Towards High Precision with ATLAS

Maarten Boonekamp, IRFU

- Focus on Electroweak parameters from Leptonic final states
 - M_w
 - Probing higher scale interactions with Drell-Yan events
- Experimental and theoretical challenges in the LHC context
- Requirements for a sound measurement

Why measure the W?

 Within the Standard Model framework, and with current knowledge, the W boson and top quark masses are the main handles to further constrain the Electroweak Symmetry breaking sector.

• Given expected LHC statistics and hard lower bounds, our objectives should be $\delta M_w \sim 5$ MeV and $\delta m_t \sim 0.5$ GeV.

Measuring W and Z with ATLAS

- Electron and muon reconstruction within $|\eta| < 2.5$, and $p_{\tau} > -5$ GeV. Resolution $\sim 2\%$ in the W,Z range, combining relevant subdetectors
- Calorimeter coverage up to $|\eta| \sim 4.9$ allows to measure the soft calorimetric activity, hence MET, with a resolution of 5-10 GeV.

Measuring W and Z with ATLAS

W & Z production at the LHC: first shot

(ATLAS Coll., arXiv:1010.2130, acc.by JHEP)

- Integrated luminosity ~ 0.3 pb⁻¹
- First aim : observation of the signals

W & Z production at the LHC: first shot

(ATLAS Coll., arXiv:1010.2130, acc.by JHEP)

- Second aim : early cross section measurements
 - Fiducial cross sections: W & Z rates within our detector volume, corrected for efficiencies and resolutions

	$\sigma^{ m fid}_{W^{(\pm)}} \cdot { m BR}(W o e v)$ [nb]	$\sigma_{W^{(\pm)}}^{\mathrm{fid}} \cdot \mathrm{BR}(W o \mu u)$ [nb]
W^+	$2.92 \pm 0.12 (stat) \pm 0.21 (syst) \pm 0.32 (lumi)$	$2.77 \pm 0.11(\text{stat}) \pm 0.12(\text{syst}) \pm 0.30(\text{lumi})$
W^-	$1.93 \pm 0.10 (\text{stat}) \pm 0.14 (\text{syst}) \pm 0.21 (\text{lumi})$	$1.83 \pm 0.09(\text{stat}) \pm 0.08(\text{syst}) \pm 0.20(\text{lumi})$
W	$4.85 \pm 0.16 (\text{stat}) \pm 0.34 (\text{syst}) \pm 0.53 (\text{lumi})$	$4.60 \pm 0.15 (\text{stat}) \pm 0.20 (\text{syst}) \pm 0.51 (\text{lumi})$
	$\sigma_{Z/\gamma^*}^{\mathrm{fid}} \cdot \mathrm{BR}(Z/\gamma^* o ee)$ [nb],	$\sigma^{\mathrm{fid}}_{Z/\gamma^*} \cdot \mathrm{BR}(Z/\gamma^* \to \mu\mu)$ [nb],
	$66 < m_{ee} < 116 \text{ GeV}$	$66 < m_{\mu\mu} < 116 \text{ GeV}$
Z/γ^*	$0.33 \pm 0.04 (stat) \pm 0.03 (syst) \pm 0.04 (lumi)$	$0.43 \pm 0.04 (\text{stat}) \pm 0.02 (\text{syst}) \pm 0.05 (\text{lumi})$

W & Z production at the LHC: first shot

(ATLAS Coll., arXiv:1010.2130, acc.by JHEP)

Comparison to theory

W & Z production : updated distributions

- ~35 pb^{.1}
- $p_{\tau}(e,\mu)$ in W events

W & Z production : updated distributions

- ~40 pb^{.1}
- M(ee,μμ) in Z events

M_{W}

- About the prospective study
 - Up to 2008, ATLAS was still claiming ~25 MeV reach based on simple estimations
 - By then it was already clear that the Tevatron would do better with much less statistics
 - So we revisited all usual systematics to see whether we could improve and we could, at least in principle
 - Finally the paper states that "~7 MeV is a reasonable goal", motivating work in this direction.

$M_{\rm w}$: measurement method

Compare data to models (templates) of the kinematical distributions

W physics: LHC specifics

asymmetries

W physics: LHC specifics

asymmetries

W physics: LHC specifics

Strange contribution to W production

flavour decomposition of W cross sections

MRST, arXiv:hep-ph/9907231v1

M_w prospects with early data

- Last prospective exercise with simulated data (~15 pb⁻¹)
 - Mock-data from full simulation; models from truth + smearing

- Statistical sensitivity
 - $\mathbf{p}_{\scriptscriptstyle \mathsf{T}}(\mathsf{I})$: ~110 MeV / channel
 - $M_{\tau}(W)$: ~60 MeV / channel

→ 40 MeV overall

M_w prospects with early data

Today : ~36 pb^{.1}

- Statistical sensitivity with ~120k events / channel, scaling from the previous study
 - $M_{\tau}(W)$: ~40 MeV / channel \rightarrow **30 MeV overall**
- And, as obvious from these distributions, a lot to understand first

Some projections...

... and starting to address the real questions

Statistical sensitivity.

```
Currently: \sim 35 \text{ pb}^{-1} \text{ at } 7 \text{ TeV} : \sim 10^5 \text{ events } x \text{ (e,}\mu) \rightarrow \delta M_w \text{(stat)} \sim 30 \text{ MeV}

Guess for 2011/12: \sim 5 \text{ fb}^{-1} \text{ at } 7 \text{ TeV} : \sim 1.5 \text{ } 10^7 \text{ events } x \text{ (e,}\mu) \rightarrow \delta M_w \text{(stat)} \sim 3 \text{ MeV}
```

• Ultimately: $\sim 10 \text{ fb}^{-1} \text{ at } 14 \text{ TeV} : \sim 6 \cdot 10^7 \text{ events } x \text{ (e,}\mu) \rightarrow \delta M_W(\text{stat)} \sim 1 \text{ MeV}$

- Analysis strategy. For template production, need to manipulate samples of O(10°) simulated events routinely. NB: using full grid power, can produce ~10° fully simulated events/day
 - Rely on state-of-the-art QCD+EW exclusive final state generators, for description of signal and calibration samples
 - Adaptive simulation : switch between parton level / fast simulation / full simulation dynamically, system by system
 - Carefully select stored information / event
 - Produce sets of templates from all samples, and varying physics and detector uncertainties one by one
 - Repeat fits with all template sets and derive final uncertainty

Some projections... ... and starting to address the real questions

- Analysis strategy (continued).
 - produce MC models of the W signal, of the "candles" J/Psi, ..., Z, and of any relevant basic detector-level distribution
 - Exploit "candles" to determine the size of effective corrections (energy scales, resolutions, efficiencies, ...)
 - If significant data/MC differences, correct templates for these
 - Fit W boson mass, store result
 - Feed-back the data/MC differences to the upstream simulation and go back to point 1
 - Monitor the stability of M_w along these iterations. Converge when
 - All effective corrections are 1 (most ambitious)
 - → M_w is stable after effective corrections (fall-back, in case of too slow simulation)

Selected systematics: energy/momentum scale and resolution

- Prospective study: ~200 pb-1: lepton response from Z resonance tuning
 - Mock-data from full simulation; models from truth + smearing

- Sensitivity to parameters averaged over the Z sample:
 - Energy scale : ~3 10-4
 - Resolution : ~1% relative
- Need to differentiate in order to apply such calibrations to different samples

Selected systematics: energy/momentum scale and resolution

Today

- Effective calibration determined for barrel and endcap to ~ 3 10³
- Resolution: ~15% mismatch between data and MC, probed to ~25% relative

Selected systematics: energy/momentum scale and resolution

Tomorrow

Z prospects with 10 fb⁻¹: determine effective calibration vs. lepton kinematics

- Issues : charge-dependent scale
 - The different kinematic distributions for W⁺ and W⁻ require separate determinations for positive and negative leptons
 - Handles: signals with charge-symmetric distributions, e.g J/Psi decays and e⁺e⁻ from conversions.

Selected systematics : electron reconstruction efficiency

• The electron reconstruction efficiency is a strong function of pT (and right in the jacobian region):

• From prospective studies, entirely neglecting this dependence in the templates leads to a bias of $\delta M_W = +360 \text{ MeV} - \text{in other words}$, a bias of +4 MeV / %

Selected systematics : recoil calibration

- The hadronic recoil enters the analysis through
 - $\vec{p}_T(v) = -[\vec{p}_T(l) + \vec{R}]$
 - $M_T(W) = [2 p_T(e) p_T(v) (1 \cos \Delta \phi)]^{1/2}$
- Current performance encouraging; J/Psi- and Z-based calibrations underway

Selected systematics : recoil calibration

• in W events : $p_T(W)$, which is just the hadronic recoil. Uncorrected distributions below:

W dynamics : the p_{τ} distribution

- No public plots yet... below a summary of our strategy
- The hadronic recoil is diagnosed using
 - MinBias events : resolution dependence vs. event activity (SumET)
 - J/Psi and Z events probe, in addition, its bias and resolution vs. lepton pair p_{τ}
 - This information is fed back as
 - Improvement to the UE tuning
 - Effective calibration for the residual effects
- With this calibration in hand, we measure the pT(W) distributions, in W⁺ and W⁻ events separately. Cross check performed on Z events, comparing there the lepton-pair based $p_{\tau}(Z)$ measurement to the recoil-based one.
- This information is then used to constrain the models, and integrated in the template production.

- Let us assume, to simplify, that rapidity
 → PDFs
- PDF uncertainties, estimated using CTEQ61
 - Templates from current "best fit"
 - Pseudo-data from 1- σ excursions in all PDF parameters; collect and sum biases

Induced uncertainty on M_w~30 MeV

- The W rapidity can not be measured directly (undetected neutrino) but:
 - Correlation between W & Z rapidity distributions under PDF variations:

In other words we predict the W rapidity distribution as

$$d\sigma_{W}/dy \rightarrow \frac{d\sigma_{W}/dy}{d\sigma_{Z}/dy} \times d\sigma_{Z}/dy$$

Raw prediction

Precise prediction

Measured

Hence measuring the Z to ultimate precision is crucial!

Z rapidity data with 10 fb⁻¹, compared to the PDF uncertainty on this distribution

• Ultimately $\delta M_{_W} \sim 2$ MeV from this source (+ cross-check with other PDF-sensitive measurements) – but see next pages....

- Not quite there yet!
 - the 0.3 pb⁻¹ plot (uncorrected data) Measurement planned with 40 pb⁻¹

Let us repeat this exercise with different PDF sets. We find:

CTEQ 61 – standard NLO fit
 CTEQ 65 – improved HF treatment
 MRST – NNLO fit

vs. CTEQ 66 – ~free strange PDF

M_w: summary

- Experimental challenges keeping systematics below ~5 MeV requires
 - energy/momentum scale control to $< 10^4$ (average), $\sim 10^3$ (locally)
 - resolution to ~1%
 - → p_T dependence of lepton efficiency to 1%
- Strategy to control the $p_{\tau}(W)$ distribution :
 - \rightarrow Rely on state of the art generators to predict the lepton distributions at given p₁(W)
 - Measure the pT(W) distribution from the recoil distribution, calibrating from MinBias, J/Psi, and Z boson events, separately in W⁺ and W⁻ events
 - Ultimately, measure M_w in bins of $p_{\tau}(W)$, with two benefits
 - → Exploit a sharper Jacobian peak at low p_r(W): improve the statistical sensitivity
 - \rightarrow M_W^{fit} vs $p_T(W)$, separating by charge, provides an excellent control plot
- The y(W) distribution
 - Much information will be extracted from y(Z); also A(W); low-mass DY
 - Still, the strange contribution to W production remains critical to control
 - And whatever the situation, we need to dispose of a real uncertainty estimate!

$M_{\rm w}$: needs from theoretical community

- The $p_{\tau}(W)$ distribution
 - As said, we will always compare predictions to our data, and correct them when needed. But this measurement will greatly benefit from theoretical assistance!
 - The Good Generator will
 - Incorporate all well-known theory
 - Summarize uncertainties into a few phenomenological parameters, that the experiments can fit
 - Allow to do this externally we need to be able to do this ourselves, and iterate quickly
- PDFs
 - We have many potential handles :
 - W charge asymmetry; Z rapidity distribution
 - → Low-mass Drell-Yan $(\overline{u} / \overline{d} \text{ separation})$
 - W + charm (strangeness!)
 - But some are really challenging. To define a realistic strategy, we ABSOLUTELY need to dispose of realistic PDF uncertainty estimates, and a flexible PDF fitting framework allowing us to vary parameters everywhere needed at a fast pace.

Another brief example...

Precision measurement above the Z. Cf. LEP2:

 \sim 30 measurements, precision \sim 1-5%

- Current uncertainty at LHC: ~6-7% for 100 GeV < M < 1 TeV and y~0
- → Gain a factor ~5. To do this, relate simple model :
 - $\sigma(m,y=0) \sim f^2(x,m)$ (at m [low-mass], measure) • $\sigma(m_z,y\neq 0) \sim f(X,m_z) \times f(x,m_z)$ (at M_z, measure) • $\sigma(M,y=0) \sim f^2(X,M)$ (at M [high-mass], predict)
- Specifically, write:

$$\sigma(M, y = 0) \rightarrow \frac{\sigma(M, y = 0) \times \sigma(m, y = 0)}{\sigma^2(M_Z, y \neq 0)} \times \frac{\sigma^2(M_Z, y \neq 0)}{\sigma(m, y = 0)}$$

Raw prediction

Smaller PDF dependence?

Measured

chosing m, M and y such that $m = M_z e^{-y}$; $M = M_z e^{+y}$

Precision of the ratio prediction :

- Measured quantities:
 - dσ/dy (Z) already shown too much (
 - $d\sigma/dm$ at low mass : a(nother) challenging measurement in preparation

 Disclaimer: we don't know whether will this measurement will be achieved to the needed precision!

Summary

- Electroweak precision measurements: program starting now; a long way to go
- Detector performance has been beyond hopes in 2010. A very encouraging situation for the future
- Measurements should be organized to be minimally dependent on strong interaction theory. Where unavoidable, replace imprecise direct predictions by well chosen ratios, and complete by ancillary measurements
- Any remaining theoretical or model uncertainty will become potentially dominant.
 Hence uncertainties need to be well defined. Among these:
 - The $p_{\tau}(W)$ distribution can be measured; we should not rely exclusively on theory here. High precision is a challenge, but uncertainties are well defined.
 - PDFs: any "superfluous" assumption concerning parametrical form and/or relations between parton densities can break the measurement – need the highest possible flexibility.