Monte Carlo Tools for W & Z Production

Bryan Webber University of Cambridge

MC for W&Z FRIF Paris 16/12/10

• Traditionally (imprecise) general-purpose tools

Traditionally (imprecise) general-purpose tools

Traditionally (imprecise) general-purpose tools

Work in progress to make them more precise

Outline

- Parton Shower Monte Carlo (PSMC)
- Matching PSMC to Next-to-Leading Order (NLOPS)
 - MC@NLO
 - POWHEG
- Merging PSMC with Multijet Matrix Elements (MEPS)
 - * CKKW-L
 - * MLM
- Combining MEPS with NLOPS (MENLOPS)
- Electroweak NLO + PSMC

LHC Event Simulation

LHC Event Simulation

Parton Shower Monte Carlo

- Parton shower approximation
 - Bad for hard, wide-angle emission
- Hard matrix element correction: Z⁰+parton
 - Not exact NLO

Comparison with resummed Z⁰ p_T at LHC

A Kulesza & WJ Stirling, EPJC 20 (2001)349

S Berge, P Nadolsky & F Olness, in arXiv:0709.3251

A Siodmok, S Gieseke & M Seymour, arXiv:0905.3455

Slight broadening expected relative to Tevatron

"Intrinsic kt"

Figure 4: The optimal choice: "quadratic" interpolation with $\alpha_S(0) = 3$ and $p_{\perp_0} = 3 \,\text{GeV}$

р

8

10

0

2

Gieseke, Seymour & Siodmok, JHEP 06(2008)001

Parton Shower Monte Carlo

LO (Born) No (resolvable) emission One emission
$$\mathrm{d}\sigma_{\mathrm{MC}} = B\left(\Phi_{B}\right)\,\mathrm{d}\Phi_{B}\left[\Delta_{\mathrm{MC}}\left(0\right) + \frac{R_{\mathrm{MC}}\left(\Phi_{B},\Phi_{R}\right)}{B\left(\Phi_{B}\right)}\,\Delta_{\mathrm{MC}}\left(k_{T}\left(\Phi_{B},\Phi_{R}\right)\right)\,\mathrm{d}\Phi_{R}\right]$$

MC Sudakov form factor:

$$\Delta_{\mathrm{MC}}(p_T) = \exp\left[-\int d\Phi_R \, \frac{R_{\mathrm{MC}}(\Phi_B, \Phi_R)}{B(\Phi_B)} \, \theta\left(k_T\left(\Phi_B, \Phi_R\right) - p_T\right)\right]$$

Unitarity:

$$\int d\sigma_{\rm MC} = \int B(\Phi_B) d\Phi_B$$

Expanded to NLO:

$$d\sigma_{MC} = \left[B(\Phi_B) - \int R_{MC}(\Phi_B, \Phi_R) d\Phi_R \right] d\Phi_B + R_{MC}(\Phi_B, \Phi_R) d\Phi_B d\Phi_R$$

MC@NLO

finite virtual

divergent

$$d\sigma_{\text{NLO}} = \left[B(\Phi_B) + V(\Phi_B) - \int \sum_i C_i (\Phi_B, \Phi_R) d\Phi_R \right] d\Phi_B + R(\Phi_B, \Phi_R) d\Phi_B d\Phi_R$$

$$\equiv \left[B + V - \int C d\Phi_R \right] d\Phi_B + R d\Phi_B d\Phi_R$$

$$d\sigma_{MC} = B(\Phi_B) d\Phi_B \left[\Delta_{MC}(0) + \frac{R_{MC}(\Phi_B, \Phi_R)}{B(\Phi_B)} \Delta_{MC}(k_T(\Phi_B, \Phi_R)) d\Phi_R \right]$$

$$\equiv B d\Phi_B \left[\Delta_{MC}(0) + (R_{MC}/B) \Delta_{MC}(k_T) d\Phi_R \right]$$

$$\mathrm{d}\sigma_{\mathrm{MC@NLO}} \ = \ \left[B + V + \int \left(R_{\mathrm{MC}} - C \right) \, \mathrm{d}\Phi_{R} \right] \mathrm{d}\Phi_{B} \ \left[\Delta_{\mathrm{MC}} \left(0 \right) + \left(R_{\mathrm{MC}} / B \right) \, \Delta_{\mathrm{MC}} \left(k_{T} \right) \, \mathrm{d}\Phi_{R} \right] \\ + \left(R - R_{\mathrm{MC}} \right) \, \Delta_{\mathrm{MC}} \left(k_{T} \right) \, \mathrm{d}\Phi_{B} \, \mathrm{d}\Phi_{R} \qquad \qquad \text{MC starting from no emission} \\ \mathrm{MC starting from one emission}$$

Expanding gives NLO result

S Frixione & BW, JHEP 06(2002)029

MC for W&Z FRIF Paris 16/12/10

MC@NLO is MC-specific

NLO is only LO at high pt

S Frixione & P Torrielli, JHEP 04(2010) I 10

MC for W&Z FRIF Paris 16/12/10

POWHEG

$$d\sigma_{PH} = \overline{B} (\Phi_B) d\Phi_B \left[\Delta_R (0) + \frac{R (\Phi_B, \Phi_R)}{B (\Phi_B)} \Delta_R (k_T (\Phi_B, \Phi_R)) d\Phi_R \right]$$

$$\overline{B}(\Phi_B) = B(\Phi_B) + V(\Phi_B) + \int \left[R(\Phi_B, \Phi_R) - \sum_i C_i(\Phi_B, \Phi_R) \right] d\Phi_R$$

$$\Delta_R(p_T) = \exp\left[-\int d\Phi_R \frac{R(\Phi_B, \Phi_R)}{B(\Phi_B)} \theta(k_T(\Phi_B, \Phi_R) - p_T)\right]$$

- NLO with no negative weights
- High p_t enhanced by $K=\overline{B}/B=1+\mathcal{O}(lpha_{
 m S})$

P Nason, JHEP 11 (2004) 040

arbitrary NNLO

Z⁰ @ Tevatron

NLO is only LO at high pt

Hamilton, Richardson, Tully JHEP10(2008)015

W @ Tevatron

All agree (tuned) at Tevatron

Truncated shower

- Highest pt emission not always first
 - must add 'truncated' shower at wider angles

MC for W&Z | FRIF Paris 16/12/10

W & Z⁰ @ LHC (14 TeV)

Still in fair agreement at 14 TeV

Z⁰ + jet POWHEG

- Cut now needed on 'underlying Born' p_t of Z^0
- Good agreement with CDF (not so good with D0)
- First jet is now NLO, second is LO (times \overline{B}/B ...)

Alioli, Nason, Oleari, Re, 1009.5594

MEPS

- Objective: merge n-jet MEs with PSMC such that
 - Multijet rates for k_t-resolution > Q_{cut} are correct to LO
 - * PSMC generates jet structure below Qcut
 - Q_{cut} dependence cancels to NLL accuracy

CKKW: Catani et al., JHEP 11(2001)

-L: Lonnblad, JHEP 05(2002)063

MLM: Mangano et al., NP B632(2002)343

Z⁰ MEPS @ Tevatron

Differential jet rates (k_t-algorithm)

Hoeche, Krauss, Schumann, Siegert, JHEP05(2009)053

Z⁰ MEPS @ Tevatron

- CDF run II data
- Jet p_t and N_{jets}
- Insensitive to Q_{cut}
- Insensitive to $N_{max}>1$

Hoeche, Krauss, Schumann, Siegert, JHEP05(2009)053

MENLOPS

 $d\sigma_{\text{TOT}} = d\sigma_{\text{NLOPS}}(0 \text{ jets}) + K_1 d\sigma_{\text{NLOPS}}(1 \text{ jet}) + K_2 d\sigma_{\text{MEPS}}(\geq 2 \text{ jets})$

Assume ≥ 2 jets have K-factor

$$K_2 = \sigma_{\rm NLOPS}(\geq 1 \, {\rm jets}) / \sigma_{\rm MEPS}(\geq 1 \, {\rm jets})$$

To retain NLO accuracy we need

$$\sigma_{\text{TOT}} = \sigma_{\text{NLOPS}}(0 \, \text{jets}) + \sigma_{\text{NLOPS}}(\geq 1 \, \text{jets})$$

Therefore

$$K_1 = \frac{\sigma_{\mathrm{MEPS}}(1\,\mathrm{jet})}{\sigma_{\mathrm{MEPS}}(\geq 1\,\mathrm{jets})} / \frac{\sigma_{\mathrm{NLOPS}}(1\,\mathrm{jet})}{\sigma_{\mathrm{NLOPS}}(\geq 1\,\mathrm{jets})}$$

Hamilton & Nason, JHEP06(2010)039 Hoeche, Krauss, Schumann, Siegert, 1009.1127

MENLOPS

 $d\sigma_{\text{TOT}} = d\sigma_{\text{NLOPS}}(0 \text{ jets}) + K_1 d\sigma_{\text{NLOPS}}(1 \text{ jet}) + K_2 d\sigma_{\text{MEPS}}(\geq 2 \text{ jets})$

$$K_2 = \sigma_{\rm NLOPS}(\geq 1 \, {\rm jets}) / \sigma_{\rm MEPS}(\geq 1 \, {\rm jets})$$

$$K_1 = \frac{\sigma_{\mathrm{MEPS}}(1\,\mathrm{jet})}{\sigma_{\mathrm{MEPS}}(\geq 1\,\mathrm{jets})} / \frac{\sigma_{\mathrm{NLOPS}}(1\,\mathrm{jet})}{\sigma_{\mathrm{NLOPS}}(\geq 1\,\mathrm{jets})}$$

- Choose Q_{cut} such that $\sigma_{MEPS}(\geq 2 \, \mathrm{jets}) \leq \mathcal{O}(\alpha_{\mathrm{S}})$
- Compute K₁, K₂ (in principle for each Born kinematics)
- Throw away MEPS 0- & I-jet samples
- Replace them by NLOPS 0- & I-jet samples

All treatments agree (MEPS rescaled)

Hoeche, Krauss, Schumann, Siegert, 1009.1127

MC for W&Z FRIF Paris 16/12/10

• MENLOPS best for $\Delta \phi(Z, \text{ jet})$

MENLOPS good for N_{jet}=1,2,3 (no ME for 4)

MENLOPS best for jets 2 & 3

POWHEG best for p_t(W), lacks ME for N_{jet}>I

Hoeche, Krauss, Schumann, Siegert, 1009.1127

MC for W&Z FRIF Paris 16/12/10

Again, POWHEG lacks ME for 2nd jet

WHENLOPS OLHC PT,WT MENLOPS MENLOPS

- Dashes are NLOPS & MEPS shapes
- Crosses are contributions to MENLOPS

Hamilton & Nason, JHEP06(2010)039

W MENLOPS @ LHC

NLOPS low for N_{jets}>I

W MENLOPS @ LHC

• Again MEPS dominates at small $\Delta\phi_{J1,W}$ -

Electroweak NLO

Sample graphs

Quark-induced

Photon-induced

Need photon-in-proton PDF

SANC: Andonov et al., CPC 181(2010)305

Electroweak NLO+PSMC

Richardson, Sadykov, Sapronov, Seymour, Skands, 1011.5444

- SANC + LOPS only
- Significant differences
 between Herwig & Pythia
- Needs extension to SANC+ NLOPS

MC for W&Z FRIF Paris 16/12/10

Conclusions

- PSMC & NLO successfully combined
- V+jets reliable to LO
- V+jets NLO in progress
- QCD+EW NLO coming