(Constraints from) Electroweak Precision Measurements – the LEP (& SLC) Legacy

Andreas Hoecker (CERN)

Challenges for Precision Physics at the LHC, Paris, December 15 – 18, 2010

Precision Measurements at LEP and SLC

Since the Z^0 boson couples to all fermionantifermion pairs, it is an ideal laboratory for studying electroweak and strong interactions

Electroweak precision data measured at the Z⁰-resonance

Process under study: $e^+e^- \rightarrow f\bar{f}$

f = all fermions (quarks, charged leptons, neutrinos) light enough to be pair produced

Hadronic cross-section:

- s^{-1} fall-off due to virtual photon exchange
- Resonance at $\sqrt{s} = M_Z$
- For Vs > 2M_W: pair-production of W's kinematically allowed
- Measurements around M_z: SLC, LEP I

Combined paper LEP + SLC: Phys. Rept. 427, 257 (2006)

Measurements at the Z Pole (and beyond)

- Four experiments: ADLO
- $\sqrt{s} \sim M_Z$
- \sqrt{s} extremely well measured (2×10⁻⁵)
- Peak $L = 2 \cdot 10^{31} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$
 - 1000 Z's per hour per experiment
 - "Z-Factory"
- In total: ~17 million Z decays (SLD: 600k)

<u>LEP II</u> (1996 – 2000)

- Four experiments: ADLO
- 161 GeV < √s ~ 207 GeV
 - 700 pb⁻¹ per experiment
 - 12000 W pairs per experiment
- Higgs sensitivity up to 115 GeV

- Four experiments: ADLO
- $\sqrt{s} \sim M_Z$
- \sqrt{s} extremely well measured (2×10⁻⁵)
- Peak $L = 2 \cdot 10^{31} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$
 - 1000 Z's per hour per experiment
 - "Z-Factory"
- In total: ~17 million Z decays (SLD: 600k)

<u>SLC</u> (1989 – 1998)

- Low repetition rate (120 Hz cf. LEP: 45 kHz)
- Longitudinally polarized electron beam (up to $P_e \sim 80\%$, known to 0.5%)
- Small beam dimensions (1.5×0.7 μm², LEP: 150×5 μm²) + low bunch rate allowed use of slow but high-res. CCD arrays
 - \rightarrow superior vertex reconstruction

A look at the theory – tree level relations

Vector and axial-vector couplings for $Z \rightarrow ff$ in SM:

$$g_{V,f}^{(0)} \equiv g_{L,f}^{(0)} + g_{R,f}^{(0)} = I_3^f - 2Q^f \sin^2 \theta_W \qquad \sin^2 \theta_W = 1 - \frac{M_W^2}{M_Z^2}$$

$$g_{A,f}^{(0)} \equiv g_{L,f}^{(0)} - g_{R,f}^{(0)} = I_3^f$$

Electroweak unification: relation between weak and electromagnetic couplings:

$$G_{F} = \frac{\pi \alpha(0)}{\sqrt{2}M_{W}^{2}\left(1 - M_{W}^{2}/M_{Z}^{2}\right)} , \quad M_{W}^{2} = \frac{M_{Z}^{2}}{2} \cdot \left(1 + \sqrt{1 - \frac{\sqrt{8}\pi \alpha}{G_{F}M_{Z}^{2}}}\right)$$

Gauge sector of SM on tree level is given by 3 free parameters, *e.g.*: α , M_z , G_F (best known!)

Z-lepton coupling almost pure axial-vector

(γ pure vector \rightarrow large offpeak interference \rightarrow could establish Z-fermion coupling at PETRA, interesting for Z' searches via interference)

Radiative corrections – modifying propagators and vertices

Significance of radiative corrections can be illustrated by verifying tree level relation:

$$\sin^2\theta_W = 1 - \frac{M_W^2}{M_Z^2}$$

• Using the measurements:

 $M_W = (80.399 \pm 0.023) \text{ GeV}$ $M_Z = (91.1875 \pm 0.0021) \text{ GeV}$

one predicts: $\sin^2 \theta_w = 0.22284 \pm 0.00045$

which is 18σ away from the experimental value obtained by combining all asymmetry measurements: $\sin^2 \theta_w = 0.23153 \pm 0.00016$

Radiative corrections – modifying propagators and vertices

Leading order terms $(M_W \ll M_H)$

• ρ_Z and κ_Z can be split into sum of universal contributions from propagator self-energies:

$$\Delta \rho_{Z} = \frac{3G_{F}M_{W}^{2}}{8\sqrt{2}\pi^{2}} \left[\frac{m_{t}^{2}}{M_{W}^{2}} - \tan^{2}\theta_{W} \left(\ln \frac{M_{H}^{2}}{M_{W}^{2}} - \frac{5}{6} \right) + \dots \right]$$
$$\Delta \kappa_{Z} = \frac{3G_{F}M_{W}^{2}}{8\sqrt{2}\pi^{2}} \left[\frac{m_{t}^{2}}{M_{W}^{2}} \cot^{2}\theta_{W} - \frac{10}{9} \left(\ln \frac{M_{H}^{2}}{M_{W}^{2}} - \frac{5}{6} \right) + \dots \right]$$

• and flavour-specific vertex corrections, which are very small, except for top quarks, owing to large mass and $|V_{tb}|$ CKM element

$$\Delta \rho^{f} = -2\Delta \kappa^{f} = -\frac{G_{F}m_{t}^{2}}{2\sqrt{2}\pi^{2}} + \dots$$

Radiative corrections – modifying propagators and vertices

Leading order terms $(M_H \ll M_W)$

Radiative corrections allow us to test the SM and to constrain unknown SM parameters

 and flavour-specific vertex corrections, which are very small, except for top quarks, due to large |V_{tb}| CKM element

$$\Delta \rho^{t} = -2\Delta \kappa^{t} = -\frac{G_{F}m_{t}^{2}}{2\sqrt{2}\pi^{2}} + \dots$$

LPNHE–Paris, 2010

Example – electroweak cross-section formula for unpolarised beams (LEP)

Neglects photon ISR & FSR, gluon FSR, fermion masses

backward

electrons

 $\sigma = (N_{\rm sel} - N_{\rm bg}) / \varepsilon_{\rm sel} L$

forward

positrons

The \propto (1 + cos² θ) terms contribute to total **cross-sections**

• Measure cross-sections around M_z via corrected event counts:

The $\propto \cos\theta$ terms contribute only to **asymmetries**

• Measure Forward–Backward asymmetries in angular distributions final-state fermions: $A_{FB} = (N_F - N_B) / (N_F + N_B)$

Other asymmetries (not in above cross section formula)

- Dependence of Z^0 production on helicities of initial state fermions (SLC) \rightarrow Left–Right asymmetries
- Polarisation of final state fermions (can be measured in tau decays)

Total hadronic cross section – measurement and prediction

Total cross-section (from $\cos\theta$ symmetric terms) expressed in Breit-Wigner form:

$$\sigma_{f\bar{f}}^{Z} = \sigma_{f\bar{f}}^{0} \cdot \frac{s \cdot \Gamma_{Z}^{2}}{\left(s - M_{Z}^{2}\right)^{2} + s^{2} \Gamma_{Z}^{2} / M_{Z}^{2}} \cdot \frac{1}{R_{\text{QED}}} \qquad \sigma_{f\bar{f}}^{0} = \frac{12\pi}{M_{Z}^{2}} \frac{\Gamma_{ee} \Gamma_{f\bar{f}}}{\Gamma_{Z}^{2}} \qquad \text{Corrected for QED radiation}$$

Partial widths add up to full width: $\Gamma_Z = \Gamma_{ee} + \Gamma_{uu} + \Gamma_{\tau\tau} + \Gamma_{hadronic} + \Gamma_{invisible}$

- Measured cross sections depend on products of partial and total widths
- Highly correlated set of parameters !

Instead: use less correlated set of measurements

- Z mass and width: M_7 (2×10⁻⁵ accuracy !), Γ_7
- Hadronic pole cross section: σ_{had}^0
- Three leptonic ratios (use lepton-univ.): $R_{\ell}^{0} = R_{e}^{0} = \Gamma_{had} / \Gamma_{ee}$, R_{μ}^{0} , R_{τ}^{0} Hadronic width ratios: $R_{\ell}^{0} = \Gamma_{-} / \Gamma_{-} R^{0}$
- Hadronic width ratios: $R_b^0 = \Gamma_{b\bar{b}} / \Gamma_{had}$, R_c^0

Taken from LEP: precise √s
high statistics Include also SLD:

higher effi./purity for heavy guarks

Initial and final state QED radiation

Measured cross-section (and asymmetries) are modified by initial and final state QED radiation

• Effects are corrected for by the collaborations (using the programs TOPAZ0 and ZFITTER)

 $\sigma(s) = \int_{4m_f^2/s}^{1} dz \cdot H_{\text{QED}}^{\text{tot}}(z,s) \cdot \sigma(zs) \quad \begin{array}{c} \text{Convolution of kernel cross} \\ \text{section by QED radiator function} \end{array}$

- Very large corrections applied in some cases!
- Measured observables become "pseudo-observables"
- *E.g.*, hadronic pole-cross section σ^{0}_{had}

In the electroweak fit the published "pseudo-observables" are used

Important: these QED corrections are independent of the electroweak corrections discussed before!

Partial width – sensitive to QCD and QED corrections

Partial width are defined **inclusively**, *i.e.*, they contain final state QED and QCD vector and axial-vector corrections via "radiator functions": $R_{A,f}$, $R_{V,f}$

$$\Gamma_{f\bar{f}} = N_c^f \frac{G_F M_Z^3}{6\sqrt{2}\pi} \left(\left| g_{A,f} \right|^2 R_{A,f} + \left| g_{V,f} \right|^2 R_{V,f} \right)$$

QCD corrections only affect final states with quarks

• To first order in α_s corrections are flavour independent and identical for A and V

$$R_{V,QCD} = R_{A,QCD} = R_{QCD} = 1 + \frac{\alpha_{S}(M_{Z}^{2})}{\pi} + \dots = 1 + 0.038 + \dots$$

• 3NLO (!) calculation available [P.A. Baikov et al., Phys. Rev. Lett. 101 (2008) 012022]

QED corrections similar:
$$R_{V,QED} = R_{A,QED} = R_{QED} = 1 + \frac{3}{4} Q_f^2 \frac{\alpha(M_Z^2)}{\pi} + \dots$$
 What is this? (though much smaller due to $\alpha \ll \alpha_S$)

LPNHE–Paris, 2010

Digression: Running of $\alpha_{QED}(M_z)$

Define: photon vacuum polarisation function $\Pi_{\gamma}(q^2)$ $i\int d^4x \ e^{iqx} \left\langle 0 \left| T J^{\mu}_{em}(x) \left(J^{\nu}_{em}(0) \right)^{\dagger} \right| 0 \right\rangle = -\left(g^{\mu\nu} q^2 - q^{\mu} q^{\nu} \right) \prod_{\gamma} (q^2)$ Only vacuum polarisation "screens" electron charge $\alpha(s) = \frac{\alpha(0)}{1 - \Delta\alpha(s)}$ with: $\Delta\alpha(s) = -4\pi\alpha \operatorname{Re}\left[\prod_{\gamma}(s) - \prod_{\gamma}(0)\right]$

Leptonic $\Delta \alpha_{\text{lep}}(s)$ calculable in QED (known to 3-loops). However, quark loops are modified by long-distance hadronic physics, cannot be calculated with perturbative QCD

= $\Delta \alpha_{\text{lep}}(s) + \Delta \alpha_{\text{had}}(s)$

Born:
$$\sigma^{(0)}(s) = \sigma(s)(\alpha/\alpha(s))^2$$
Way out: Optical Theorem
(unitarity) ... $(unitarity)$... $12\pi \operatorname{Im} \prod_{\gamma} (s) = \frac{\sigma^{(0)}[e^+e^- \rightarrow \text{hadrons}]}{\sigma^{(0)}[e^+e^- \rightarrow \mu^+\mu^-]} = R(s)$... and the subtracted
dispersion relation of $\Pi_{\gamma}(q^2)$
(analyticity) $\operatorname{Im}[\neg \varphi^{(0)}] \propto | \neg \varphi^{(0)}[e^+e^- \rightarrow \mu^+\mu^-]$

$$\prod_{\gamma}(s) - \prod_{\gamma}(0) = \frac{s}{\pi} \int_{0}^{\infty} ds' \frac{\operatorname{Im} \prod_{\gamma}(s')}{s'(s'-s) - i\varepsilon} \qquad \Delta \alpha_{\operatorname{had}}(s) = -\frac{\alpha s}{3\pi} \operatorname{Re} \int_{0}^{\infty} ds' \frac{R(s')}{s'(s'-s) - i\varepsilon}$$

Digression: Running of $\alpha_{QED}(M_Z)$

Hadronic dispersion integral solved by combination of experimental data and perturbative QCD

$$\Delta \alpha_{\text{had}}(M_Z^2) = -\frac{\alpha M_Z^2}{3\pi} P \int_0^\infty ds' \frac{R(s')}{s'(s' - M_Z^2)}$$

The task is to properly correct, average and integrate the cross section data.

Use perturbative QCD where possible ("global quark–hadron duality" allows one to extend perturbative QCD into the non-continuum regions)

Traditionally separate:

$$\Delta \alpha_{\rm had}(M_Z^2) = \Delta \alpha_{\rm had}^{(5)}(M_Z^2) + \Delta \alpha_{\rm top}(M_Z^2)$$

Results [DHMZ, arXiv:1010.4180 (2010)]

 $\Delta \alpha(M_Z^2) = 0.03149769_{lep} + 0.02749(10)_{had (5)} - 0.000072(02)_{top}$

 $\alpha^{-1}(M_{z}^{2}) = 128.962 \pm 0.014$

Digression: anomalous magnetic moment of the muon "g – 2"

Contributing diagrams:

Dominant uncertainty in SM prediction from lowest-order hadronic term

Computed similarly as $\Delta \alpha_{had}$ via dispersion relation, but emphasis on low- \sqrt{s} cross section

Digression: anomalous magnetic moment of the muon

Experimental result (E821-BNL, 2004): $a_{\mu} = (11\ 659\ 208.9 \pm 5.4 \pm 3.3) \times 10^{-10}$ Standard Model Prediction:

$$a_{\mu}^{SM}[e^+e^--based] = (11\ 659\ 180.2 \pm 4.2_{had,LO} \pm 2.6_{NLO} \pm 0.2_{QED+weak}) \times 10^{-10}$$
$$a_{\mu}^{SM}[\tau-based] = (11\ 659\ 189.4 \pm 4.7_{had,LO} \pm 2.6_{NLO} \pm 0.2_{QED+weak}) \times 10^{-10}$$

Observed Difference with Experiment: $a_{\mu}^{exp} - a_{\mu}^{SM} = (28.7 \pm 8.0) \times 10^{-10} [ee]$ $= (19.5 \pm 8.3) \times 10^{-10} [\tau]$ $\Rightarrow 3.6 / 2.4$ "standard deviations"

Davier-Hoecker-Malaescu-Zhang, arXiv:1010.4180, 2010

The deviation is in the ball park of SUSY expectations with O(0.1-1 TeV) squarks and gluinos

Partial width – sensitive to QCD and QED corrections

Partial width are defined **inclusively**, *i.e.*, they contain final state QED and QCD vector and axial-vector corrections via "radiator functions": $R_{A,f}$, $R_{V,f}$

$$\Gamma_{f\bar{f}} = N_c^f \frac{G_F M_Z^3}{6\sqrt{2}\pi} \left(\left| g_{A,f} \right|^2 R_{A,f} + \left| g_{V,f} \right|^2 R_{V,f} \right)$$

QCD corrections only affect final states with quarks

• To first order in α_s corrections are flavour independent and identical for A and V

$$R_{V,QCD} = R_{A,QCD} = R_{QCD} = 1 + \frac{\alpha_{S}(M_{Z}^{2})}{\pi} + \dots = 1 + 0.038 + \dots$$

• 3NLO (!) calculation available [P.A. Baikov et al., Phys. Rev. Lett. 101 (2008) 012022]

QED corrections similar:
$$R_{V,QED} = R_{A,QED} = R_{QED} = 1 + \frac{3}{4} Q_f^2 \frac{\alpha(M_Z^2)}{\pi} + \dots$$
 We now know what this is ! We now know what this is !

LPNHE–Paris, 2010

Neutral Current Couplings

Asymmetry and polarisation – quantify parity violation

Distinguish vector and axial-vector couplings of the Z (*i.e.*, $sin^2 \theta^{f}_{eff}$) Convenient to use "asymmetry parameters":

$$A_{f} = \frac{g_{L,f}^{2} - g_{R,f}^{2}}{g_{L,f}^{2} + g_{R,f}^{2}} = 2 \frac{g_{V,f} / g_{A,f}}{1 + (g_{V,f} / g_{A,f})^{2}} \quad \text{dependent on } \sin^{2}\theta_{\text{eff}}^{f} \colon \frac{\text{Re}(g_{V,f})}{\text{Re}(g_{A,f})} = 1 - 4 |Q_{f}| \sin^{2}\theta_{\text{eff}}^{f}$$

Via final state (FS) angular distribution in unpolarised scattering (LEP)

- Forward-backward asymmetries: $A_{FB}^{f} = \frac{N_{F} N_{B}}{N_{F} + N_{B}}, A_{FB}^{0,f} = \frac{3}{4}A_{e}A_{f}$
- LEP measurements: $A_{FB}^{0,l}$, $A_{FB}^{0,c}$, $A_{FB}^{0,b}$

$$Via \ IS \ polarisation \ (SLC): \ A_{LR} = \frac{N_L - N_R}{N_L + N_R} \frac{1}{\left\langle \left| P \right|_e \right\rangle}, \ A_{LRFB} = \frac{\left(N_F - N_B\right)_L - \left(N_F - N_B\right)_R}{\left(N_F + N_B\right)_L + \left(N_F + N_B\right)_R} \frac{1}{\left\langle \left| P_e \right| \right\rangle}$$

• Left-right, and left-right forward-backward asymmetries: $A_{LR}^0 = A_e^0$, $A_{LRFB}^{0,f} = \frac{3}{4}A_f^0$

Via final state (FS) angular distribution in unpolarised scattering (LEP)

- Forward-backward asymmetries: $A_{FB}^{f} = \frac{N_{F} N_{B}}{N_{-} + N_{-}}, A_{FB}^{0,f} = \frac{3}{4}A_{e}A_{f}$
- LEP measurements: $A_{FB}^{0,l}$, $A_{FB}^{0,c}$, $A_{FB}^{0,b}$

$$Via \ IS \ polarisation \ (SLC): \ A_{LR} = \frac{N_L - N_R}{N_L + N_R} \frac{1}{\left\langle \left| P \right|_e \right\rangle}, \ A_{LRFB} = \frac{\left(N_F - N_B\right)_L - \left(N_F - N_B\right)_R}{\left(N_F + N_B\right)_L + \left(N_F + N_B\right)_R} \frac{1}{\left\langle \left| P_e \right| \right\rangle}$$

• Left-right, and left-right forward-backward asymmetries: $A_{LR}^0 = A_e^0$, $A_{LRFB}^{0,f} = \frac{3}{4}A_f^0$

LPNHE–Paris, 2010

Neutral Current Couplings

Asymmetry and polarisation – quantify parity violation

Distinguish vector and axial-vector couplings of the Z (*i.e.*, $\sin^2 \theta_{eff}^f$) Convenient to use "asymmetry parameters":

$$A_{f} = \frac{g_{L,f}^{2} - g_{R,f}^{2}}{g_{L,f}^{2} + g_{R,f}^{2}} = 2\frac{g_{V,f}/g_{A,f}}{1 + (g_{V,f}/g_{A,f})^{2}}$$

Via final state polarisation (LEP):

• Tau polarisation:

$$P_{\tau}(\cos\theta) = -\frac{A_{\tau}(1+\cos^2\theta)+2A_{e}\cos\theta}{1+\cos^2\theta+2A_{\tau}A_{e}\cos\theta}$$

- Measure τ spin versus from energy and angular correlations in τ decays
- Fit at LEP determines: A_τ, A_e

Heavy Flavour Measurements

- *b* and *c* quarks can be identified efficiently by LEP / SLD $\rightarrow R_b$, R_c
- Especially *R_b* is sensitive to new physics connected to *tb* couplings

[With the m_t from the Tevatron the interest from SM is minor]

- SLC measures in addition the asymmetry parameters A_b , A_c
- These parameters are only sensitive to new physics at Born level
- Hence, these and the LEP $A^{b/c}_{FB}$ measurements cleanly determine $\sin^2\theta_{eff}$

Summary $\sin^2 \theta_{eff}$ Measurements

- Very precise measurement !
- Average dominated by A_{LR}(SLD) and A^b_{FB}

... which agree marginally only

(3.2 σ , but overall average χ^2 = 11.8 / 5 dof \rightarrow 2.0 σ)

 In absence of convincing physics explanation, assume it is fluctuation

Neutral Current Couplings Before / After LEP

Combined paper LEP + SLC: Phys. Rept. 427, 257 (2006)

Status 1987:

broad bands

Neutrino scattering and e^+e^- annihilation data constrained the values of

 $g_{V\ell}$ and $g_{A\ell}$ to lie within

LPNHE–Paris, 2010

Andreas Hoecker – Constraints from Precision Measurements – the LEP legacy

Sensitive Tests of Lepton Universality

LPNHE-Paris, 2010

Beyond the Z Pole

11:26:44 CERN 5L 02-08-99 data of:02-08-99 11:26:34 6032 LEP Run STABLE BEAMS (涂) -** In Coast: 0.7 GeV/c Beam E = 100.01011 64 Beams 2345.9 2040.6 I(t) υA 7.36 6.30 tau(t) 2 DELPHI OPAL 1.3 ALEPH LUMINOSITIES 45. 0 55.6 51.4 cm-2*s-1 53.5 i(t)12.2 8.7 11, 9 11.5 /L(t) nb-1 1.02 0.00 1.21 0.80 1 Bkq 2.28 0.96 0.53 0.86 Bkg 2 02-08-99 11:26 COMMENTS COLLIMATORS AT PHYSICS SETTINGS 103 GEV PHYSICS AT FIRST WHAT ABOUT THAT ???

> LEP1 page in August 2, 1999, 11:15 after reaching 200 GeV CM energy

LPNHE–Paris, 2010

Precision Measurement of the W mass

Results from LEP-II:

- 10 pb⁻¹ per experiment recorded close to the WW threshold
 - M_W from σ_{WW} measurements
 - Much less precise result than kinematic W reconstruction (200 MeV statistical error)
- 700 pb⁻¹ per experiment above the threshold
 - *M_W* directly reconstructed from invariant mass of observed leptons (dominant) and jets
 - Large FSI ("colour reconnection") systematics in hadronic channel (35 MeV)
 - Combination: $M_W = (80.376 \pm 0.025 \pm 0.022)$ GeV

Results from Tevatron:

- Using leptonic W decays
 - M_W from template fits to the transverse mass or transverse momentum of lepton
 - Systematics dominated measurement (energy calibration), but reduced with better Z yield
 - Combination (2009): M_W = (80.420 ± 0.031) GeV

 $4 \times 700 \text{ pb}^{-1}$ taken for $\sqrt{s} = 161-209 \text{ GeV}$ between 1996 and 2000 at LEP-II

29

Direct Higgs Searches

LEP-2: Higgs production via "Higgs-Strahlung"

• ee \rightarrow ZH (H \rightarrow bb, $\tau\tau$)

At Tevatron, armada of 90 mutually exclusive channels measured

- Low-mass (M_H < 135 GeV) searches dominated by WH associated production
- High-mass searches dominated by WW mode
- Massive use of high-end multivariate methods to boost performance
- Statistical combination of all the search channels
- Systematic uncertainties treated as nuisance parameters in combination and fit to data

Constraints from direct Higgs Searches

Statistical interpretation of limits: two-sided CL_{s+b}

- Experiments measure test statistics: $LLR = -2\ln Q$, where $Q = L_{s+b} / L_b$
- LLR is transformed by experiments into CL_{s+b}
- For SM fits, transform 1-sided CL_{s+b} into 2-sided CL_{s+b} : $\Delta \chi^2 = Erf^{-1}(1 CL_{s+b}^{2-sided})$ (measure *deviation* from SM)
- Alternatively, use directly $\Delta \chi^2 \approx$ LLR: Bayesian interpretation, lacks pseudo-MC information

Constraining the Higgs Mass...

... and other observables from the global fit to the electroweak data...

... by exploiting the precision measurements of radiative effects:

 $\rho_{\ell} = 1.0050 \pm 0.0010$ $\sin^{2} \theta_{\text{eff}}^{\text{lept}} = 0.23153 \pm 0.00016$ $\Delta r = 0.0256 \pm 0.0014$

All Observables Entering the Fit

Experimental results:

- Z-pole observables: LEP/SLD results (corrected for ISR/FSR QED effects) [ADLO & SLD, Phys. Rept. 427, 257 (2006)]
 - Total and partial cross sections around Z: M_Z , Γ_Z , σ^0_{had} , R_I^0 , R_c^0 , R_b^0 Sensitive to the total coupling strength of the Z to fermions
 - Asymmetries on the Z pole: $A_{FB}^{0,l}$, $A_{FB}^{0,b}$, $A_{FB}^{0,c}$, A_l , A_c , A_b , $\sin^2\theta'_{eff}(Q_{FB})$ Sensitive to the ratio of the Z vector to axial-vector couplings (*i.e.* $\sin^2\theta_{eff}$) \rightarrow parity violation
- M_W and Γ_W : LEP + Tevatron average

[ADLO, hep-ex/0612034] [CDF, Phys. Lett. 100, 071801 (2008)] [CDF & D0, Phys. Rev. D 70, 092008 (2004)] [CDF & D0, arXiv:0908.1374v1]

- *m_t*: latest Tevatron average [CDF & D0, new combination for ICHEP 2010, arXiv:1007.3178]
- \overline{m}_c , \overline{m}_b : world averages [PDG, Phys. Lett. B667, 1 (2008) and 2009 partial update for the 2010 edition]
- $\Delta \alpha_{had}(M_Z)$: [DHMZ arXiv:1010.4180 (2010)] + rescaling mechanism to account for α_s dependency
- Direct Higgs searches at LEP and Tevatron (ICHEP 2010 average) [ADLO: Phys. Lett. B565, 61 (2003)] [CDF & D0: arXiv:1007.4587 (2010)]

Parameter	Input value		Param
M_Z [GeV]	91.1875 ± 0.0021		M_H [G
Γ_Z [GeV]	2.4952 ± 0.0023	ЦЩ —	M_W [C
$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	-	Γ_W [Ge
R^0_ℓ	20.767 ± 0.025		
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010		m_c [Ge
A_ℓ (*)	0.1499 ± 0.0018	U U	m_b [Ge
A_c	0.670 ± 0.027	SL	m_t [Ge
A_b	0.923 ± 0.020	<u>, I</u>	$\Delta \alpha_{\rm had}^{(*)}$
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035		$\alpha_s(M_Z^2)$
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016		$\delta_{ m th} M_W$
R_c^0	0.1721 ± 0.0030	LC L	$\delta_{ m th} \sin^2$
R_b^0	0.21629 ± 0.00066	ျပ	$\delta_{ m th} ho_Z^f$ (
$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012		$\delta_{\pm b} \kappa_{\pi}^{f}$

KEZ I A

Parameter	Input value	
M_H [GeV] ^(o)	Confidence levels	
M_W [GeV]	80.399 ± 0.023	
Γ_W [GeV]	2.085 ± 0.042	
$\overline{m}_c [{\rm GeV}]$	$1.27^{+0.07}_{-0.11}$	
$\overline{m}_b [{ m GeV}]$	$4.20^{+0.17}_{-0.07}$	
$m_t [{ m GeV}]$	173.3 ± 1.1	
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) \ ^{(\dagger \bigtriangleup)}$	2749 ± 10	
$\alpha_s(M_Z^2)$	_	
$\delta_{\rm th} M_W \; [{ m MeV}]$	$[-4,4]_{\mathrm{theo}}$	
$\delta_{\rm th} \sin^2 \theta_{\rm eff}^{\ell}$ (†)	$[-4.7, 4.7]_{\rm theo}$	
$\delta_{ m th} ho_Z^{f}$ (†)	$[-2,2]_{\mathrm{theo}}$	
$\delta_{ m th}\kappa^f_Z$ (†)	$[-2,2]_{\mathrm{theo}}$	

LEP & Tevatron

Tevatron

Correlations for observables from Z lineshape fit					
	M_Z	Γ_Z	$\sigma_{ m had}^0$	R^0_ℓ	$A^{0,\ell}_{\scriptscriptstyle\mathrm{FB}}$
M_Z	1	-0.02	-0.05	0.03	0.06
Γ_Z		1	-0.30	0.00	0.00
$\sigma_{ m had}^0$			1	0.18	0.01
R^0_ℓ				1	-0.06
$A^{0,\ell}_{\scriptscriptstyle\mathrm{FB}}$					1

Correlations for heavy-flavour observables at Z pole						
	$A^{0,c}_{\scriptscriptstyle\mathrm{FB}}$	$A^{0,b}_{\scriptscriptstyle\mathrm{FB}}$	A_c	A_b	R_c^0	R_b^0
$A^{0,c}_{\scriptscriptstyle \mathrm{FB}}$	1	0.15	0.04	-0.02	-0.06	0.07
$A^{0,b}_{\scriptscriptstyle\mathrm{FB}}$		1	0.01	0.06	0.04	-0.10
A_c			1	0.11	-0.06	0.04
A_b				1	0.04	-0.08
R_c^0					1	-0.18

The Global Electroweak Fit

Theory predictions – state-of-the art calculations, in particular:

- *M_W* and sin²θ^f_{eff}: full two-loop + leading beyond-two-loop form factor corrections
 [M. Awramik et al., Phys. Rev D69, 053006 (2004) and ref.] [M. Awramik et al., JHEP 11, 048 (2006) and refs.]
- Radiator functions: 3NLO prediction of the massless QCD cross section [P.A. Baikov et al., Phys. Rev. Lett. 101 (2008) 012022]
- Theoretical uncertainties: $M_W (\delta_{\text{theo}}(M_H) = 4-6 \text{ GeV})$, $\sin^2 \theta'_{\text{eff}} (\delta_{\text{theo}} = 4.7 \cdot 10^{-5})$

Fit parameters

- In principle, all parameters used in theory predictions are varying freely in fit
- Masses of leptons and light quarks fixed to world-averages from PDG
- Free are running charm, bottom and top masses $\rightarrow m_t$ strongest impact on fit !

List of freely varying parameters in the SM fit: $\Delta \alpha_{had}^{(5)}(M_Z), \ \alpha_S(M_Z), \ M_Z, \ M_H, \ \overline{m}_c, \ \overline{m}_b, \ m_t$

Fit Results^(*)

(*) Status: Nov 2010

Distinguish two fit types:

Standard Fit: all data except for direct Higgs searches Complete Fit: all data including direct Higgs searches

Parameter	Input value	Free in fit	Results from g Standard fit	global EW fits: Complete fit	Complete fit w/o exp. input in line
M_Z [GeV]	91.1875 ± 0.0021	yes	91.1874 ± 0.0021	91.1877 ± 0.0021	$91.1942^{+0.0168}_{-0.0114}$
Γ_Z [GeV]	2.4952 ± 0.0023	_	2.4960 ± 0.0015	$2.4956^{+0.0015}_{-0.0014}$	$2.4952^{+0.0014}_{-0.0016}$
$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	_	41.478 ± 0.014	41.478 ± 0.014	41.469 ± 0.015
R^0_ℓ	20.767 ± 0.025	_	20.742 ± 0.018	$20.741^{+0.018}_{-0.017}$	20.718 ± 0.026
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	_	0.01641 ± 0.0002	$0.01625^{+0.0002}_{-0.0001}$	$0.01624^{+0.0002}_{-0.0001}$
$A_\ell \ ^{(\star)}$	0.1499 ± 0.0018	—	0.1479 ± 0.0010	$0.1472\substack{+0.0010\\-0.0006}$	_
A_c	0.670 ± 0.027	_	$0.6683^{+0.00044}_{-0.00043}$	$0.6680^{+0.00042}_{-0.00027}$	$0.6679^{+0.00039}_{-0.00022}$
A_b	0.923 ± 0.020	—	0.93469 ± 0.00009	$0.93466^{+0.00005}_{-0.00008}$	$0.93466^{+0.00005}_{-0.00009}$
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	—	0.0741 ± 0.0005	$0.0738^{+0.0005}_{-0.0003}$	0.0739 ± 0.0004
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	_	0.1037 ± 0.0007	$0.1032^{+0.0007}_{-0.0004}$	$0.1036^{+0.0005}_{-0.0004}$
R_c^0	0.1721 ± 0.0030	—	0.17225 ± 0.00006	0.17225 ± 0.00006	0.17225 ± 0.00006
R_b^0	0.21629 ± 0.00066	_	$0.21578^{+0.00005}_{-0.00008}$	$0.21576^{+0.00007}_{-0.00008}$	$0.21577^{+0.00005}_{-0.00008}$
$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	_	0.23141 ± 0.00012	$0.23150^{+0.00007}_{-0.00013}$	$0.23149^{+0.00008}_{-0.00011}$
M_H [GeV] ^(o)	Confidence levels	yes	$95.7^{+30.6[+75.8]}_{-24.2[-43.7]}$	$120.2^{+18.1[+35.1]}_{-4.7[-5.8]}$	$95.7^{+30.6[+75.8]}_{-24.2[-43.7]}$
M_W [GeV]	80.399 ± 0.023	_	$80.382^{+0.014}_{-0.015}$	80.370 ± 0.008	$80.360^{+0.016}_{-0.018}$
Γ_W [GeV]	2.085 ± 0.042	_	2.092 ± 0.001	2.092 ± 0.001	2.092 ± 0.001
$\overline{m}_c [{ m GeV}]$	$1.27^{+0.07}_{-0.11}$	yes	$1.27^{+0.07}_{-0.11}$	$1.27^{+0.07}_{-0.11}$	_
$\overline{m}_b [{ m GeV}]$	$4.20^{+0.17}_{-0.07}$	yes	$4.20^{+0.16}_{-0.07}$	$4.20^{+0.16}_{-0.07}$	-
$m_t [{ m GeV}]$	173.3 ± 1.1	yes	173.4 ± 1.1	173.7 ± 1.0	$177.4^{+11.8}_{-3.5}$
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) \ ^{(\dagger \bigtriangleup)}$	2749 ± 10	yes	2750 ± 10	2748 ± 10	2729^{+39}_{-55}
$\alpha_s(M_Z^2)$	_	yes	$0.1192^{+0.0028}_{-0.0027}$	$0.1193^{+0.0028}_{-0.0027}$	$0.1193^{+0.0028}_{-0.0027}$
$\delta_{\rm th} M_W ~[{ m MeV}]$	$[-4,4]_{\mathrm{theo}}$	yes	4	4	_
$\delta_{\rm th} \sin^2 \theta_{\rm eff}^{\ell}$ (†)	$[-4.7, 4.7]_{\rm theo}$	yes	4.7	4.7	_
$\delta_{ m th} ho_Z^{f}$ (†)	$[-2,2]_{\mathrm{theo}}$	yes	2	2	_
$\delta_{ m th}\kappa^f_Z$ (†)	$[-2,2]_{\mathrm{theo}}$	yes	2	2	_

Parameter	$\ln M_H$	$\Delta \alpha_{ m had}^{(5)}(M_Z^2)$	M_Z	$\alpha_s(M_Z^2)$	m_t	\overline{m}_c
$\ln M_H$	1	-0.17	0.13	0.03	0.32	-0.00
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)$		1	-0.01	0.35	0.01	0.00
M_Z			1	-0.01	-0.01	-0.00
$\alpha_s(M_Z^2)$				1	0.03	0.01
m_t					1	0.00
\overline{m}_{c}						1

 \overline{m}_b

-0.01

0.02

-0.00

0.05

-0.00

0.00

Correlation coefficients of free fit parameters

Goodness-of-Fit

Goodness-of-fit:

- Standard fit: $\chi^2_{min} = 16.6 \rightarrow \text{Prob}(\chi^2_{min}, 13) = 0.22$
- Complete fit: $\chi^2_{min} = 17.5 \rightarrow \text{Prob}(\chi^2_{min}, 14) = 0.24$
- No requirement for new physics

Pull values for complete fit (*right figure* \rightarrow)

- No individual pull exceeds 3σ
- FB(*b*) asymmetry largest contributor to χ^2_{min}
- Small contributions from M_Z, Δα^{had}(M_Z), m_c, m_b indicate that their input accuracies exceed fit requirements → parameters could have been fixed in fit
- Can describe data with only two floating parameters (α_{s}, M_{H})

Goodness-of-Fit

Toy analysis: p-value for wrongly rejecting the SM = $0.24 \pm 0.01 - 0.02_{theo}$

Higgs Mass Constraints

M_H from *Standard fit*:

- Central value $\pm 1\sigma$: $M_{H} = 96^{+30}_{-25}$ GeV
- 95% CL upper limit: 170 GeV

Green band due to *R*fit treatment of theory errors, fixed errors lead to larger χ^2_{min}

M_H from **old** *Standard fit*:

- Central value $\pm 1\sigma$: $M_{H} = 90^{+30}_{-24}$ GeV
- 95% CL upper limit: 164 GeV

Illustrate effect from new $\Delta \alpha_{had}$ precision determination (reduced EM coupling !)

Higgs Mass Constraints

M_H from Standard fit:

- Central value $\pm 1\sigma$: $M_{H} = 96^{+30}_{-25}$ GeV
- 95% CL upper limit: 170 GeV

Green band due to *R*fit treatment of theory errors, fixed errors lead to larger χ^2_{min}

M_H from *Complete fit*:

- Central value $\pm 1\sigma$: $M_{H} = 120_{-5}^{+18}$ GeV
- 95% CL upper limit: 155 GeV

Higgs Mass Constraints

Known tension between $A^{0,b}_{FB}$ and $A_{Iep}(SLD)$ and M_W :

- Pseudo-MC analysis to evaluate
 "Probability to observe a Δχ² = 8.0 when removing the least compatible input"
 → accounts for "look-elsewhere effect"
- Find: 1.4% (2.5o)

Top Mass

Quadratic sensitivity to m_{top}

• Complete fit: $m_{top} = 177.4^{+11.8}_{-3.5}$ GeV

Tevatron average: (173.3 ± 1.1) GeV

From cross section: $m_{top}^{pole} = (171.7 + 2.1)_{\sigma_{t\bar{t}}} \pm 0.9_{PDF} \pm 1.5_{\mu}) \text{ GeV}$

Note: profile of the standard fit exhibits an asymmetry opposite to the naïve expectation from $\sim m_t^2$ dependence of loop corrections

Unambiguously defined observable !

Reason: floating Higgs mass and its positive correlation with m_t

Top Mass

Quadratic sensitivity to m_{top}

• Complete fit: $m_{top} = 177.4^{+11.8}_{-3.5}$ GeV

Tevatron average: (173.3 ± 1.1) GeV

Fit (*i.e.* excluding the Higgs searches and the respective measurements)

Fit + Higgs searches

Fit + Higgs searches + direct measurements → best knowledge of SM

3NLO Determination of $\alpha_{\rm s}$


```
From Complete Fit:
```

 $\alpha_{\rm s}(M_Z) = 0.1193 \pm 0.0028 \pm 0.0001$

• First error experimental

```
• Second error theoretical (!)
```

[incl. variation of renorm. scale from $M_Z/2$ to $2M_Z$ and massless terms of order/beyond $a_S^5(M_Z)$ and massive terms of order/beyond $a_S^4(M_Z)$]

Excellent agreement with N³LO result from hadronic τ decays
 [M. Davier et al., arXiv:0803.0979]

 $\alpha_{\rm s}(M_Z) = 0.1212 \pm 0.0005_{\rm exp} \\ \pm 0.0008_{\rm theo} \\ \pm 0.0005_{\rm evol}$

 Best current test of asymptotic freedom property of QCD !

Electroweak Precision Data and Constraints Beyond the SM "Oblique Corrections"

Oblique Corrections

At low energies, BSM physics appears dominantly through vacuum polarisation

• Aka, oblique corrections

$$\begin{array}{c}
\mu \\
\sim \\
A \\
\end{array} \\
B \\
B \\
= i \Pi^{\mu\nu}_{AB=\{W,Z,\gamma\}}(q)$$

- Direct corrections (vertex, box, bremsstrahlung) generally suppressed by m_f/Λ

Oblique corrections reabsorbed into electroweak parameters $\Delta \rho$, $\Delta \kappa$, Δr

Electroweak fit sensitive to BSM physics through oblique corrections

Н

 In direct competition with Higgs loop corrections Oblique corrections from New Physics described through STU parameters [Peskin-Takeuchi, Phys. Rev. D46, 381 (1992)]

 $O_{\text{meas}} = O_{\text{SM,ref}}(M_H, m_t) + c_S S + c_T T + c_U U$

- **S**: (S+U) New Physics contributions to neutral (charged) currents
- T: Difference between neutral and charged current processes – sensitive to weak isospin violation
- *U*: Constrained by M_W and Γ_W . Usually very small in NP models (often: *U*=0)

The Oblique Parameters in the Standard Model

STU references in SM obtained from fit to EW observables

- SM_{ref} chosen at: M_H = 120 GeV and m_t = 173.1 GeV
- This defines (S, T, U) = (0, 0, 0)

Results from Standard Model fit:

S = 0.02 ± 0.11		S	Т	U
$T = 0.05 \pm 0.12$	S	1	0.88	-0.47
$1 = 0.05 \pm 0.12$	Т		1	-0.72
$U = 0.07 \pm 0.12$	U			1
	•			/

Little Higgs Models (LHM)

STU predictions (oblique corrections) inserted for **Littlest Higgs model**

[Hubisz et al., JHEP 0601:135 (2006)]

Parameters of LH model:

- *f*: symmetry breaking scale (new particles)
- $s_{\lambda} \cong m_{T-} / m_{T+}$
- **Coefficient** δ_c depends on detail of UV physics. Treated as theory uncertainty in fit: δ_c = [–5,5]
- F: degree of finetuning

Results: Large *f* : LH approaches SM and SM M_H constraints. Smaller *f* : M_H can be large. Due to strong s_{λ} dependence, no absolute exclusion limit

MSSM (SUSY) with mSUGRA

mSUGRA: highly constrained SUSY breaking mechanism at GUT scale, determined by 5 parameters:

- *m*_{1/2}, *m*₀
 - n₀ fermion/scalar masses at GUT scale
- $tan\beta$

 A_0

- ratio of two Higgs vev's
- trilinear coupling of Higgs
- $sgn(\mu)$ sign of Higgsino mass term

• Oblique corrections dominated by weak isospin violation in: $m_{\tilde{b}_i}$, $m_{\tilde{t}_i}$, and $m_{\tilde{t}_i}$, $m_{\tilde{t}_2}$

By construction of the oblique parameters
 → T parameter has dominant contribution

Fits use external code interfaced to Gfitter: FeynHiggs, MicrOMEGAs, SuperIso, SOFTSUSY

Fourth Fermion Generation

Introduce new lepton and quark states

Free parameters: m_{u_4} , m_{d_4} , m_{e_4} , m_{v_4}

- Assume: no mixing of extra fermions
- Shift $\Delta S \approx 0.21$ from heavy generation
- Sensitive to mass difference between upand down-type fields (not to absolute mass scale)

Results:

- With appropriate mass differences: fourth fermion model consistent with EW data
 - In particular a large M_H is allowed
- 5+ generations disfavored
- Data prefer a heavier charged lepton / uptype quark (which both reduce size of *S*)

Fourth Fermion Generation

Introduce new lepton and quark states

Free parameters: m_{u_4} , m_{d_4} , m_{e_4} , m_{v_4}

- Assume: no mixing of extra fermions
- Shift $\Delta S \approx 0.21$ from heavy generation
- Sensitive to mass difference between upand down-type fields (not to absolute mass scale)

Results:

- With appropriate mass differences: fourth fermion model consistent with EW data
 - In particular a large M_H is allowed
- 5+ generations disfavored
- Data prefer a heavier charged lepton / uptype quark (which both reduce size of *S*)

Fourth Fermion Generation

Introduce new lepton and quark states

Free parameters: m_{u_4} , m_{d_4} , m_{e_4} , m_{v_4}

- Assume: no mixing of extra fermions
- Shift $\Delta S \approx 0.21$ from heavy generation
- Sensitive to mass difference between upand down-type fields (not to absolute mass scale)

Results:

- With appropriate mass differences: fourth fermion model consistent with EW data
 - In particular a large M_H is allowed
- 5+ generations disfavored
- Data prefer a heavier charged lepton / uptype quark (which both reduce size of *S*)

Universal Extra Dimensions (UED)

All SM particles can propagate into ED Compactification → KK excitations Conserved KK parity (LKK is DM candidate) Model parameters:

- d_{ED} : number of ED (fixed to d_{ED} =1)
- R^{-1} : compactification scale ($m_{KK} \sim n/R$)

Contribution to oblique parameters:

• From KK-top/bottom and KK-Higgs loops

Results:

- Large *R*⁻¹: UED approaches SM (exp.)
- Small R⁻¹: large M_H required

Warped Extra Dimensions (Randall-Sundrum)

RS model characterized by one warped ED, confined by two three-branes

- One brane contains SM particles
- Extension: SM particles also in bulk

SM particles accompanied by towers of heavy KK modes.

Model parameters

- L: inverse warp factor
- M_{KK}: KK mass scale

Results:

- Large values of *T* (linear in *L*)
- Large *L* requires large M_{KK} (and small M_H)

LPNHE-Paris, 2010

[L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999)] [M. Carena et al., Phys. Rev. D68, 035010 (2003)]

The Future of the Electroweak Fit ... (5)

New colliders (LHC/ILC) will increase precision in electroweak observables

- Improvement of the predictive power of the fit
- Higgs discovery \rightarrow testing goodness-of-fit \rightarrow sensitivity to new physics

Expected improvement from LHC (10 fb⁻¹):

- δM_W : 25 MeV \rightarrow 15 MeV (at least) [did not include A_{FB} from $Z \rightarrow II$ in this study]
- δm_t : 1.2 GeV \rightarrow 1.0 GeV

Expected improvement from ILC:

• From threshold scan $\delta m_t = 50$ MeV, translates to 100–200 MeV on the running mass

Expected improvement from GigaZ:

- From *WW* threshold scan: $\delta M_W = 6$ MeV
- From A_{LR} : $\delta \sin^2 \theta'_{eff}$: $17 \cdot 10^{-5} \rightarrow 1.3 \cdot 10^{-5}$
- δR_{l}^{0} : 2.5 · 10⁻² \rightarrow 0.4 · 10⁻²

Improved determination of $\Delta \alpha_{had}^{(5)}(M_Z)$ will help

- Needs improvement in hadronic cross section data around *cc* resonance, and on QCD prediction of inclusive cross section
- Expected uncertainty of 7·10⁻⁵ (today 10·10⁻⁵) if relative cross-section precision below J/Ψ at 1% [Jegerlehner, hep-ph/0105283]
- Experiments with better acceptances and control of systematics needed
- Promising: ISR analyses at B and Φ factories; new data from BES-III

Fit inputs and results under various conditions

	Expected uncertainty				
Quantity	Present	LHC	ILC	GigaZ (ILC)	
$M_W [$ MeV]	23	15	15	6	
$m_t \; [\; {\rm GeV}]$	1.1	1.0	0.2	0.1	
$\sin^2 \theta_{\rm eff}^{\ell} \ [10^{-5}]$	17	17	17	1.3	
$R_{\ell}^0 \; [10^{-2}]$	2.5	2.5	2.5	0.4	
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) \ [10^{-5}]$	10 (7)	10 (7)	10 (7)	10 (7)	
$M_H (= 120 \text{ GeV}) [\text{ GeV}]$ $\alpha_s(M_Z^2) [10^{-4}]$	$^{+53}_{-40} \begin{pmatrix} +50\\ -37 \end{pmatrix} \begin{bmatrix} +37\\ -30 \end{bmatrix}$ 28	$^{+44}_{-35} \begin{pmatrix} +42\\ -33 \end{pmatrix} \begin{bmatrix} +30\\ -25 \end{bmatrix}$ 28	$^{+42}_{-33} \begin{pmatrix} +39\\ -31 \end{pmatrix} \begin{bmatrix} +27\\ -24 \end{bmatrix}$ 28	$^{+26}_{-23} \begin{pmatrix} +20\\ -18 \end{pmatrix} \begin{bmatrix} +8\\ -8 \end{bmatrix}$ 7	

Input from: [ATLAS, Physics TDR (1999)] [CMS, Physics TDR (2006)] [A. Djouadi et al., arXiv:0709.1893][I. Borjanovic, EPJ C39S2, 63 (2005)] [S. Haywood et al., hep-ph/0003275] [R. Hawkings, K. Mönig, EPJ direct C1, 8 (1999)] [A. H. Hoang et al., EPJ direct C2, 1 (2000)] [M. Winter, LC-PHSM-2001-016]

Results on M_{H} , including (solid) and excluding (dotted) theoretical errors

Results on *M_H*, including (solid) and excluding (dotted) theoretical errors

On Witek's point in the introduction:

"Can we indirectly exclude the SM Higgs before it is not discovered?"

Look at: $\Delta \chi^2 = \chi^2 (M_H = 114.5 \text{ GeV}) - \chi^2 (M_H \text{ free})$ Caution: this is a biased test !

M _w [Ge	eV]	σ(<i>M_W</i>) [MeV]	$\Delta\chi^2$	no. of sigma	
80.39	9	23	0.4	< 1	
same)	15	1.4	1.2	
same)	10	3.2	1.8	
same	•	5	7.4	2.7	
80.37	6	5	0.2	< 1	1

Results on That was it - conclusions:

New precision electroweak data continue to come in ! The Standard Model describes them (almost) all. In the Standard Model the Higgs must be light (< 155 GeV at 95% CL). Beyond the Standard Model the Higgs can be heavy ! → MUST NOT stop searching for heavy Higgs boson ! [BSM physics often comes with positive sign of T, cancelling negative contributions from heavy Higgs]

Additional slides

Digression: anomalous magnetic moment of the muon

Precision Measurement of the W mass

Recent D0 measurement of M_W in $W \rightarrow e_V$

- Analysis relies on energy calibration with $Z \rightarrow ee$
- Result: M_W = (80.401 ± 0.021 ± 0.038) GeV
- Greatly deserves the label "precision measurement"

The (a) m_T , (b) p_T^e , and (c) $E_{T,miss}$ distributions for data and fastmc simulation with backgrounds. The χ values are shown below each distribution where $\chi_i = [N_i - (\text{fastmc}_i)]/\sigma_i$ for each point in the distribution, N_i is the data yield in bin *i* and only the statistical uncertainty is used. The fit ranges are indicated by the double-ended horizontal arrows.

Measurement of the top mass

Top quark mass is measured in di-lepton (4%), lepton-jets (30%), and jets-jets (46%) modes

- Analysis relies strongly on identification of *b*-jets for background suppression and reduction of jet combinatorics
- Use multivariate methods to suppress backgrounds
- "In situ" jet energy scale (JES) calibration in modes with jets

Fit method: parameterise templates depending on top mass and JES for sensitive variables (e.g., $M_{\text{jet-jet}}, M_{\text{letp-jet}}, \dots$), construct and maximise overall likelihood function

The lepton-jets channel provides most precise m_t measurment

Measurement of the top mass

Top quark mass is measured in di-lepton (4%), lepton-jets (30%), and jets-jets (46%) modes

- Analysis relies strongly on identification of *b*-jets for background suppression and reduction of jet combinatorics
- Use multivariate methods to suppress backgrounds
- "In situ" jet energy scale (JES) calibration in modes with jets

Fit method: parameterise templates depending on top mass and JES for sensitive variables (e.g., $M_{\text{jet-jet}}, M_{\text{letp-jet}}, \dots$), construct and maximise overall likelihood function

Can also extract m_t from top cross section measurement

- Complementary method [PRD 80, 071102 (2009)]
- Unambiguous definition of running top mass, but limited by precision on luminosity

The lepton-jets channel provides most precise m_t measurment

Oblique Parameters and Corrections

Definitions of *S*,*T*,*U*,*V*,*W*,*X* :

[STU parameters suffice when $(q/M)^2$ small, so that linear approximation is accurate]

[Burgess et al., PLB 326, 276 (1994), PRD 49, 6115 (1994)]

$$\begin{split} \frac{\alpha S}{4s_{W}^{2}c_{W}^{2}} &= \left[\frac{\delta \Pi_{ZZ}(M_{Z}^{2}) - \delta \Pi_{ZZ}(0)}{M_{Z}^{2}} \right] - \frac{\left(c_{W}^{2} - s_{W}^{2}\right)}{s_{W}c_{W}} \delta \Pi'_{Z\gamma}(0) - \delta \Pi'_{\gamma\gamma}(0) , \\ \alpha T &= \frac{\delta \Pi_{WW}(0)}{M_{W}^{2}} - \frac{\delta \Pi_{ZZ}(0)}{M_{Z}^{2}} , \\ \frac{\alpha U}{4s_{W}^{2}} &= \left[\frac{\delta \Pi_{WW}(M_{W}^{2}) - \delta \Pi_{WW}(0)}{M_{W}^{2}} \right] - c_{W}^{2} \left[\frac{\delta \Pi_{ZZ}(M_{Z}^{2}) - \delta \Pi_{ZZ}(0)}{M_{Z}^{2}} \right] \\ &- s_{W}^{2} \delta \Pi'_{\gamma\gamma}(0) - 2s_{W}c_{W} \delta \Pi'_{Z\gamma}(0) , \\ \alpha V &= \delta \Pi'_{ZZ}(M_{Z}^{2}) - \left[\frac{\delta \Pi_{ZZ}(M_{Z}^{2}) - \delta \Pi_{ZZ}(0)}{M_{Z}^{2}} \right] , \\ \alpha W &= \delta \Pi'_{WW}(M_{W}^{2}) - \left[\frac{\delta \Pi_{WW}(M_{W}^{2}) - \delta \Pi_{WW}(0)}{M_{W}^{2}} \right] , \\ \alpha X &= -s_{W}c_{W} \left[\frac{\delta \Pi_{Z\gamma}(M_{Z}^{2})}{M_{Z}^{2}} - \delta \Pi'_{Z\gamma}(0) \right] . \end{split}$$

Oblique Parameters and Corrections

Dependence of electroweak observables on S, T, U, V, W, X. [The numerical values are based on $\alpha^{-1}(M_z) = 128$ and $\sin^2\theta_W = 0.23$]

[Burgess et al., PLB 326, 276 (1994), PRD 49, 6115 (1994)]

$$\begin{split} \Gamma_{Z} &= (\Gamma_{Z})_{\rm SM} - 0.00961{\rm S} + 0.0263T + 0.0194V - 0.0207X \ [{\rm GeV}] \\ \Gamma_{bb} &= (\Gamma_{bb})_{\rm SM} - 0.00171{\rm S} + 0.00416T + 0.00295V - 0.00369X \ [{\rm GeV}] \\ \Gamma_{\ell^{\prime}\ell^{-}} &= (\Gamma_{\ell^{\prime}\ell^{-}})_{\rm SM} - 0.000192S + 0.000790T + 0.000653V - 0.000416X \ [{\rm GeV}] \\ \Gamma_{had} &= (\Gamma_{had})_{\rm SM} - 0.00901{\rm S} + 0.0200T + 0.0136V - 0.0195X \ [{\rm GeV}] \\ A_{\rm FB(\mu)} &= (A_{\rm FB(\mu)})_{\rm SM} - 0.00677S + 0.00479T - 0.0146X \\ A_{\rm pol(\tau)} &= (A_{\rm pol(\tau)})_{\rm SM} - 0.0284S + 0.0201T - 0.0613X \\ A_{e(P\tau)} &= (A_{e(P\tau)})_{\rm SM} - 0.0284S + 0.0201T - 0.0613X \\ A_{FB(b)} &= (A_{FB(b)})_{\rm SM} - 0.0147S + 0.0104T - 0.03175X \\ A_{\rm FB(c)} &= (A_{\rm FB(c)})_{\rm SM} - 0.0284S + 0.0201T - 0.0613X \\ M_{W}^{2} &= (M_{W}^{2})_{\rm SM} - 0.0284S + 0.0201T - 0.0613X \\ M_{W}^{2} &= (M_{W}^{2})_{\rm SM} - 0.00284S + 0.0201T - 0.0613X \\ M_{Q}^{2} &= (M_{W}^{2})_{\rm SM} - 0.00284S + 0.0201T - 0.0613X \\ M_{Q}^{2} &= (M_{W}^{2})_{\rm SM} (1 - 0.00723S + 0.0111T + 0.00849U) \\ \Gamma_{W} &= (\Gamma_{W})_{\rm SM} (1 - 0.00723S - 0.00333T + 0.00849U + 0.00781W) \\ g_{\ell}^{2} &= (g_{\ell}^{2})_{\rm SM} + 0.000937S - 0.000192T \\ g_{V_{L}^{2}(e_{\to ve})}^{2} &= (g_{V}^{e})_{\rm SM} - 0.00395T \\ g_{A_{L}^{e}(e_{\to ve})}^{e} &= (g_{V}^{e})_{\rm SM} - 0.795S - 0.0116T \\ \end{split}$$

Little Higgs Models (LHM)

- LHM: solves hierarchy problem, possible explanation for EWSM
 - SM contributions to Higgs mass cancelled by new particles
- Non-linear sigma model, broken Global SU(5) / SO(5) symmetry
 - Higgs = lightest pseudo Nambu-Goldstone boson
 - New SM-like fermions and gauge bosons at TeV scale
- T-parity = symmetry similar to SUSY R-parity (note: not time-invariance !)
 - Forbids tree-level couplings of new gauge bosons (*T*-odd) to SM particles (*T*-even)
 - LHM provides natural dark matter candidate
- Two new top states: T-even T₊ and T-odd T₋

One-loop oblique corrections from LH top sector with *T*-parity:

Warped Extra Dimensions w/ Custodial Symmetry

Goal: avoid large T values

 Introduce so-called custodial isospin gauge symmetry in the bulk

- Extend hypercharge group to SU(2)_R×U(1)_X
- Bulk group: SU(3)_C×SU(2)_L×SU(2)_R×U(1)_X
- Broken to $SU(3)_C \times SU(2)_L \times U(1)_Y$ on UV brane
- IR brane SU(2)_R symmetric
- Right-handed fermionic fields are doublets

Results: only small M_H allowed

The Fate of the Standard Model

Driving the SM to *M*_{Planck}

The behaviour of the quartic Higgs couplings as function of the cut-off scale Λ puts bounds on M_H

- For too large *M_H*, the couplings become non-perturbative ("triviality" or "blow-up" scenario)
- For too small *M_H*, the vacuum becomes unstable

 \rightarrow obtain three lower bounds on M_H from different requirement: absolute stability, finite-T and zero-T metastability

Driving the SM to *M*_{Planck}

• Requiring that the SM cannot develop a minimum deeper than the electroweak vacuum up to the Planck scale (i.e., $\lambda(\mu) > 0$, for all $\mu < \Lambda$) gives the *stability bound* :

$$M_{H} > 128.6 \text{ GeV} + 2.6 \text{ GeV} \cdot \left(\frac{m_{t} - 173.1 \text{ GeV}}{1.3 \text{ GeV}}\right) - 2.2 \text{ GeV} \cdot \left(\frac{\alpha_{s}(M_{z}) - 0.1193}{0.0028}\right) \pm 1 \text{ GeV}$$

• Requiring that the local EW vacuum survives for a time longer than the age of the universe, before quantum tunneling into the deeper vacuum, gives *zero-T metastability bound* :

$$M_{H} > 108.9 \text{ GeV} + 4.0 \text{ GeV} \cdot \left(\frac{m_{t} - 173.1 \text{ GeV}}{1.3 \text{ GeV}}\right) - 3.5 \text{ GeV} \cdot \left(\frac{\alpha_{s}(M_{z}) - 0.1193}{0.0028}\right) \pm 3 \text{ GeV}$$

 Requiring the local SM minimum to be stable against thermal fluctuations up to temperatures as large as the Planck scale translates into *finite-T metastability bound*:

$$M_{_{_{H}}} > 122.0 \text{ GeV} + 3.0 \text{ GeV} \cdot \left(\frac{m_t - 173.1 \text{ GeV}}{1.3 \text{ GeV}}\right) - 2.3 \text{ GeV} \cdot \left(\frac{\alpha_s(M_z) - 0.1193}{0.0028}\right) \pm 3 \text{ GeV}$$

Driving the SM to *M*_{Planck}

Assuming the SM to be valid up to Planck scale, we can derive likelihoods for the different scenarios

LPNHE–Paris, 2010

Andreas Hoecker – Constraints from Precision Measurements – the LEP legacy