Precision electroweak measurements: LHCb

2. Cross-sections

3. Outlook

4. Conclusions

Overview

W, Z production Measurement definitions

Introduction

Cross-sections: Z, W, ratios

Outlook: PDF sensitivity, A_{FB}

2. Cross-sections

3. Outlook

4. Conclusions

Overview

W, Z production
Measurement definitions

Fully instrumented within $1.9 \le \eta \le 4.9$ Trigger: $p_{\mu} > 3$ GeV, $pt_{\mu} > 0.5$ GeV, $m_{\mu\mu} > 2.5$ GeV

- 2. Cross-sections
- 3. Outlook
- 4. Conclusions

Overview

W, Z production Measurement definitions

2010:

 $37.7 \text{ pb}^{-1} \text{ data recorded}$ $16.5 \pm 1.7 \text{ pb}^{-1} \text{ used}$

2011:

hope for 1-2 fb⁻¹ of data

- 2. Cross-sections
- 3. Outlook
- 4. Conclusions

Overview
W, Z production
Measurement definitions

8% of Z within LHCb acceptance

17% (16%) of W⁺ (W⁻) within LHCb acceptance

- 2. Cross-sections
- 3. Outlook
- 4. Conclusions

Overview
W, Z production
Measurement definitions

X, Q² explored by previous experimental data

- 2. Cross-sections
- 3. Outlook
- 4. Conclusions

Overview
W, Z production
Measurement definitions

- 2. Cross-sections
- 3. Outlook
- 4. Conclusions

Overview
W, Z production
Measurement definitions

Cross-sections known to NNLO PDF uncertainty dominates Known to ~1% at y ~1.5-2, 6-8% at y~5

- 2. Cross-sections
- 3. Outlook
- 4. Conclusions

Overview
W, Z production
Measurement definitions

Cancel or highlight PDF uncertainties with ratios R₊ tests d_V/u_V ratio A_W tests difference between u_V and d_V R_{WZ} almost insensitive to PDFs

- 2. Cross-sections
- 3. Outlook
- 4. Conclusions

Overview

W, Z production

Measurement definitions

PDFs have large uncertainty at low x

(Maria, yesterday)

Measurement definitions

4. Conclusions

Definition of measured cross-sections:

$$\sigma(Z \rightarrow \mu \mu : 2 < \eta_{\mu} < 4.5, P_{T\mu} > 20 \, GeV$$
, $81 < M_{\mu\mu} < 101 \, GeV$)

(as function of Z rapidity)

$$\sigma(W \to \mu \nu : 2 < \eta_{\mu} < 4.5, P_{T\mu} > 20 \, GeV)$$

(as function of muon pseudorapidity)

3. Outlook

4. Conclusions

N_Z, N_{bkg} N_W, N_{bkg} Efficiencies Results

$$\sigma_{Z \to \mu\mu}(\Delta y) = \frac{N_{tot}^{Z} - N_{bkg}^{Z}}{\varepsilon_{Z}L}$$

Z selection

Z background estimation

3. Outlook

4. Conclusions

N_Z, N_{bkg} N_W, N_{bkg} Efficiencies Results

Trigger:

Single μ , $p_T > 10 \text{ GeV}$

Muon:

Good track quality (σ_p/p , χ^2 probability) p_T> 20 GeV 2.0 < η < 4.5

Z:

 $81 < m(\mu\mu) < 101 \text{ GeV}$

 ε_Z = 1.00 (by definition to compare with theory)

N_Z, N_{bkg} N_W, N_{bkg} Efficiencies Results

$$N_7 = 833$$

Backgrounds:

$$Z \rightarrow \tau \tau$$
 (~ 0.2)
Heavy flavour (~ 1)
K/ π (< 0.03)
N_{bkq} = 1.2 \pm 1.2

3. Outlook

4. Conclusions

N_Z, N_{bkg} N_W, N_{bkg} Efficiencies Results

$$\sigma_{W o \mu \nu}(\Delta \eta) = rac{N_{tot}^W - N_{bkg}^W}{\varepsilon_W L}$$

W selection

W background estimation

Trigger:

Single μ , $p_T > 10 \text{ GeV}$

Muon:

Good track quality (σ_p/p , χ^2 probability) $p_T > 20$ GeV $2.0 < \eta < 4.5$ Impact parameter significance < 2 Σp_T in $R = \sqrt{(\Delta \eta^2 + \Delta \phi^2)} = 0.5$ cone around

Rest of event:

Mass < 20 GeV $\Sigma p_T < 10$ GeV

 μ < 2 GeV

$$\epsilon_W$$
= 55.0 \pm 1.0%

(data driven, using Z events)

3. Outlook

4. Conclusions

N_z, N_{bkg} N_W, N_{bkg} Efficiencies Results

3. Outlook

3. Outlook

3. Outlook

3. Outlook

3. Outlook

3. Outlook

3. Outlook

4. Conclusions

$$N_{W+} = 7624$$

 $N_{W-} = 5732$

Background sources:

$$Z\rightarrow \mu\mu$$
 (1 μ in acceptance)

$$Z \rightarrow \tau \tau$$

$$W \rightarrow \tau \nu$$

Hadronic events

Data

Simulation

Data + simulation

Fit muon p_T spectrum in data to expected shapes for signal and background, extract N_{bkq+} , N_{bkq-}

- 3. Outlook
- 4. Conclusions

$$N_{bkg+} = 2194 \pm 150$$

$$N_{bkg} = 1654 \pm 150$$

Perform fit in η bins for differential results

Z (fixed with sim)

τ (fixed and scaled to W)

QCD: fit fraction. (shape from data)

W+/-: fit fraction (shape from MC)

3. Outlook

4. Conclusions

N_Z, N_{bkg} N_W, N_{bkg} **Efficiencies** Results

$$oldsymbol{arepsilon}_{Z} = A_{Z} oldsymbol{arepsilon}_{Z}^{trig} oldsymbol{arepsilon}_{Z}^{track} oldsymbol{arepsilon}_{Z}^{muon} oldsymbol{arepsilon}_{Z}^{selection}$$

$$oldsymbol{arepsilon}_{W} = A_{W} oldsymbol{arepsilon}_{W}^{trig} oldsymbol{arepsilon}_{W}^{track} oldsymbol{arepsilon}_{W}^{muon} oldsymbol{arepsilon}_{W}^{selection}$$

Measurements made in kinematic acceptance

$$A_Z$$
, $A_W = 1$

3. Outlook

4. Conclusions

N_Z, N_{bkg} N_W, N_{bkg} **Efficiencies** Results

Determine from data (Z sample)

Tag: 1 identified muon having fired single muon trigger

Probe: 1 identified muon

4. Conclusions

N_Z, N_{bkg} N_W, N_{bkg} **Efficiencies** Results

Efficiency is **flat** in η , ϕ , p_T .

No evidence for charge bias

$$\epsilon_{\text{W}}$$
 =72 \pm 1% ϵ_{Z} =86 \pm 1%

3. Outlook

4. Conclusions

N_Z, N_{bkg} N_W, N_{bkg} **Efficiencies** Results

Determine from data (Z sample)

Tag: 1 identified muon

Probe: 1 muon stub + TT hit (TT not used in tracking)

3. Outlook

4. Conclusions

N_Z, N_{bkg} N_W, N_{bkg} **Efficiencies** Results

Efficiency **flat** in ϕ , p_T

Two regions considered in η

$$\epsilon_{W+}$$
= 73 ± 3%
 ϵ_{W-} = 78 ± 3%
 ϵ_{7} = 83 ± 3%

η

(+, - different average efficiency due to different η distribution)

N_Z, N_{bkg} N_W, N_{bkg} **Efficiencies** Results

$$egin{aligned} arepsilon_Z &= A_Z arepsilon_Z^{trig} arepsilon_Z^{track} arepsilon_Z^{muon} arepsilon_Z^{selection} \ &arepsilon_W &= A_W arepsilon_W^{trig} arepsilon_W^{track} arepsilon_W^{muon} arepsilon_Z^{selection} \end{aligned}$$

Determine from data (Z sample)

Tag: 1 identified muon

Probe: 1 identified track

3. Outlook

4. Conclusions

N_Z, N_{bkg} N_W, N_{bkg} **Efficiencies** Results

Efficiency **flat** in η , ϕ , p_T

No evidence of charge bias

$$\epsilon_W$$
 = 98.2 \pm 0.5%

$$\epsilon_Z$$
 = 96.5 \pm 0.7%

data simulation truth level

3. Outlook

4. Conclusions

N_Z, N_{bkg} N_W, N_{bkg} **Efficiencies** Results

$$egin{aligned} arepsilon_Z &= A_Z arepsilon_Z^{trig} arepsilon_Z^{track} arepsilon_Z^{muon} arepsilon_Z^{selection} \ &arepsilon_W &= A_W arepsilon_W^{trig} arepsilon_W^{track} arepsilon_W^{muon} arepsilon_W^{selection} \end{aligned}$$

Found before:

Z: (simulation) 1.00

W: (data driven, using Z events) ☐5.0 ± 1.0%

N_Z, N_{bkg} N_W, N_{bkg} Efficiencies

Results

Z cross-section

N_Z^{tot}	833
Z ightarrow au au	0.2 ± 0.2
Heavy flavours	1 ± 1
Misidentified π/K	<< 1
N_Z^{bkg}	1.2 ± 1.2
ϵ^{Z}_{trig}	0.86 ± 0.01
ϵ^{Z}_{track}	0.83 ± 0.03
ϵ^Z_{muon}	0.97 ± 0.01
$\epsilon^{Z}_{sel} \ A^{Z}$	1.
A^{Z}	1.
ϵ_Z	0.69 ± 0.03
Ĺ	$16.5 \pm 1.7 pb^{-1}$
$\sigma_Z(2. < \eta_1, \eta_2 < 4.5, 81 < m_Z < 101)$	$73 \pm 4 \pm 7 \text{ pb}.$

- 1. Introduction
- 2. Cross-sections
- 3. Outlook
- 4. Conclusions

N_Z, N_{bkg} N_W, N_{bkg} Efficiencies Results

W cross-section, asymmetry

	W+	W-
N_W^{tot}	7624	5732
$W \rightarrow \tau \nu$	151	90
Z ightarrow au au	2	2
$Z ightarrow \mu \mu$	460	506
QCD	2194 ± 150	1654 ± 150
N_W	4817 ± 165	3480 ± 161
ϵ^W_{trig}	0.725 ±	0.03
ϵ^{W}_{track}	0.73 ± 0.03	0.78 ± 0.03
ϵ_{muon}^{W}	0.982 ± 0.005	
W	0.55 ± 0.01	
$\overset{\epsilon_{sel}}{A^W}$	1	1
ϵ_W	0.29 ± 0.01	0.31 ± 0.01
N_W^{tot}	16610 ± 800	11226 ± 650
Ĺ	$16.5 \pm 1.7 \ \mathrm{pb^{-1}}$	$16.5 \pm 1.7 \mathrm{pb^{-1}}$
$\sigma_W(2.0 < y < 4.5)$	$1007 \pm 48 \pm 100 \text{ pb}$	$682 \pm 40 \pm 68 \text{ pb}$

N_Z, N_{bkg} N_W, N_{bkg} Efficiencies

Results

Predicted W asymmetry vs. W and lepton rapidity

(courtesy J. Stirling)

3. Outlook

4. Conclusions

N_Z, N_{bkg} N_W, N_{bkg} Efficiencies Results

LHCb preliminary

Outlook:

PDF sensitivity studies

 A_{FB}

3. Outlook

4. Conclusions

From global fits, PDFs described by a set of orthogonal eigenvectors, which have a 'central' value e_0 , and 'uncertainties' e_i .

$$\frac{d\sigma}{dy}\left(\delta_{1},\delta_{2}...\delta_{N}\right) = \frac{d\sigma}{dy}\left(\overrightarrow{e_{0}}\right) + \sum_{i}^{N} \delta_{i}\left(\frac{d\sigma}{dy}\left(\overrightarrow{e_{i}}\right) - \frac{d\sigma}{dy}\left(\overrightarrow{e_{0}}\right)\right) \qquad \text{(where } \delta_{i} \text{ is \#sigmas along } e_{i}\text{)}$$

Prediction using central value

Deviations from central value according to eigenvector uncertainty

Current knowledge of PDFs mapped out by sampling δ_i from unit multinomial distribution.

Perform pseudo-experiments, generating LHC data and **fitting for \delta_i**, to see how eigenvector knowledge improves.

See: F. De Lorenzi, DIS2010; R. McNulty, ICHEP2010.

A_{FB}

3. Outlook4. Conclusions

Modest improvement with small amount of data

A_{FB}

3. Outlook4. Conclusions

Similar sensitivity. Ability to distinguish models

A_{FB}

More data and higher energy lead to larger improvements (~30%).

Improvement to **MSTW08 PDFs** with 0.1fb-1 of <u>low mass vector</u> <u>bosons</u> at 7TeV

Improvement to different **PDF** sets with 0.1fb⁻¹ of <u>low invariant</u> mass muons (10-20GeV) at 7TeV

Similar improvements to MSTW, CTEQ and Alekhin PDFs. Sensitivity exists to distinguish between models.

Current uncertainty on **MSTW08 PDFs** and projections with 0.1fb⁻¹, 1fb⁻¹ of very low invariant mass muons at 7TeV

Significant improvements possible with modest amount of data

$$A_{FB}^{0,f} = \frac{3}{4} A_f (uA_u + dA_d + sA_s)$$
 $A_f = \frac{2g_{Vf} g_{Af}}{g_{Vf}^2 + g_{Af}^2}$

 A_{FB} sensitive to $sin^2\theta_W$

Asymmetry at LHC larger than at LEP (leptonic)

3. Outlook4. Conclusions

$$A_{FB}^{0,f} = \frac{3}{4} A_f (uA_u + dA_d + sA_s)$$
 $A_f = \frac{2g_{Vf} g_{Af}}{g_{Vf}^2 + g_{Af}^2}$

A_{FB} sensitive to $\sin^2\theta_W$

Uncertainties from:

Forward (quark) direction PDF knowledge of sea

LHCb:

predominately valence - sea collisions ss contribution reduced

Statistical errors only:

Note: Very preliminary study:

1 fb-1 implies 4% statistical precision on A_{FB} implies 0.15% statistical precision on $\sin^2\theta_W$ (cf. 0.07% world average)

Studies ongoing:

PDF uncertainties (estimated at 0.04%)

Needs theoretical prediction of comparable precision

2. Cross-sections

3. Outlook

4. Conclusions

... and other channels e.g. Z→ee

2. Cross-sections

3. Outlook

4. Conclusions

... and other channels e.g. $Z \rightarrow \tau \tau$

All W,Z observations consistent with NLO theory

Luminosity uncertainty dominates for cross-sections

W/Z ratio tests SM to 6%

Outlook:

1 fb⁻¹ can improve PDF uncertainty by 30%

1 fb⁻¹ could allow $\sin^2\theta_W$ measurement to 0.15%