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Overview

• Equation of  state of  dense nuclear matter as possibly present inside 
neutron stars can can needs as input two- and three-body interactions.


• If  we consider that neutron stars can contain nucleon and hyperons, it 
is hence necessary to study the hyperon-nucleon and hyperon-hyperon 
interactions.


• Today we learn about two-body scattering and femtoscopy at the LHC 
as tool to study two-body interactions including hyperons and 
nucleons.



Residual strong interaction among hadrons

Running coupling constant defines the boundaries of 
low-energy QCD
→ Q ~1 GeV, R ~ 1 fm
→ No perturbative methods are applicable
→ Effective theories with hadrons as degrees of freedom constrained to experimental 
data 

Confinement

Asymptotic 
freedom



Residual strong interaction among hadrons

Running coupling constant defines the boundaries of 
low-energy QCD
→ Q ~1 GeV, R ~ 1 fm
→ No perturbative methods are applicable
→ Effective theories with hadrons as degrees of freedom constrained to experimental 
data 

→ Next Step: Understanding of the interaction starting from quark and gluons

Confinement

Asymptotic 
freedom



Lattice calculations for hyperons interactions

Numerical method to exrtact the hadron-hadron interactions 
starting from gluons and quarks as degrees of  freedom



Scattering Data and Interaction Parameters

Scattering experiments -> Extraction fo the differential cross section 

✓

d�

d⌦

Expansion in partial waves:

What are these shifts?



Scattering phenomena: partial waves
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But how are phase shifts related to cross section?
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Phase&Shifts

fl(k) =
e2i�l(k) � 1
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Partial Wave Decomposition and Shifts

      of  the scattered wave clearly depends on the interacting 
potential between beam and target.

By measuring the scattering cross-section one can infer on 
the scattering parameters and determine the interaction

f(✓)



How to determine δl ?

Method of partial waves

For scattering from a central potential,
the scattering amplitude, f , must be
symmetrical about axis of incidence.

In this case, both scattering wavefunction,  (r), and scattering
amplitudes, f (⇤), can be expanded in Legendre polynomials,

 (r) =
⌥

 =0

R (r)P (cos ⇤)

cf. wavefunction for hydrogen-like atoms with m = 0.

Each term in expansion known as partial wave, and is simultaneous
eigenfunction of L̂2 and L̂z having eigenvalue �2⇣(⇣+ 1) and 0, with
⇣ = 0, 1, 2, · · · referred to as s, p, d , · · · waves.

From the asymtotic form of  (r) we can determine the phase shifts
⇥ (k) and in turn the partial amplitudes f (k).

Expansion0in0Legendre0Polynomials0 for0the0
wave0function0and0the0scattering0amplitude0
f(θ)Method of partial waves
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For l=0

Determination of the phase shifts



Method of partial waves
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Scattering Length

If  we know U(r) we can solve the Schrödinger equation and determine 
the scattering parameters and compare this to the scattering data to see 
if  it works :)

This is a simple way of  treating the problem with a local potential that 
depends only from the distance between the two particles 

Effective range  d0 is used to define the range of  the interaction



Comparison of the N-N and Y-N Interactions 

Progress in particle and nuclear Physics

Vol. 12, 1984 Pages 171-239

U(r) ->  plug it in the Schrödinger equation -> solve it -> extract scattering 
parameters -> calculate cross-sections and compare to scattering data



Calculation for Hyperon-Nucleon Scattering

• Baryon-baryon interaction in SU(3) EFT à la Weinberg (1990)
• Advantages:

• Power counting
• systematic improvement by going to higher order
• Possibility to derive two- and three baryon forces and external current operators 

in a consistent way

•  degrees of freedom: baryon octet, pseudoscalar Goldstone boson octet
•  pseudoscalar-meson exchanges
•  contact terms – represent unresolved short-distance dynamics

LO: H. Polinder, J.H., U. Meißner, NPA 779 (2006) 244
NLO: J.H., N. Kaiser, U. Meißner, A. Nogga, S. Petschauer, W. Weise, NPA 915 (2013) 24

LO

NLO



Hyperon-nucleon scattering results

a1S0 = �1.91fm d1S0 = 1.40fm

a3S1 = �1.23fm d3S1 = 2.13fm

a1S0 = �2.91fm d1S0 = 2.78fm

a3S1 = �1.54fm d3S1 = 2.72fm

LO NLO

Λ Λp p
S= 1 S=0

hyperon
proton target



More about the interaction 
Author's personal copy

J. Haidenbauer et al. / Nuclear Physics A 915 (2013) 24–58 43

Fig. 6. The Λp 1S0 and 1P1 phase shifts δ as a function of plab. The red/dark band shows the chiral EFT results to
NLO for variations of the cutoff in the range Λ = 500, . . . ,650 MeV, while the green/light band shows results to LO for
Λ = 550, . . . ,700 MeV. The dashed curve is the result of the Jülich ’04 meson-exchange potential [37].

Fig. 7. The Λp phase shifts for the coupled 3S1–3D1 partial wave as a function of plab. Same description of curves as
in Fig. 6.

state in the ΣN system. It should be said, however, that the majority of the meson-exchange
potentials [36,38,39] produce an unstable bound state, similar to our NLO interaction. The only
characteristic difference of the chiral EFT interactions to the meson-exchange potentials might
be the mixing parameter ε1 which is fairly large in the former case and close to 45◦ at the ΣN

threshold, see Fig. 7. It is a manifestation of the fact that the pertinent Λp T -matrices (for the
3S1 → 3S1, 3D1 → 3D1, and 3S1 ↔ 3D1 transitions) are all of the same magnitude.

The strong variation of the 3S1–3D1 amplitudes around the ΣN threshold is reflected in
an impressive increase in the Λp cross section at the corresponding energy, as seen in Fig. 2.

NLO

LO

repulsion

phase
 shift

attraction

phenomenological
potential

hypernuclei

neutron star matter

Chiral SU(3) Effective Field Theory 
and Hyperon-Nucleon Interactionsrecall:

It all depends upon the Λ-N and Λ-ΝΝ interaction and whether or not it has a repulsive 
core 

This repulsive core could stiffen again the EOS allowing for heavy neutron stars

Scattering data for hyperon-nucleon are very scarce!

Which other data can constrain the theory?

J. Haidenbauer, S. Petschauer et al., 

Nucl. Phys. A 915 (2013) 24



How can we solve this puzzle?

14

Large Hadron Collider LHC

The largest and fastest accelerator in the world

https://www.youtube.com/watch?v=NhXMXiXOWAA


Particle production and decays

15

Courtesy D. Chinellato

Proton

Hyperon

The energy of  the accelerated protons 
is (partly) converted into mass.

E = mc2

20-50 new particles are created from 
each collision.

Protons are stable, hyperons decay 

and the daughter particles are 
measured.


In general:

The trajectory, velocity and mass of  
each charged particle must be 
measured!!!


1000 'pictures' per second! 



How can we measure the interaction?

16

Attractive interaction

Repulsive interaction

Collision

Collisions

Courtesy D. Chinellato

Proton

Hyperon



Potentials and Correlation Functions 

S. E. Koonin et al. PLB 70 (1977)



Source
Analytic

Potential
Scattering parameters

Correlation function

Wave function

Eff. range expansion 
=> phase shifts

Approximate solution

Lednicky



Source
Analytic Transport model

Potential
Full

Correlation function

Wave function

Numerically solve the 
Schrödinger eq.

“Exact” solution

CATS (Correlation Analysis Tools using the Schrödinger equation) 

D. Mihaylov, L. Fabbietti et al. EPJC 78 (2018)

**CATS (Correlation Analysis Tool using the Schödinger equation)                     
**CATS (Correlation Analysis Tool using the Schödinger equation)                     
**CATS (Correlation Analysis Tool using the Schödinger equation)                     




Potentials and Correlation Functions (CATS)

ELEMENTS  Annual Conference 2022 20
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Correlation functionSource parametrisation

**CATS (Correlation Analysis Tool using the Schödinger equation)                     
D. Mihaylov et al. EPJC 78 (2018)

S(r) = (4⇡r20)
�3/2 · exp

✓
� r2

4r20

◆
Gaussian source

Correlation function and potentials

Interacting potential

C "∗ = $S & ψ "∗, &⃑ " d#&
Emission source

Two-particle wave function

>1 if the interaction is attractive
= 1 if there is no interaction
<1 if the interaction is repulsive



Potentials and Correlation Functions (LL)

ELEMENTS  Annual Conference 2022 21

Scattering parameters**
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�3/2 · exp
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Gaussian source

C k∗ = 1+&
"
ρ"

1
2
f(k∗)"
r#

$
1 − d#"

2 πr#
+ 2ℜf(k

∗)"
πr#

F% 2k∗r# − 2If(k
∗)"

πr#
F$ 2k∗r#

Correlation function and scattering parameters

**R. Lednicky and V. L. Lyuboshits Sov. J. Nucl. Phys. 35 (1982)

S = spin state
d,- = effective range

f,- = scattering length

f(k∗)- = 1
f,-
+ 12d,

-k∗/ − ik∗
01

Based on effective range expansion, works well for large sources



Some correlations examples

Intro

4

Theoretical basics:

Illustration:

k (MeV/c)

relative mom. in the CMS

Examples of  Correlations from Calculations

Coulomb Repulsion C(k)<1

Strong Attraction C(k)>1

Λ-p

p-p

F. Wang and S. Pratt, Phys. Rev. Lett. 83, 3138 (1999).



Scattering parameters and Correlation Functions (LL model)

Theoretical model to describe        correlations:

Lednicky model: use for space time averaging a gaussian function

(effective range expansion)

32

Lednicky-Lyuboshitz Sov. J. Nucl. Phys. A 35, 770 (1982)

fS(k) =

✓
1

aS0
+

1

2
dS0 k

2 � ik

◆�1 = Scattering length

= Scattering range

aS0
dS0

Sum over all spin configurations

In this analytical formula the 
Source is assumed to be a 
Gaussian distribution with 

width-parameter r0

S(r) = (4⇡r20)
�3/2 · exp

✓
r2

4r20

◆

By fitting the measured correlation 
function one can extract the different 

parameters.



p-p Interaction

Potentials for the strong interactions tuned to scattering data of  NN 



p-p Correlation

S. E. Koonin, Phys. Lett. B 70 (1977) 43
S. Pratt et al., Nucl. Phys. A 566 (1994) 103c

pp Pairs:

• Coulomb Interaction

• Strong Interaction (AV18)

• Quantum Statistics for Fermions

Koonin Fit Function -> Extraction of  the Source Radius RG

 from Schroedinger Eq. with 
Coulomb and Strong interaction
ϕrel

p-p Strong Pot.

C(k) =

Z
dr3�2

rel(r, k) exp

✓
� r2

4R2
G

◆



C(k) =

Z
dr3�2

rel(r, k) exp

✓
� r2

4R2
G

◆

Experimental Correlation after:

Close-Tracks rejection


Long-Range Correlation Correction via UrQMD


p+Nb, 3.5 GeV

p-p Correlation

Preliminary



Example for p-p correlations

Simulation of the particle 
Production and Freeze-

Out coordinates

After-Burner which 
includes the  relevant 

Interactions

Comparison with 
the measured 
correlations

Coulomb +

p+Nb reaction simulated in UrQMD +

CRAB afterburner

Excellent Agreement

Preliminary



Source Determination at low energies via 
UrQMD

Source studies with help of UrQMD:

Separation of particles in the two-particle CMS:

Proton-Proton pairs:

Source studies with help of UrQMD:

Separation of particles in the two-particle CMS:

Lambda-Proton pairs:

p-p Pairs Λ-p Pairs

Λ-p source: 1.24 times smaller than p-p source (from UrQMD)

p-scattering in the nucleus -scattering in the nucleus Λ



Λ-p Correlation in p+Nb collisions at 3.5 GeV 

NLO
LO

J. Adamczewski-Musch et al.,[HADES coll.] Phys. Rev. C. 94 (2016).

a1S0 = �1.91fm d1S0 = 1.40fm

a3S1 = �1.23fm d3S1 = 2.13fm

a1S0 = �2.91fm d1S0 = 2.78fm

a3S1 = �1.54fm d3S1 = 2.72fm

LO NLO
a < 0 means 
attraction!



p+p 13 TeV High Multiplicity trigger, RUN 2 ~1000 Millions Events

ALICE data

For such collisions it is possible to

1) Model an universal Source for all hadrons!

2) Produce much larger yields of  even the rarest hyperons! 

Source

Collective effects -> mT scaling 

‘Tail’ in the source distribution due to 
the speci f ic s t rong resonance 
contribution for each pair of  interest.

UN
IV

ER
SA

L!
!



Source determination using p-p correlations 
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◆ 1
s

e−r/s

s = βγτres for the pertinent Ensamble of  resonances decaying into 
protons via strong decay



Source determination using p-p correlations 



Considerations about Hyperons statistics 



Scattering Data

-p InteractionΛ

plab = 2 ⋅ k*
New Data: Factor 20-25 improvement in the statistics !

Clear evidence of  the  cusp
ΣN − ΛN

ALICE femtoscopy data                 arXiv:2104.04427

https://arxiv.org/abs/2104.04427


Implication for dense nuclear matter

* ΣΝ coupling strength deeply affects 

the behaviour of Λ at finite density 
 

* Relevance for ΕοS in NS and for connection to role of ΛNN three-body interaction 

* Updated NLO19 with weaker coupling strength in NΛ-NΣ leading to more attractive U  at large 
densities and to softer EoS

Λ

Single Particle Potential  UΛ



Interaction⌃0 � p

Interaction moderately attractive for 
I=1/2 but repulsive for I=3/2

⌃0 ! ⇤+ �

E� ⇡ 80MeV

C(k⇤)

C(k⇤)
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 = 13 TeVsALICE pp 
0) > % INEL 0.072 − High-mult. (0

ALICE coll., PLB 805 (2020) 135419

•Very challenging measurement via the 
difficult electromagnetic decay Σ0 → Λ γ
• Data can not distinguish between 

different models but the interaction 
should be rather shallow 

Interaction⌃0 � p



Lattice Potentail for 
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L ! 4 fm, mπ ! 470 MeV

same as NN 8s: strong repulsive core. repulsion only. 1: attractive instead of repulsive 
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 Hyperon - Nucleon Interactions from Lattice QCD

T. Inoue et al.
(HAL QCD)

PTP 124 (2010) 591
Nucl. Phys.  

A881 (2012) 28

mps = 0.47GeV
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note:     strong short-distance repulsive interaction 
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 Interaction p − Ξ−

Interaction of p–Ξ- pairs in four Isospin (I = 0,1) and Spin (S=0,1) states
Lattice Potential Predicted correlation function
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Observation of  the strong interaction beyond Coulomb 

Agreement with LQCD calculations confirmed in pp and p-Pb colliding systems




Consequences for Neutron Stars

Attractive p  interaction 
lead to slightly attractive 
single particle potential in 
symmetric nuclear matter 
(SNM) and slight repulsion 
in neutron rich matter. 
(Isospin symmetries) 


   appears at larger 
densities in NS!
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Consequences for Neutron Stars

Updated RMF Model with single 
particle ptential consistent with 
the femtoscopy measurements

Attractive p  interaction lead to slightly attractive single particle potential in 
symmetric nuclear matter (SNM) and slight repulsion in neutron rich matter. 

 appears at larger densities in NS!
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Which are the building blocks of the interaction?



Example of local Potentials

V⇤p = VC �
✓
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x
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1� e�cr2
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VC = WC
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✓
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d

◆��1

Repulsive Core

Nucleon-Nucleon Potential

Similar to the NN potential:

attractive for large distances and with a 

repulsive core

Hyperon-Nucleon Potential


