is of
the same order as the light travel time between detectors,
thus necessitating an all-sky search. Since the numerical
analysis in [13] implies that the characteristic angular
width of the minimum of the null energy in a neighbor-
hood of the source location for a GWB with a central fre-
quency of about 100 Hz is equal to approximately 10−2

steradian for high SNRs, it follows that an all-sky search
should be performed over a sky grid containing more than
103 resolvable directions. (Our numerical tests use a grid
containing 104 points.) In either case, for each trial direc-
tion one postulates the presence of a gravitational-wave
signal, forms a linear combination of the detectors that
is orthogonal to that postulated direction, and χ2-tests
this null stream for excess energy. If there exists a par-
ticular direction for which there is no excess energy in
the null stream, the data is regarded as consistent with
the hypothesis that a gravitational-wave burst is present
and incoming from the inferred direction. If, on the other
hand, Enull is inconsistent with a χ2 distribution, then
one rejects the hypothesis that a GWB is present incom-
ing from that direction. The best estimate of the source
direction is taken as the direction with minimum χ2.
Although the null-stream method does not require

knowledge of the two GWB waveforms for its imple-
mentation, once the source location Ω̂s has been iden-
tified it is straightforward to reconstruct h+,× from the
data themselves [13] (if the detectors are all aligned then
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where (, k) are propagation ppE parameters. As in
Eq. (140), using this waveform might not be ideal, as
usually either ub or uk will dominate, and one might wish
to neglect the subdominant contribution.

Before proceeding, let us make a remark about the GR
limit of the parameterizations discussed here. We saw
earlier that both Rosen’s and Lightman-Lee theory do
not possess a continuous GR limit. That is, if one takes
the coupling parameters of this theory to zero G ! 0,
one does not recover Einstein’s theory. While our pa-
rameterization is designed to have a smooth GR limit,
it does manage to cover these exotic and observationally
disfavoured alternatives. More precisely, the parameteri-
zation discussed above poses no restriction on the magni-
tude of the amplitude �, and thus, if � were large enough
and b = �5, the phase terms proportional to � could
combine with the GR terms to change the leading-order
behavior. Such behavior can be discarded if one imposes
priors on � and , for example, by requiring them to
satisfy their current binary pulsar constraints [44].

VI. NULL STREAMS

A general method used in GW data analysis to sep-
arate signals from noise is that of null streams. This
approach was first introduced by Gürsel and Tinto [45]
and was later extended by Chatterji et al. [46]. The idea
behind this is to combine the data from a network of de-
tectors to find linear combinations that contain no GW
signal, only noise, in the hopes of separating false-alarms
from real GW burst events. Their analysis only included
the h+ and h⇥ polarizations, since they were considering
only GR events.

We can extend this method to test Einstein’s the-
ory through the proper combination of output from sev-
eral detectors. In essence, one can extend the analysis
of [45, 46] to allow for all possible polarizations and then
construct the appropriate null streams (“null” within
GR) through appropriate projections. This method is
promising to test GR, since the detection of a GW in
a GR null stream would automatically signal a devia-
tion from GR (assuming the source location is known
- the more general analysis for sources with unknown
sky location will be developed elsewhere). One can thus
search for statistically significant deviations from noise
in GR null streams, both with a template (as given in
Sec. V) and without one. Given a detection of a signal in

a GR null stream, one could then reconstruct the signal
through the templates in Sec. V.
Let us assume that there exist D � 6 detectors with

uncorrelated noise and that, for a given source, we know
its position in the sky, as might be the case if we have
an electromagnetic counterpart. Given this, one knows
exactly how to time-shift the signal from detector to de-
tector. For a detector a, the noise-weighted signal from a
source at location ⌦̂s in the sky in the frequency domain
is

d̃a = F
+
a h̃++F

⇥
a h̃⇥+F

se
a h̃se+F

sn
a h̃sn+F

b
a h̃b+F

L
a h̃L+ña .

(154)
Here, and in the remaining section, d̃a, F ·

a and ña are
the noise-weighted signal, the antenna patterns and the
noise of the ath detector respectively, each defined as
their standard value divided by

p
Sa(f)/2 where Sa(f)

is the power spectral density.
Given D detectors, we can then rewrite Eq. (154) as
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or using tensor notation,

d̃
a = F

a
j h̃

j + ñ
a
, (156)

where the a runs over the number of detectors and the j

over the polarizations. The quantity F
a
j is acting anal-

ogous to a metric in the signal manifold, and thus, the
first term on the right-hand side can be interpreted as
the projection of the wave vector h̃j along the directions
F

+
a, F

⇥
a, F

se
a, F

sn
a, F

b
a and F

L
a. Therefore, one can

create data sets that have no component of a certain po-
larization by projecting them to a direction orthogonal
to the direction defined by the beam pattern functions of
this polarization mode. This is illustrated in Fig 1 for 3
detectors.
For D detectors, the signal manifold is D dimensional

with D basis vectors, 5 of which can be chosen along
the F+

a, F
⇥
a, F

se
a, F

sn
a and F

b
a directions. The reason

why we cannot choose 6 linearly independent basis vec-
tors along the F

.
a directions is that F b = �F

L, as can be
clearly seen from Eq. 2 (see also [47, 48]). This means
that although we have a 6 ⇥ D matrix, this only has 5
linearly independent columns. The remaining D� 5 vec-
tors would give us complete null streams, ie. streams with

Beam pattern functions 

From: Chatziioannou + PRD 86 022004, 2012

One can construct at most D-Npol independent null streams: e.g. for Npol=2 (GR) we can 
construct one null stream with the output of 3 detectors

Build a null projector



Polarisation tests
NULL STREAM 

• Can compute excess power after null projection and check whether it's consistent with 
noise -- originally applied to distinguish GW bursts from instrumental noise 
[Gürsel&Tinto 1989, Wen&Schutz 1996, Chatterji+ 2006] 

• Depending on the way the projector operator is built, can test either pure (as in LIGO-
Virgo[GWTC-1,GWTC-2] or mixed polarisations LIGO-Virgo [GWTC-3], Wong+ 2021].  

• Strongest single-event constraint coming from GW170817 (BF~20 in favour of purely 
tensorial polarisation of signal) (LIGO-Virgo [1811.00364] ) 

• Latest LIGO analysis combines BFs of events from O1-O2-O3 events finding no 
statistically significant evidence of alternative polarisations

5

F
D

Fw

wd

2 dimensional
column space

of

Az

F+

F +

~

~

w

w

wnull space of
−2 dimensional

FIG. 2: Geometry of the null stream construction for the 3-
detector case. The null stream is obtained by projecting the
data along the vector A, which is orthogonal to F+

w and F×

w .
For D non-aligned detectors A has D − 2 dimensions.

This implies that each z̃α is a Gaussian random process of
unity variance and is uncorrelated with z̃β, for all β != α.
This is the main advantage of the null-stream formalism
over other techniques: the noise distribution of the pro-
jected network data is known a priori, regardless of the
form of h+,×, under the assumption that a GWB from a
particular direction is present. This allows us to perform
statistically significant tests of the network data, in par-
ticular to test the hypothesis that a GWB from a given
direction is present.
Since data from gravitational-wave detectors are sam-

pled and digitized, in what follows we will consistently
use discrete notation in our analysis of the statistics of
the null stream. Our conventions for discretely sampled
data are as follows: the Fourier-transform pair becomes

x̃[k] =
N−1∑

j=0

x[j] e−i2πjk/N ,

x[j] =
1

N

N−1∑

k=0

x̃[k] ei2πjk/N , (21)

where N is the number of data points in the time domain.
Denoting the sampling rate by fs, we can convert from
continuous to discrete notation using x(t) → x[j], x̃(f) →
f−1
s x̃[k],

∫
dt → f−1

s

∑
j ,
∫
df → fsN−1

∑
k, δ(t− t′) →

fsδjj′ , and δ(f − f ′) → Nf−1
s δkk′ . For example, the

one-sided strain noise power spectrum Sα[k] is

〈ñ∗

α[k]ñβ [k
′]〉 =

N

2
δαβδkk′Sα[k] . (22)

We will whiten the data by applying a zero-phase whiten-
ing filter [18, 19], and our normalization convention for
whitened data is

〈ñ∗

wα[k]ñwβ [k
′]〉 = δαβδkk′ . (23)

The total energy in the null streams is

Enull ≡
D−r∑

α=1

N−1∑

k=0

|z̃α[k]|
2 . (24)

Using (20) and (23) it follows that at the true source
position 2Enull is χ2-distributed with 2N(D− r) degrees
of freedom. In this case the expectation value of the null
energy and its variance are both N(D − r).
Although our considerations so far have assumed the

sky position Ω̂s of the GWB source to be known a priori,
in practice this may not be the case. Since we know that
at the correct source location the null energy will not con-
tain any contribution from the signal, a straightforward
procedure is to scan over a grid of sky positions in search
of the minimum of the null energy. Gürsel and Tinto [13]
used time-delay estimates to limit their search to two
possible regions of the sky (the regions around points S
and S′ in Figure 1). This approach may fail when the
duration of the signals (or the timing uncertainty) is of
the same order as the light travel time between detectors,
thus necessitating an all-sky search. Since the numerical
analysis in [13] implies that the characteristic angular
width of the minimum of the null energy in a neighbor-
hood of the source location for a GWB with a central fre-
quency of about 100 Hz is equal to approximately 10−2

steradian for high SNRs, it follows that an all-sky search
should be performed over a sky grid containing more than
103 resolvable directions. (Our numerical tests use a grid
containing 104 points.) In either case, for each trial direc-
tion one postulates the presence of a gravitational-wave
signal, forms a linear combination of the detectors that
is orthogonal to that postulated direction, and χ2-tests
this null stream for excess energy. If there exists a par-
ticular direction for which there is no excess energy in
the null stream, the data is regarded as consistent with
the hypothesis that a gravitational-wave burst is present
and incoming from the inferred direction. If, on the other
hand, Enull is inconsistent with a χ2 distribution, then
one rejects the hypothesis that a GWB is present incom-
ing from that direction. The best estimate of the source
direction is taken as the direction with minimum χ2.
Although the null-stream method does not require

knowledge of the two GWB waveforms for its imple-
mentation, once the source location Ω̂s has been iden-
tified it is straightforward to reconstruct h+,× from the
data themselves [13] (if the detectors are all aligned then

• Mixed polarizations could be also tested using sums of sine-Gaussian wavelets 
(BayesWave) [Chatziioannou+ 2021] 

• Constraints on mixed polarisation possible even w/out fully breaking 
degeneracies among all possible states

https://arxiv.org/abs/1811.00364


Tests of black hole nature 



Was it a BH after all? 

 Credit: Olivares et al., MNRAS, 2020

Boson star

• Semi-classical description of BH 
-> information paradox


• Horizons as a probe of quantum 
effects


• CBCs considered as good 
candidates to observe effects 
coming from new types of weakly 
interacting particles and new 
fields addressing fundamental 
physics puzzles


• Not all the available alternatives 
have been equally explored in 
terms of formation/stability/
observation signatures (see 
Cardoso&Pani 
arXiv:1904.05363v3)


"Quantum BHs"
Gravastar

Classical BH

Wormholes

Firewall



• Some tests directly question the nature of the compact objects we detect through GWs 

• The different properties of the object can manifest themselves during the inspiral or 
during the ringdown phase of the coalescence.

rS = r+(1 + ϵ)

Curvature normalised to BH value

From: Cardoso&Pani  arXiv:1904.05363

Was it a BH after all? 



Spin-induced quadrupole moments tests
• No-hair theorem  multipole moments of a Kerr BH are entirely 

determined by its mass and spin 

• Spin-induced quadrupole moments leave observable signatures in GWs, 
leading-order correction at 2PN  

           

• Assume two objects have the same , and measure symmetric combination 

→

Q = − κχ2m3

κ

κs =
κ1 + κ2
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FIG. 3: Left: The 90% bounds on the spin-induced quadrupole moment parameter (�s) given in Eq. (2.8) as a function of the injected valuees
of e↵ective spin parameter (see Eq. (3.1)). All the injections are compact binary inspirals with fixed total mass of 15M� while varying the mass
ratio, spin magnitudes and orientations which results in di↵erent values of e↵ective spin parameter. Right: Figure showing the degenerate
regions in the non-BH parameter space (�s � �e↵) for binary black hole injections with two di↵erent spin orientations aligned (0.6, 0.3) and
anti-aligned (-0.6, -0.3). The light blue and orange represent aligned and anti-aligned cases respectively and the injected parameters are marked
by black stars. The scattered points show the region at which the non-BH waveform has a very high overlap (O > 0.995) with the BH injection(s)
(See Eq. (3.2)).

posteriors about their injected values. This skewness gets
mirror-reflected when the spin orientation is reversed. In other
words, comparing the light blue and orange histograms in each
panel, one notices that the longer tail for light blue is towards
left-hand side while for orange, it is towards the right-hand side.
This indicates that our ability to constrain the non-BH nature
is di↵erent for aligned and anti-aligned spin orientations. For
aligned cases, the type of non-BH nature with �s > 0 (such as
binaries of boson stars) can be better constrained than the type
of non-BH nature with �s < 0 (such as binaries of gravastars).
On the other hand, for anti-aligned cases, it is vice versa. We
investigate these features in detail below.

1. Role of e↵ective spin parameter

We find that the e↵ective spin parameter �e↵ plays a major
role in the features observed in the posteriors discussed above.
E↵ective spin parameter defined as

�e↵ =
m1 �1z + m2 �2z

(m1 + m2)
, (3.1)

is a combination of component masses m1, m2 and component
spins �1z, �2z and appears as the leading order spin dependence
in the inspiral PN waveform [97]. In Fig. 3 (left panel), we
have shown the bounds on �s parameter as a function of their
injected �e↵ values where the vertical bars correspond to the
90% credible intervals of the �s parameter. The larger the
magnitude of �e↵ , the tighter the bounds on �s. For systems
with small magnitudes of �e↵ (for example, �e↵ < 0.3), the
�s parameter is almost unconstrained. Further, when �e↵ is
large and positive, the region with �s > 0 is better constrained,
whereas when the �e↵ is large and negative, the region with
�s < 0 is better constrained.

The dependence of �s posteriors on �e↵ discussed above
holds true despite the fact that the systems considered for

this plot include those with various component masses and
spins. In fact, it is di�cult to disentangle the individual e↵ects
of the component masses and spins due to the degeneracy
between spins and mass ratio parameters [111]. However, �e↵
captures the combined e↵ects of all these parameters on the
�s posteriors and hence is the most important single parameter
which describes our ability to constrain �s parameter for any
given system.

We further investigate the skewness of the posteriors in
detail and show that they are primarily caused by the waveform
degeneracies between �s and �e↵ parameters. To demonstrate
this, we first define the overlap function O between a binary
black hole injection h̃

BH and a non-BH template h̃
NBH as,

O =

⇣
h̃

BH|h̃NBH
⌘

q⇣
h̃BH|h̃BH

⌘ ⇣
h̃NBH|h̃NBH

⌘ (3.2)

where (.|.) is the noise weighted inner product defined in
Eq. (2.5) and both h̃

BH and h̃
NBH are in frequency domain. Over-

lap quantifies how similar are the two signals h̃
BH and h̃

NBH and
its value is maximum (O = 1) when h̃

BH = h̃
NBH.

We have taken two binary black hole injections with both
of them having identical component masses (10, 5)M� but
di↵erent spin orientations (0.6, 0.3) and (-0.6, -0.3) whose
�e↵ values are 0.5 and �0.5 respectively. The templates h̃

NBH

are uniformly distributed in the non-BH parameter space with
component spins ranging in [-1, 1] and �s ranging between
[-100, 100]. The masses of the templates are kept fixed at their
injection values which will be justified later with the results.

We show the results of this overlap calculation in the right
panel of Fig. 3. Templates having very high overlaps with
the injections (O > 0.995) are shown as scattered plots in the
�s��e↵ plane (light blue for aligned-spin injection and orange
for anti-aligned spin injection). The injected parameters are
marked with stars (black color). For the aligned spin case (light

Krishnendu+  PRL 119, 091101 (2017) 
PRD 99, 064008 (2019), PRD 100, 104019 (2019)

From: Krishnendu+ PRD 100, 104019 (2019)

1 + δκs

Constraints expected to drastically improve 
with LISA/DECIGO Krishnendu&Yelikar CQG, 
37 205019 (2020)



Tidal Love numbers 
• Tidal Love numbers are different for ECOs than BHs, tidal corrections appear at 5PN [Cardoso, PRD 95, 084014 (2017)] 

• Encapsulate conservative response to external fields 

• Recent controversies about Love and Kerr BHs [Le Tiec&Casals,2020, Chia 2020, Goldberger+ 2020, Charalambous+ 
2021].   

• It is now accepted that Love numbers are 0 for Kerr BHs in 4 dimensions

4

FIG. 1. Relative percentage errors on the average tidal deformability ⇤ for BS-BS binaries observed by AdLIGO (left panel),
ET (middle panel), and LISA (right panel), as a function of the BS mass and for di↵erent BS models considered in this work
(for each model, we considered the most compact configuration in the stable branch; see main text for details). For terrestrial
interferometers we assume a prototype binary at d = 100Mpc, while for LISA the source is located at d = 500Mpc. The
horizontal dashed line identifies the upper bound �⇤/⇤ = 1. Roughly speaking, a measurement of the TLNs for systems which
lie below the threshold line would be incompatible with zero and, therefore, the corresponding BSs can be distinguished from
BHs. Here ⇤ is given by Eq. (72), the two inspiralling objects have the same mass, and �⇤/⇤ ⇠ �kE

2
/kE

2 .

TABLE I. Tidal Love numbers (TLNs) of some exotic compact objects (ECOs) and BHs in Einstein-Maxwell theory and modified
theories of gravity; details are given in the main text. As a comparison, we provide the order of magnitude of the TLNs for static NSs
with compactness C ⇡ 0.2 (the precise number depends on the neutron-star equation of state; see Table III for more precise fits). For BSs,
the table provides the lowest value of the corresponding TLNs among di↵erent models (cf. Sec. III A) and values of the compactness. In
the polar case, the lowest TLNs correspond to solitonic BSs with compactness C ⇡ 0.18 or C ⇡ 0.20 (when the radius is defined as that
containing 99% or 90% of the total mass, respectively). In the axial case, the lowest TLNs correspond to a massive BS with C ⇡ 0.16 or
C ⇡ 0.2 (again for the two definitions of the radius, respectively) and in the limit of large quartic coupling. For other ECOs, we provide
expressions for very compact configurations where the surface r0 sits at r0 ⇠ 2M and is parametrized by ⇠ := r0/(2M)� 1; the full results
are available online [65]. In the Chern-Simons case, the axial l = 3 TLN is a↵ected by some ambiguity and is denoted by a question mark
[see Sec. IVC for more details]. Note that the TLNs for Einstein-Maxwell and Chern-Simons gravity were obtained under the assumption
of vanishing electromagnetic and scalar tides.

Tidal Love numbers

kE
2 kE

3 kB
2 kB

3

NSs 210 1300 11 70

ECOs

Boson star 41.4 402.8 �13.6 �211.8

Wormhole 4
5(8+3 log ⇠)

8
105(7+2 log ⇠)

16
5(31+12 log ⇠)

16
7(209+60 log ⇠)

Perfect mirror 8
5(7+3 log ⇠)

8
35(10+3 log ⇠)

32
5(25+12 log ⇠)

32
7(197+60 log ⇠)

Gravastar 16
5(23�6 log 2+9 log ⇠)

16
35(31�6 log 2+9 log ⇠)

32
5(43�12 log 2+18 log ⇠)

32
7(307�60 log 2+90 log ⇠)

BHs

Einstein-Maxwell 0 0 0 0

Scalar-tensor 0 0 0 0

Chern-Simons 0 0 1.1
↵2
CS

M4 11.1
↵2
CS

M4 ?

selection rules that allow to define a wider class of “rotational”
TLNs [22, 23, 75, 76]. In this paper, we neglect spin e↵ects to
leading order.

TLNs as [6, 8]
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,

(3)

where M is the mass of the object, whereas El0 (respec-

From: Cardoso, PRD 95, 084014 (2017)
Love numbers of spherically symmetric, static background geometries



Tidal heating
• BHs: the horizon is a one-way surface. Flux of energy and angular momentum across the BH's will change its mass and 

spin leading to tidal heating (torquing) (Poisson&Sasaki PRD 51, 5753 (1995), Alvi PRD64, 104020 (2001)). These tidal 
effects will backreact on the orbit leaving an imprint in the GW signal. 

• GWs can escape from horizonless objects -> Dissipation is expected to be small for ECOs as compared to BHs -> tidal 
heating can be taken as a measure of the black-hole nature of a compact object (even when external geometry of the 
objects is very similar) 

• In PN, gives corrections starting at 2.5PN order (for spinning objects, else at 4PN) .  

• Measurability for 2G and 3G detectors investigated in Mukhrejee+ arXiv:2202.08661 [gr-qc]. Poor constraints from LIGO, 
would need golden binary (exceptionally close, low mass event), 

• Expected to be mostly negligible for LIGO except for high mass ratio high aligned spins (Isoyama&Nakano CQG 35, 2, 
024001 (2018), importance of tidal heating increases with mass ratio [Mano+ Prog. Theor. Phys., 98:829-850, 1997, Hartle, 
PRD, 8:1010–1024 (1973), Hughes PRD, 64,084004 (2001)] 

• Absorption expected to be significant for EMRIs with tidal heating suggested as probe of reflective properties of ECOs 
[Datta+  PRD 101, 044004 (2020), Datta, PRD 102, 064040 ](2020)



Echoes
• If event horizon is not there, no purely ingoing boundary 

conditions 

• For ultra-compact objects, prompt ringdown might be followed 
from echoes: trapped modes slowly leak out of potential barrier 
producing a train of pulses in the post-merger signal 

• Can be modeled  

• by adding the echo signal to an IMR BBH template (LIGO-
Virgo, PRD 103, 122002 (2021)) 

• in waveform-agnostic way (LIGO-Virgo arXiv 2112.06861, TGR-
GWTC-3) . 

• Contrasting claims in the literature following Abedi+ 
arXiv:1612.00266v2, in which the authors looked at O1 data. See 
Abedi+ arXiv:2001.09553v1 for a review. 
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Exotic Compact Object

Black Hole

FIG. 1. Top: The boundary conditions for waves propagating
on a black hole spacetime. Bottom: The reflecting boundary
conditions for the waves in the exterior of an ECO.

Fig. 1. This perspective is useful since it allows us to re-
process the emission by test particles in a BH spacetime
into the corresponding emission in the ECO spacetime,
by taking the reflecting boundary into account. From
here on we can focus on BH spacetimes, and compare
wave propagation with the usual boundary conditions at
the horizon to the case of a reflecting boundary.

B. Generating ECO waveforms from BH
waveforms

We are interested in computing the scalar waves seen
by distant observers in a BH spacetime with a reflecting
boundary. For this we wish to construct the scalar radial
Green’s function g̃ref(x, x0), which obeys the scalar wave
equation with a delta function source,

d2g̃ref

dx2
+

�
!2 � fV

�
g̃ref = �(x � x0) , (2.10)

and the reflecting boundary condition (2.9). With the
Green’s function, we can compute the field produced by
sources S̃ through integration,

 ̃(x) =

Z
1

�1

dx0 g̃ref(x, x0)S̃(x0) . (2.11)

We compute g̃ref for sources outside the reflecting bound-
ary, x0 > x0.

To compute g̃ref we first recall how the scattering of
waves works in the usual Schwarzschild spacetime [49].
Consider the two linearly independent, homogeneous so-
lutions  ̃in,

 ̃in ⇠
⇢

Aout(!)ei!x + Ain(!)e�i!x , x ! 1 ,
e�i!x , x ! �1 ,

(2.12)

which is purely outgoing at the horizon, and  ̃up,

 ̃up ⇠
⇢

ei!x , x ! 1 ,
Bout(!)ei!x + Bin(!)e�i!x , x ! �1 ,

(2.13)

which is purely outgoing at infinity.
The e↵ective potential V provides a scattering bar-

rier for waves in the BH spacetime. For waves incident
from infinity, inspection of  ̃in shows that the reflection
amplitude is Aout/Ain and the transmission amplitude is
1/Ain. For our purpose, it is more convenient to con-
sider the problem of reflection and transmission of waves
incident on V from the left. By inspecting  ̃up we find
that the reflection and transmission amplitudes for waves
from the left are

R̃BH(!) =
Bin

Bout
, T̃BH(!) =

1

Bout
. (2.14)

The relationship between these and the usual reflection
and transmission amplitudes can be derived by noting
that Bout = Ain and Bin = �A⇤

out [49] .
The Green’s function for Schwarzschild, gBH(x, x0),

also obeys Eq. (2.10), but with an ingoing boundary con-
dition at the horizon and an outgoing boundary condition
at infinity. In terms of the homogeneous solutions, it is

g̃BH =
 ̃in(x<) ̃up(x>)

WBH
, (2.15)

where we have defined x> = max(x, x0), x< = min(x, x0),
and the Wronskian WBH = 2i!Bout of  ̃in and  ̃up.

Since g̃BH and g̃ref both obey Eq. (2.10), we can con-
struct g̃ref by adding a homogenous solution of the scalar
equation, times a free function of x0, to g̃BH. The ho-
mogenous solution must have the correct boundary con-
dition as x ! 1, and so we use  ̃up(x). Meanwhile, the
free function in x0 is fixed by ensuring that g̃ref obeys the
correct reflecting boundary condition,

g̃ref(x, x0) / e�i!(x�x0) + R̃(!)ei!(x�x0) . (2.16)

This gives

g̃ref(x, x0) = g̃BH(x, x0) + K̃  ̃up(x) ̃up(x0)

WBH
, (2.17)

K̃(!) ⌘ T̃BHR̃e�2i!x0

1 � R̃BHR̃e�2i!x0

. (2.18)

This is our first key result. It shows that wave propaga-
tion in the presence of the reflecting barrier is the same
as in a BH spacetime, with an additional component con-
trolled by the transfer function K̃, which contains all the
dependence on the reflectivity R̃.

With the Green’s function in hand, we can compute
the waves seen by distant observers. Again it is useful to
first consider a BH spacetime with the usual boundary
conditions. We define the amplitudes of waves seen by

From: Mark+ PRD 96, 084002 (2017)

Trapped modes



Echoes
• Latest LIGO-Virgo analysis models pulses as combs of 

decaying sine-Gaussians using BAYESWAVE to perform 
a morphology-independent search method 

• Echo signals are expected to be close to detection 
threshold, so understanding of background behaviour is 
crucial -> Compute background distributions for the log 
Bayes factors  in 200 trials around the event  

• Hard to understand best parametrization and choice of 
priors

log10 ℬS
N
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TABLE XIV. Results of the echoes analysis (Sec. VIII B). List of
p-values for signal to noise Bayes Factor BS

N for the events that
are analysed. In the absence of any echoes signal these should be
uniformly distributed between [0, 1]. Fig. 15 shows the corresponding
PP plot with 90% credible intervals superimposed on it. There is no
evidence for the presence of echoes.

Event p-value

GW191109 010717 0.35
GW191129 134029 0.35
GW191204 171526 0.37
GW191215 223052 0.23
GW191216 213338 0.88
GW191222 033537 0.89
GW200115 042309 0.44
GW200129 065458 0.33
GW200202 154313 0.43
GW200208 130117 0.24
GW200219 094415 0.18
GW200224 222234 0.59
GW200225 060421 0.69
GW200311 115853 0.42
GW200316 215756 0.27

IX. CONCLUSIONS AND OUTLOOK

Gravitational-wave observations provide a unique tool to test
fundamental physics. The strongly gravitating, highly dynam-
ical and radiative spacetime associated with the late inspiral,
merger and ringdown of compact binaries facilitates tests of
general relativity in a regime that is unaccessible otherwise.
Binary black holes and binary neutron star mergers observed
in the past observing runs already set limits on possible de-
viations from GR [3, 6, 7, 9–11, 79, 98, 242, 259, 267–270].
Here we discuss a pool of tests aimed at unearthing deviations
from GR using the events detected during the second part of
the third observing run of advanced LIGO and advanced Virgo.
We perform ten tests of GR on the 15 events that have a false
alarm rate less than 10�3 yr�1. These tests are the same ones
as in the previous analysis [11], except with the following
updates. Our search for post-merger echoes is morphology-
independent in this paper and the method to test for non-GR
polarization modes is refined to address mixed polarizations
as opposed to scalar-only, vector-only, and tensor-only hy-
potheses as was the case in [11]. Furthermore, some of the
tests rely on more up-to-date waveforms; in the residuals and
inspiral-merger-consistency tests, we account for higher order
multipole moments for all the events from the second part of
the third observing run.

We subtract the maximum-likelihood GR waveform from
the data to verify the consistency of the residuals with detector
noise, thereby showing the consistency of the signals in the
data with GR. Independent estimates of the mass and spin of
the merger remants, from the inspiral and postinspiral parts
of the waveform for di↵erent events show mutual consistency.
The fractional changes in the final mass and spin from this
test, assuming they take the same values for all the events
and combining all the events analyzed so far, are constrained
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FIG. 15. Results of the echoes analysis (Sec. VIII B). Plot of fraction
of events for which the echoes signal-to-noise p-value is less than or
equal to the abscissa. The light-blue band represents the 90% credible
interval of the observed p-values, while the diagonal dashed line is
expectation from the null hypothesis. The light-gray band around
the diagonal line represents the 90% uncertainty band of the null
hypothesis.

to �Mf/M̄f = �0.02+0.07
�0.06 and ��f/�̄f = �0.06+0.10

�0.07 at 90%
credibility.

Tests aimed at looking for parametrized departures from GR
in the post-Newtonian phasing coe�cients all find consistency
with GR within the statistical uncertainties. The most well-
constrained parameter is the absolute value of the �1PN coe�-
cient, which is bound to  7.3⇥10�4 at 90% credibility, assum-
ing its value is the same for all the events. As certain modified
theories of gravity predict dispersion of GWs, we searched for
this e↵ect and found no evidence for dispersion. The bound
on the graviton mass is updated to mg  1.27 ⇥ 10�23eV/c2,
at 90% credibility. A general metric theory of gravity admits
up to six modes of GW polarization. We searched for non-GR
polarization modes and found no signature of such modes.

Analyses to measure the spin-induced quadrupole moments
of the binary components found no signatures of exotic com-
pact objects. Further, tests for deviations from GR in the
ringdown of the remnant black hole were carried out using
two independent methods and the frequency deviation parame-
ters are constrained to � f̂221 = 0.01+0.27

�0.28 and � f̂220 = 0.02+0.07
�0.07,

at 90% credibility, by hierarchically combining the results
from the events that are analyzed. We also found no evidence
for post-merger echoes from the merger remnant from our
morphology-independent search.

Future observing runs with improved detector sensitivities
will provide a larger catalog of compact binary observations
and events with larger SNR. These observations will enable us
to carry out more stringent tests of GR in parts of the parameter

Finite number of 
background 
simulations 

Finite number of 
events

LVK Collaboration, arXiv 2112.06861 [gr-qc]



Ringdown tests 
• In GR, mass and spin determine the spectrum of post-merger 

emission (consequence of no-hair theorem) 

• Typically modelled as a linear superposition of damped 
sinusoids (follows from linear perturbation theory) 

• Despite apparent simplicity of the template used, many subtle 
points that can lead to discrepant results:  

Impact of noise 

Choice of ringdown regime start time 

FD vs TD 

Contribution of inspiral-merger signal 
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TABLE VIII. The table summarizes the choices of basis used in the polarization test. x, ⇥, b, l, x, and y represent the plus mode, cross mode,
scalar breathing mode, scalar longitudinal mode, vector x mode, and vector y mode respectively. The first column shows the polarization
hypothesis being tested, the third column reports the number of basis modes, and the last column reports the number of free parameters that are
marginalized over in the computation of the evidence.

Hypothesis Description # of basis modes Mode(s) Basis mode(s) Free parameters

HT,1 Pure tensorial 1 +, ⇥ + 5
HV,1 Pure vectorial 1 x, y x 5
HS,1 Pure scalar 1 b b 2
HTS,1 Tensor–scalar 1 +, ⇥, b, l + 9
HTV,1 Tensor–vector 1 +, ⇥, x, y + 9
HVS,1 Vector–scalar 1 x, y, b, l x 9
HTVS,1 Tensor–vector–scalar 1 +, ⇥, b, l, x, y + 13
HT,2 Pure tensorial 2 +, ⇥ +, ⇥ 2
HV,2 Pure vectorial 2 x, y x, y 2
HTS,2 Tensor–scalar 2 +, ⇥, b, l +, b 11
HTV,2 Tensor–vector 2 +, ⇥, x, y +, x 11
HVS,2 Vector–scalar 2 x, y, b, l x, b 11
HTVS,2 Tensor–vector–scalar 2 +, ⇥, b, l, x, y +, b 19

TABLE IX. Combined log10 Bayes factors B for various polarization hypotheses against the tensor hypothesis, using both 2-detector and
3-detector events. Polarization states have been projected onto one basis-mode as detailed in Sec. VII. Positive (negative) values indicate that the
hypothesis indicated in the superscript is favored (disfavored) with respect to the tensorial hypothesis. Error bars refer to 90% credible intervals.

Events log10 BS
T log10 BV

T log10 BTS
T log10 BTV

T log10 BVS
T log10 BTVS

T

O1 �0.04 ± 0.07 0.09 ± 0.07 0.04 ± 0.07 0.09 ± 0.07 0.09 ± 0.07 0.07 ± 0.07
O2 �0.42 ± 0.12 0.04 ± 0.12 0.08 ± 0.12 0.22 ± 0.12 0.09 ± 0.12 0.35 ± 0.12
O3a �1.85 ± 0.21 �1.04 ± 0.20 0.25 ± 0.20 0.07 ± 0.20 �1.05 ± 0.20 �0.18 ± 0.20
O3b �1.93 ± 0.17 �0.79 ± 0.17 �0.17 ± 0.17 �0.07 ± 0.17 �0.86 ± 0.17 �0.32 ± 0.17

Combined �4.24 ± 0.30 �1.70 ± 0.30 0.20 ± 0.30 0.31 ± 0.30 �1.73 ± 0.30 �0.08 ± 0.30

TABLE X. Combined log10 Bayes factor B for various polarization hypotheses against the tensor hypothesis, for 3-detector events. Polarization
states been projected onto two basis-modes as explained in Sec. VII. Positive (negative) values indicate that the hypothesis indicated in the
superscript is favored (disfavored) with respect to the tensorial hypothesis. Error bars refer to 90% credible intervals.

Events log10 BV
T log10 BTS

T log10 BTV
T log10 BVS

T log10 BTVS
T

O1 � � � � �
O2 0.05 ± 0.03 0.01 ± 0.03 �0.02 ± 0.03 0.06 ± 0.03 0.01 ± 0.03
O3a �0.37 ± 0.12 �0.77 ± 0.12 �0.72 ± 0.12 �0.73 ± 0.12 �0.91 ± 0.12
O3b �0.09 ± 0.10 �0.22 ± 0.10 �0.35 ± 0.10 �0.38 ± 0.10 �0.38 ± 0.10

Combined �0.41 ± 0.16 �0.98 ± 0.16 �1.09 ± 0.16 �1.05 ± 0.16 �1.29 ± 0.16

dices (`,m) represent the angular decomposition of the modes,
whereas the index n denotes various tones of the spectrum start-

ing with n = 0. A schematic decomposition of the post-merger
signal reads [11],

h+(t) � ih⇥(t) =
+1X

`=2

X̀

m=�`

+1X

n=0

A`mn exp
"
� t � t0

(1 + z)⌧`mn

#
exp
"
�2⇡i f`mn(t � t0)

1 + z

#
�2S `mn(✓, �,�f ), (13)

whereA`mn denotes the amplitude of the mode, t0 is the start
time of the ringdown model, and z is the redshift of the source.
The frequency and the damping time of a mode characterized
by the three indices are denoted by ⌧`mn and f`mn, respectively,
while �f is the final spin. The polar and azimuthal angles (✓, �),

measured relative to the final spin axis, describe the direction
to the observer. These coordinates assume the spin of the black
hole to be along the ✓ = 0 direction. The contribution of
counter-rotating perturbations is ignored, since it’s expected to
be negligible in the post-merger regime of the signals underBeyond linear effects... 

Nonlinear effects might play a non-neglible role through non-
linear, self-coupling of first-order modes (Ripley+ PRD 103, 
104018 (2021)), and dynamically excited due to variation of 
the remnant's parameters ("absorption-induced mode 
excitation" - Sberna+ PRD 105, 064046 (2022)) 



Ringdown tests
• Controversies related to various detection claims: 

221 Overtone in GW150914: total mass of 
system and high SNR make it an ideal candidate 
for RD tests (MRD falls in detector's sweet spot). 

YES! Isi+ arXiv:1905.00869v2, 
arXiv:2202.02941v2 

NO! Cotesta+ arXiv:2201.00822 

MAYBE? Finch&Moore arXiv:2205.07809v1 

Higher modes in GW190521 ringdown: 

NO (LIGO-Virgo [TGR-GWTC-2, 
arXiv:2010.14529v2]) 

YES (Capano+, arXiv:2105.05238): find statistically 
significant evidence of (2,2) and (3,3) harmonics

Credit: iTHEMS

As it's common in tests of GR, results appear to strongly 
depend on how the background is factored in, as well as 
on internal settings of the analysis 

https://arxiv.org/abs/1905.00869v2


Parametrised ringdown tests
pSEOBHM 

• Complementary to ringdown analyses focussing only on post-
merger signal, ringdown start time is in-built in the model  

• Introduce fractional deviations in the frequency and damping 
time of least-damped dominant QNM in the IMR model 
SEOBNRv4HM 

• Possible issues:  

• Known degeneracies between deviation parameters and 
source parameters 

• Choice of priors  

• Impact of noise 

LVK Collaboration, arXiv 2112.06861 [gr-qc]

f220 = f220(1 + δ ̂f220)

τ220 = τ220(1 + δ ̂τ220)



Practical challenges in TGR: a recap 

• Phenomenological parametrization chosen to describe beyond-GR effects and its 
degeneracies to source parameters 

• Non-trivial choice of priors for theory-agnostic models 

• Gaussian noise fluctuations expected to impact a fraction of the events: different 
combination methods might be less/more sensitive to this 

• For template-based tests, missing physics might also mimic GR violations  .  

• Detector data can be affected by glitches which can mimic deviations from GR 

Kwok et al. arXiv:2109.07642v3 studied the effect of glitches and mitigated glitches on 
tests of GR, by injecting PhenomPv2 waveforms into H1-L1-V1 at times when all three 
detectors are operating and a glitch is affecting either H1 or L1 



The blip glitch affecting L1 data for 
GW170817. 

From: LIGO-Virgo 119 161101 (2017)
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(a) Simulated GW190828 065509-like signal overlapped with a H1 blip glitch at inspiral stage in the time domain.
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(b) Simulated GW190828 065509-like signal overlapped with a H1 blip glitch at intermediate stage in the time domain.

(c) Simulated GW190828 065509-like signal overlapped with a H1 blip glitch at merger-ringdown stage in the time domain.

FIG. 5. Top subfigures: Q scans of the unmitigated and mitigated data samples. Vertical and horizontal white lines denote
the boundaries of di↵erent stages of coalescence in the time and frequency domain, respectively. Bottom subfigures: Posterior
distributions of testing parameters (top) and the recovered chirp mass (bottom) obtained by performing parametrized tests on
unmitigated (left of violin plot) blip-glitch-overlapped signals during a three-detector observation. The corresponding mitigated
cases (right of violin plot) with bandpass filtering (solid line), BayesWave glitch model subtraction, also called deglitching (dotted
line), and inpainting (dashed line) are also plotted. The GR value of the testing parameters and the injected value of chirp
mass are indicated by vertical black lines.

From: Kwok+ arXiv:2109.07642v3 


What if there is a glitch? 



Conclusions

• Current 2G detectors: training camp for tests of GR. 

• Many subtleties which need to be addressed before more sensitive 
instruments become operational, which will drastically reduce statistical 
uncertainties.  

• Further work on GR templates is required to allow unbiased tests based on 
them! 

• Template banks of beyond-GR waveforms: a great tool to cross-check 
theory-agnostic results.


