Precision Electroweak Physics at CDF

Ashutosh Kotwal Duke University

Workshop on Precision LHC Physics Paris, December 16, 2010

Precision Physics at CDF

- QCD and PDF-related measurements
 - P_T spectrum of Z bosons
 - Measurement of angular decay distribution coefficients in W and Z boson decays to leptons
 - Charge asymmetry in W boson production and decay
 - Z boson rapidity spectrum
- Measurements related to electroweak sector
 - Top quark mass measurement
 - W boson mass measurement
 - W boson width measurement (analysis issues very similar to M_w)
 - Forward-backward asymmetry (A_{FR}) in Z boson decays
 - On-peak and high-mass

Decay Angular Coefficients in Z boson decay

• Measurements using 2.1 fb⁻¹

$$\begin{split} &\mathrm{d}\sigma/d\cos\theta d\varphi \varpropto (1+\cos^2\theta) + 0.5A_0(1-3\cos^2\theta) + A_1\sin2\theta\cos\varphi \\ &+ 0.5A_2\sin^2\theta\cos2\varphi + A_3\sin\theta\cos\varphi + A_4\cos\theta + A_5\sin^2\theta\sin2\varphi \\ &+ A_6\sin2\theta\sin\varphi + A_7\sin\theta\sin\varphi \end{split}$$

Important to check theoretical calculations, which feed into other precision measurements (eg. $M_{_{W}}$ measurement in the case of W boson's decay angular coefficients)

Decay Angular Coefficients in Z boson decay

Uncertainty dominated by statistical uncertainty

Decay Angular Coefficients in Z boson decay

• Lam-Tung relation for spin-1 gluons: $A_2 = A_0$ confirmed

W charge asymmetry vs W rapidity

- Traditionally, lepton charge asymmetry is measured; V-A decay of W boson dilutes the observed lepton asymmetry
- CDF has also used $p_T(W)$ measured in the event, and M_W to measure asymmetry vs boson rapidity directly
- Removes V-A dilution
 - At the expense of small additional systematics due to recoil
- At Tevatron, very powerful in constraining relevant PDFs

Rapidity distribution of Drell-Yan

 Powerful (and independent of W charge asymmetry) constraint on PDFs

Forward-backward Asymmetry in Drell-Yan

• Z-pole not yet competitive with LEP/SLD, but measurement at high mass is sensitive to new physics (eg, Z') via interference

Forward-Backward Asymmetry, A_{FB}

Progress on M_{top} at the Tevatron

- From the Tevatron, $\delta M_{top} = 1.3 \text{ GeV} => \delta M_H / M_H = 11\%$
- equivalent $\delta M_W = 8$ MeV for the same Higgs mass constraint
- Current world average $\delta M_W = 23 \text{ MeV}$
 - progress on δM_W now has the biggest impact on Higgs constraint!

W Mass Analysis Strategy

W Boson Production at the Tevatron

Initial state QCD radiation is O(10 GeV), measure as soft 'hadronic recoil' in calorimeter (calibrated to ~1%, aiming for 0.05%)

Pollutes W mass information, fortunately $p_T(W) \ll M_W$

Quadrant of Collider Detector at Fermilab (CDF)

Select W and Z bosons with central ($|\eta| < 1$) leptons

Collider Detector at Fermilab (CDF)

Muon detector

Central hadronic calorimeter

Central outer tracker (COT)

CDF W & Z Data Samples

- W, Z, J/ψ and Upsilon decays triggered in the dilepton channel
- Analysis of 2.3 fb⁻¹ data in progress
- CDF's analysis published in 2007, based on integrated luminosity (collected between February 2002 September 2003):
 - Electron channel: $L = 218 \text{ pb}^{-1}$
 - Muon channel: $L = 191 \text{ pb}^{-1}$

Sample	Candidates		
$W \to e \nu$	63964		
$W \to \mu \nu$	51128		
$Z \rightarrow e^+e^-$	2919		
$Z \to \mu^+ \mu^-$	4960		

- Event selection gives fairly clean samples
 - W boson samples' mis-identification backgrounds ~ 0.5%

Founding Principle of CDF Analysis

Energy scale measurements drive the W mass measurement

- Develop an energy calibration procedure based on fundamental principles
 - Push the "first-principles" philosophy as far as it will go
- Measure the Z boson mass in three different ways
 - Dimuon mass using tracks
 - Dielectron mass using tracks
 - Dielectron mass using calorimeter cluster energies
- Consistency of these three Z boson mass measurements with LEP measurement (within quoted uncertainties) provides very strong validation of the fundamental understanding of the physics and detector model used for M_w measurement
 - Huge effort at CDF invested in demonstrating this validation, in order to build maximum confidence in $M_{\rm w}$ measurement
 - We believe this investment is needed to trust ultimate precision of 5-10 MeV on M_w at any hadron collider

Outline of CDF Analysis

Energy scale measurements drive the W mass measurement

- Tracker Calibration
 - alignment of the central drift chamber (COT with ~2400 cells) using cosmic rays
 - COT momentum scale and tracker non-linearity constrained using $J/\psi \rightarrow \mu\mu$ and $\Upsilon \rightarrow \mu\mu$ mass fits
 - Confirmed using $Z \rightarrow \mu\mu$ mass fit and $Z \rightarrow$ ee mass fit using tracks
- EM Calorimeter Calibration
 - COT momentum scale transferred to EM calorimeter using a fit to the peak of the E/p spectrum, around E/p ~ 1 (an *in-situ* test beam)
 - Calorimeter energy scale confirmed using Z → ee mass fit
- Tracker and EM Calorimeter resolutions
- Hadronic recoil modelling
 - Characterized using p_T -balance in $Z \rightarrow ll$ events

Drift Chamber (COT) Alignment

Internal Alignment of COT

• Use a clean sample of $\sim 200k$ cosmic rays for cell-by-cell internal alignment

- Fit COT hits on both sides simultaneously to a single helix (A Kotwal, H. Gerberich and C. Hays, NIM A 506, 110 (2003))
 - Time of incidence is a floated parameter
- Same technique being used on ATLAS and CMS

Residuals of COT cells after alignment

Final relative alignment of cells ~5 μm (initial alignment ~50 μm)

Many additional constraints on global deformations of tracking chamber

Constraints on Global Deformations of Drift Chamber

- Alignment based on Cosmic Rays provides powerful constraints on
 - Curl (coaxial rotations at different radii)
 - Twist (relative rotation of two end-plates)
 - Telescoping (relative longitudinal movements at different radii)
 - Gravitational sag of drift chamber wires
 - Electrostatic deflections of drift chamber wires

• We obtain substantial control on the fundamental degrees of freedom of the drift chamber misalignment

Cross-check of COT alignment

- Final cross-check and correction to track curvature based on difference of <E/p> for positrons *vs* electrons (red points)
- Smooth ad-hoc curvature corrections applied $=> \delta M_W = 6 \text{ MeV}$
- Systematic effects also relevant for LHC trackers

Signal Simulation and Fitting

Signal Simulation and Template Fitting

- All signals simulated using a custom Monte Carlo
 - Generate finely-spaced templates as a function of the fit variable
 - perform binned maximum-likelihood fits to the data
- Custom fast Monte Carlo makes smooth, high statistics templates
 - And provides analysis control over fundamental physics inputs

• CDF (and D0) extract the W mass from three kinematic distributions: Transverse mass, charged lepton p_T and neutrino p_T : different recoil systematics

Generator-level Signal Simulation

- Generator-level input for W & Z simulation provided by RESBOS (C. Balazs & C.-P. Yuan, PRD56, 5558 (1997) and references therein), which
 - Calculates triple-differential production cross section, and p_T-dependent double-differential decay angular distribution
 - calculates boson p_T spectrum reliably over the relevant p_T range: includes tunable parameters in the non-perturbative regime at low p_T
- Radiative photons generated according to energy *vs* angle lookup table from WGRAD (U. Baur, S. Keller & D. Wackeroth, PRD59, 013002 (1998))

Constraining Boson p_T Spectrum

- Fit the non-perturbative parameter g_2 in RESBOS to $p_T(ll)$ spectra: find $g_2 = 0.685 \pm 0.048$ $\Delta M_W = 3 \text{ MeV}$
 - Consistent with global fits (Landry et al, PRD67, 073016 (2003))
- Negligible effect of second non-perturbative parameter g₃

Position of peak in boson p_T spectrum depends on g₂

Custom Monte Carlo Detector Simulation

- A complete detector simulation of all quantities measured in the data
- First-principles simulation of tracking
 - Tracks and photons propagated through a high-resolution 3-D lookup table of material properties for silicon detector and drift chamber
 - At each material interaction, calculate
 - Ionization energy loss according to analytic formulae
 - Generate bremsstrahlung photons down to 0.4 MeV, using detailed cross section and spectrum calculations and LPM effect
 - Simulate photon conversion and compton scattering
 - Propagate bremsstrahlung photons and conversion electrons
 - Simulate multiple Coulomb scattering, including non-Gaussian tail
 - Deposit and smear hits on COT wires, perform full helix fit including beam-constraint

Fast Monte Carlo Detector Simulation

- A complete detector simulation of all quantities measured in the data
- First-principles simulation of tracking
 - Tracks and photons propagated through a high-resolution 3-D lookup table of material properties for silicon detector and drift chamber

Tracking Momentum Scale

Tracking Momentum Calibration

- Set using $J/\Psi \rightarrow \mu\mu$ and $\Upsilon \rightarrow \mu\mu$ resonances
 - Measured to be consistent within total uncertainties
- Use J/Ψ to study and calibrate ionizing material accounting (6% correction needed)

Tracking Momentum Scale Systematics

Systematic uncertainties on momentum scale

Source	$J/\psi \ (\times 10^{-3})$	$\Upsilon (\times 10^{-3})$	Common ($\times 10^{-3}$
QED and energy loss model	0.20	0.13	0.13
Magnetic field nonuniformities	0.10	0.12	0.10
Beam constraint bias	N/A	0.06	0
Ionizing material scale	0.06	0.03	0.03
COT alignment corrections	0.05	0.03	0.03
Fit range	0.05	0.02	0.02
p_T threshold	0.04	0.02	0.02
Resolution model	0.03	0.03	0.03
Background model	0.03	0.02	0.02
World-average mass value	0.01	0.03	0
Statistical	0.01	0.06	0
Total	0.25	0.21	0.17

Uncertainty dominated by QED radiative corrections and magnetic field non-uniformity

EM Calorimeter Response

Electromagnetic Calorimeter Calibration

- E/p peak from W \rightarrow eV decays provides EM calorimeter calibration relative to the tracker
 - Calibration performed in bins of electron energy

Calorimeter Simulation for Electrons and Photons

- Distributions of energy loss calculated based on expected shower profiles as a function of \mathbf{E}_{T}
 - Leakage into hadronic calorimeter
 - Absorption in the coil
 - Relevant for E/p lineshape

Consistency of Radiative Material Model

- Excellent description of E/p spectrum tail
- radiative material tune factor: $S_{X0} = 1.004 \pm 0.009_{stat} \pm 0.002_{background}$ achieves consistency with E/p spectrum tail

CDF detector geometry confirmed as a function of pseudorapidity: S_{MAT} independent of pseudorapidity

Measurement of EM Calorimeter Non-linearity

- Perform E/p fit-based calibration in bins of electron E_T
- Parameterize non-linear response as: $S_E = 1 + \zeta (E_T/GeV 39)$
- Tune on W and Z data: $\zeta = (6 \pm 7_{\text{stat}}) \times 10^{-5}$

$$\Rightarrow \Delta M_W = 23 \text{ MeV}$$

Z→ll Mass Cross-checks

• Z boson mass fits consistent with tracking and E/p-based calibrations

• This cross-check is statistics-limited, its validation power will keep improving with larger datasets

Hadronic Recoil Model

Constraining the Hadronic Recoil Model

Exploit similarity in production and decay of *W* and *Z* bosons

Detector response model for hadronic recoil tuned using p_T -balance in $Z \rightarrow ll$ events

Transverse momentum of Hadronic recoil (*u*) calculated as 2-vector-sum over calorimeter towers

Tuning Recoil Response Model with Z events

Project the vector sum of $p_T(ll)$ and \boldsymbol{u} on a set of orthogonal axes defined by lepton directions

Mean and rms of projections as a function of $p_T(ll)$ provide information hadronic model parameters

Hadronic model parameters tuned by minimizing χ^2 between data and simulation

$$\Delta M_W = 9 \text{ MeV}$$

Tuning Recoil Resolution Model with Z events

At low $p_T(Z)$, p_T -balance constrains hadronic resolution due to underlying event

At high $p_T(Z)$, p_T -balance constrains jet resolution

Testing Hadronic Recoil Model with W events

Compare recoil distributions between simulation and data

W Mass Fits

W Transverse Mass Fits

W Lepton p_T Fits

Transverse Mass Fit Uncertainties (MeV)

(CDF, PRL 99:151801, 2007; Phys. Rev. D 77:112001, 2008)

		electrons	muons	common
	W statistics	48	54	0
W charge asymmetry from Tevatron helps with PDFs	Lepton energy scale	30	17	17
	Lepton resolution	9	3	-3
	Recoil energy scale	9	9	9
	Recoil energy resolution	7	7	7
	Selection bias	3	1	0
	Lepton removal	8	5	5
	Backgrounds	8	9	0
	production dynamics	3	3	3
	Parton dist. Functions	11	11	11
	QED rad. Corrections	11	12	11
	Total systematic	39	27	26
	Total	62	60	

Systematic uncertainties shown in green: statistics-limited by control data samples

W Boson Mass Measurements

CDF: 200 pb⁻¹, electron and muon channels

D0: 1 fb⁻¹, electron channel

(D0 Run II: PRL 103:141801, 2009) (CDF Run II: PRL 99:151801, 2007; PRD 77:112001, 2008)

Pre-Run 2 M_W vs M_{top}

Post-Run 2 & LEPII M_W vs M_{top}

Preliminary Studies of 2.3 fb⁻¹ Data from CDF

CDF analysis of 2.3 fb⁻¹ of data is in progress, with the goal of measuring M_w with precision better than 25 MeV

Lepton resolutions as good as they were in 200 pb⁻¹ sample

Summary

- The W boson mass is a very interesting parameter to measure with increasing precision
- CDF Run 2 W mass result with 200 pb⁻¹ data:
 - $M_W = 80413 \pm 48 \text{ MeV}$
- D0 Run 2 W mass result with 1 fb⁻¹ data:
 - $M_{\rm W} = 80401 \pm 43 \; {\rm MeV}$
- Many systematics limited by statistics of control samples
 - CDF and D0 are both working on $\delta M_W < 25$ MeV measurements from ~ 2 fb⁻¹ (CDF) and ~ 4 fb⁻¹ (D0)
- Learning as we go: Tevatron \rightarrow LHC may produce $\delta M_W \sim 5-10$ MeV

Combined Results

- Combined electrons (3 fits): $M_W = 80477 \pm 62$ MeV, $P(\chi^2) = 49\%$
- Combined muons (3 fits): $M_W = 80352 \pm 60 \text{ MeV}, P(\chi^2) = 69\%$
- All combined (6 fits): $M_W = 80413 \pm 48 \text{ MeV}$, $P(\chi^2) = 44\%$

Lepton p_T and Missing E_T Fit Uncertainties

CDF II preliminary

Uncertainty (p _T)	Electrons	Muons	Common
responsable contraction of the school process and the responsability			
Lepton Scale	30	17	17
Lepton Resolution	9	3	0
Recoil Scale	17	17	17
Recoil Resolution	3	3	3
Lepton Removal	0	0	0
u _∥ Efficiency	5	6	0
Backgrounds	9	19	0
$p_T(W)$	9	9	9
PDF	20	20	20
QED	13	13	13
Total Systematic	45	40	35
Statistical	58	66	0
Total	73	77	35

CDF II preliminary

Uncertainty (MET)	Electrons	Muons	Common
Lepton Scale	30	17	17
Lepton Resolution	9	5	0
Recoil Scale	15	15	15
Recoil Resolution	30	30	30
Lepton Removal	16	10	10
u _∥ Efficiency	16	13	0
Backgrounds	7	11	0
$p_T(W)$	5	5	5
PDF	13	13	13
QED	9	10	9
Total Systematic	54	46	42
Statistical	57	66	0
Total	79	80	42

Improvement of M_w Uncertainty with Sample Statistics

Next target: 15-20 MeV measurement of $M_{\rm w}$ from the Tevatron

Preliminary Studies of 2.3 fb⁻¹ Data

4500 4000

3500

3000

2500 2000

 $L dt \approx 2.3 \text{ fb}^{-1}$

data

MC

CDF II preliminary

 Δ m_z^{stat} = 12 MeV /c²

 $\chi^2/dof = 27 / 29$

 $Z \rightarrow \mu\mu$

Statistical errors on all lepton calibration fits have scaled with statistics

Detector and data quality maintained over time

Preliminary Studies of 2.3 fb⁻¹ Data

CDF II preliminary

statistical errors on transverse mass fits are scaling with statistics

M_w Measurement at LHC

- Very high statistics samples of W and Z bosons
 - 10 fb⁻¹ at 14 TeV: 40 million W boson and 4 million Z boson candidates per decay channel per experiment
- Statistical uncertainty on W mass fit ~ 2 MeV
- Calibrating lepton energy response using the $Z \rightarrow ll$ mass resonance, best-case scenario of statistical limit ~ 5 MeV precision on calibrations
- Calibration of the hadronic calorimeter based on transverse momentum balance in $Z \rightarrow ll$ events also ~ 2 MeV statistical limit

• Total uncertainty on $M_W \sim 5$ MeV if $Z \rightarrow ll$ data can measure all the W boson systematics

M_w Measurement at LHC

- Can the $Z \rightarrow ll$ data constrain all the relevant W boson systematics?
- Can we add other constraints from other mass resonances and tracking detectors?

- With every increase in statistics of the data samples, we climb a new learning curve on the systematic effects
 - Improved calculations of QED radiative corrections available
 - Better understanding of parton distributions from global fitting groups (CTEQ, MSTW, Giele *et al*)

• large sample statistics at the LHC imply the potential is there for 5-10 MeV precision on M_w

M_w Measurement at LHC

- Can the $Z \rightarrow ll$ data constrain all the relevant W boson systematics?
- Production and decay dynamics are slightly different
 - Different quark parton distribution functions
 - Non-perturbative (e.g. charm mass effects in $cs \rightarrow W$) effects
 - QCD effects on polarization of W vs Z affects decay kinematics
- Lepton energies different by ~10% in W vs Z events
- Presence of second lepton influences the Z boson event relative to W
- Reconstructed kinematic quantity different (invariant vs transverse mass)
- Subtle differences in QED radiative corrections
- •
- (A.V. Kotwal and J. Stark, Ann. Rev. Nucl. Part. Sci., vol. 58, Nov 2008)