Hadron-Hadron interactions and physics of neutron stars

L. Fabbietti
Technische Universität München
http://www.denseandstrange.ph.tum.de
Indian Summer school 2022, Prague

Overview

- Equation of state of dense nuclear matter as possibly present inside neutron stars can can needs as input two- and three-body interactions.
- If we consider that neutron stars can contain nucleon and hyperons, it is hence necessary to study the hyperon-nucleon and hyperon-hyperon interactions.
- Today we learn about two-body scattering and femtoscopy at the LHC as tool to study two-body interactions including hyperons and nucleons.

Residual strong interaction among hadrons

Confinement

Running coupling constant defines the boundaries of
low-energy QCD
$\rightarrow \mathrm{Q} \sim 1 \mathrm{GeV}, \mathrm{R} \sim 1 \mathrm{fm}$
\rightarrow No perturbative methods are applicable
\rightarrow Effective theories with hadrons as degrees of freedom constrained to experimental data

Residual strong interaction among hadrons

Confinement

Running coupling constant defines the boundaries of
low-energy QCD
$\rightarrow Q \sim 1 \mathrm{GeV}, R \sim 1 \mathrm{fm}$
\rightarrow No perturbative methods are applicable
\rightarrow Effective theories with hadrons as degrees of freedom constrained to experimental data
\rightarrow Next Step: Understanding of the interaction starting from quark and gluons

Lattice calculations for hyperons interactions

Numerical method to exrtact the hadron-hadron interactions starting from gluons and quarks as degrees of freedom

Local potentials for the Nucleon- Ξ interactions
T. Hatsuda, K. Sasaki et al.
 HAL OCD Coll. Nuct.Phws.A 998, PO020 121737
$a=0.085 \mathrm{fm}$
HAL QCD Coll. Phys. Rev.D 99 (2019)
1.014514

HAL GCD Col. Nhil.Phve A 988 (2020) 121768

$$
\begin{aligned}
L & =8.1 \mathrm{fm} \\
m_{\pi} & =146 \mathrm{MeV} / c^{2} \\
m_{\mathrm{K}} & =525 \mathrm{MeV} / c^{2}
\end{aligned}
$$

$S=0$	$S=-1$	$S=-2$	$S=-3$	$S=-4$	$S=-5$	$S=-6$
$N N$	$N \Lambda, N \Sigma$	$M \Lambda, \Lambda \Sigma, \Sigma \Sigma, N E$	$\Lambda \Xi, \Sigma E, N \Omega$	$\Xi E, \Lambda \Omega, \Sigma \Omega$	$\Xi \Omega$	$\Omega \Omega$

Scattering Data and Interaction Parameters

Scattering experiments -> Extraction fo the differential cross section

Expansion in partial waves:

$$
\sigma=\frac{4 \pi}{k^{2}} \sum_{l}(2 l+1) \sin ^{2}\left(\delta_{l}\right) .
$$

What are these shifts?

Partial Wave Decomposition and Shifts

$$
\begin{aligned}
& \text { If we set, } \psi(\mathbf{r}) \simeq e^{i \mathbf{k} \cdot \mathbf{r}}+f(\theta) \frac{e^{i k r}}{r} \\
& f(\theta)=\sum_{\ell=0}^{\infty}(2 \ell+1) f_{\ell}(k) P_{\ell}(\cos \theta) \\
& f_{l}(k)=\frac{e^{2 i \delta_{l}(k)}-1}{2 i k}
\end{aligned}
$$

$\delta_{\ell}(k)$ Phase Shifts
$f(\theta)$ of the scattered wave clearly depends on the interacting potential between beam and target.
By measuring the scattering cross-section one can infer on the scattering parameters and determine the interaction

Determination of the phase shifts

How to determine δ_{l} ?

$$
\psi(\mathbf{r})=\sum_{\ell=0}^{\infty} R_{\ell}(r) P_{\ell}(\cos \theta)
$$

Expansion in Legendre Polynomials for the wave function and the scattering amplitude $f(\theta)$

$$
\left[\partial_{r}^{2}-U(r)+k^{2}\right] u(r)=0
$$

$$
\begin{aligned}
& u\left(a_{0}\right)=\sin \left(k a_{0}+\delta_{0}\right)=\sin \left(k a_{0}\right) \cos \delta_{0}+\cos \left(k a_{0}\right) \sin \delta_{0} \\
& \quad=\sin \delta_{0}\left[\cot \delta_{0} \sin \left(k a_{0}\right)+\cos (k r)\right] \simeq \sin \delta_{0}\left[k a_{0} \cot \delta_{0}+1\right]
\end{aligned}
$$

$$
a_{0}=-\lim _{k \rightarrow 0} \frac{1}{k} \tan \delta_{0}(k)
$$

Scattering Length

$a_{0}=-\lim _{k \rightarrow 0} \frac{1}{k} \tan \delta_{0}(k) . \quad \quad l=0->s$-wave only $!!$

$$
\sigma_{\text {tot }}=\frac{4 \pi}{k^{2}} \sin ^{2} \delta_{0}(k) \stackrel{k \rightarrow 0}{\simeq} \frac{4 \pi}{k^{2}} \frac{\left(k a_{0}\right)^{2}}{1+\left(k a_{0}\right)^{2}} \simeq 4 \pi a_{0}^{2}
$$

The scattering length charachterizes the EFFECTIVE size of the target

Effective range d_{0} is used to define the range of the interaction
If we know $\mathrm{U}(\mathrm{r})$ we can solve the Schrödinger equation and determine the scattering parameters and compare this to the scattering data to see if it works :)
This is a simple way of treating the problem with a local potential that depends only from the distance between the two particles

Comparison of the $\mathbf{N}-\mathrm{N}$ and $\mathbf{Y}-\mathrm{N}$ Interactions

Progress in particle and nuclear Physics
Vol. 12, 1984 Pages 171-239

$\mathrm{U}(\mathrm{r})$-> plug it in the Schrödinger equation -> solve it -> extract scattering parameters -> calculate cross-sections and compare to scattering data

Calculation for Hyperon-Nucleon Scattering

- Baryon-baryon interaction in SU(3) EFT à la Weinberg (1990)
- Power counting
- systematic improvement by going to higher order
- Possibility to derive two- and three baryon forces and external current operators in a consistent way
- degrees of freedom: baryon octet, pseudoscalar Goldstone boson octet
- pseudoscalar-meson exchanges
- contact terms - represent unresolved short-distance dynamics

$$
\begin{array}{ll}
a^{1} S_{0}=-1.91 f m d^{1} S_{0}=1.40 f m & a^{1} S_{0}=-2.91 f m d^{1} S_{0}=2.78 \mathrm{fm} \\
a^{3} S_{1}=-1.23 f m d^{3} S_{1}=2.13 \mathrm{fm} & a^{3} S_{1}=-1.54 \mathrm{fm} d^{3} S_{1}=2.72 \mathrm{fm}
\end{array}
$$

More about the interaction

It all depends upon the $\Lambda-\mathrm{N}$ and $\Lambda-\mathrm{NN}$ interaction and whether or not it has a repulsive core
This repulsive core could stiffen again the EOS allowing for heavy neutron stars Scattering data for hyperon-nucleon are very scarce! Which other data can constrain the theory?

How can we solve this puzzle?

Large Hadron Collider LHC

The largest and fastest accelerator in the world

Particle production and decays

Courtesy D. Chinellato

The energy of the accelerated protons is (partly) converted into mass.
$E=m c^{2}$
20-50 new particles are created from each collision.
Protons are stable, hyperons decay and the daughter particles are measured.

In general:
The trajectory, velocity and mass of each charged particle must be measured!!!

1000 'pictures' per second!

How can we measure the interaction?

Courtesy D. Chinellato

Attractive interaction

Repulsive interaction

Potentials and Correlation Functions

Pair reference frame

Schrödinger Equation:
$V(r) \rightarrow$ relative wave function for the pair

$$
\mathrm{d}^{3} r=\zeta\left(k^{*}\right) \cdot \frac{N_{\text {same }}\left(k^{*}\right)}{N_{\text {mixed }}\left(k^{*}\right)}
$$

Emission source
S. E. Koonin et al. PLB 70 (1977)

Source

 Analytic
Potential

Scattering parameters

> Eff. range expansion => phase shifts

Approximate solution
Wave function

Correlation function

CATS (Correlation Analysis Tools using the Schrödinger equation)
D. Mihaylov, L. Fabbietti et al. EPJC 78 (2018)

Source

Analytic Transport model

Correlation function

Potential

Full

Numerically solve the Schrödinger eq.
"Exact" solution
Wave function

$+2$

Source parametrisation

Gaussian source

Interacting potential

Schrödinger - equation**

Correlation function

Two-particle wave function $\left|\Psi\left(\mathrm{k}^{*}, \mathrm{r}\right)\right|$
${ }^{* *}$ CATS (Correlation Analysis Tool using the Schödinger equation) D. Mihaylov et al. EPJC 78 (2018)

$$
\mathrm{C}\left(k^{*}\right)=\int_{\text {Emission source }} \mathrm{S}(r)\left|\psi\left(\vec{k}^{*}, \vec{r}\right)\right|^{2} \mathrm{~d}^{3} r
$$

>1 if the interaction is attractive
$=1$ if there is no interaction
<1 if the interaction is repulsive

Scattering parameters**

S = spin state
$\mathrm{d}_{0}^{\mathrm{S}}=$ effective range
$\mathrm{f}_{0}^{\mathrm{S}}=$ scattering length
$\mathrm{f}\left(\mathrm{k}^{*}\right)^{\mathrm{S}}=\left(\frac{1}{\mathrm{f}_{0}^{\mathrm{S}}}+\frac{1}{2} \mathrm{~d}_{0}^{\mathrm{S}} \mathrm{k}^{* 2}-\mathrm{ik} \mathrm{k}^{*}\right)^{-1}$

Correlation function

Gaussian source
$S(r)=\left(4 \pi r_{0}^{2}\right)^{-3 / 2} \cdot \exp \left(-\frac{r^{2}}{4 r_{0}^{2}}\right)$
**R. Lednicky and V. L. Lyuboshits Sov. J. Nucl. Phys. 35 (1982)
$C\left(\mathrm{k}^{*}\right)=1+\sum_{S} \rho_{\mathrm{S}}\left[\frac{1}{2}\left|\frac{\mathrm{f}\left(\mathrm{k}^{*}\right)^{S}}{\mathrm{r}_{0}}\right|^{2}\left(1-\frac{\mathrm{d}_{0}^{S}}{2 \sqrt{\pi} r_{0}}\right)+\frac{2 \Re f\left(k^{*}\right)^{S}}{\sqrt{\pi} r_{0}} \mathrm{~F}_{1}\left(2 \mathrm{k}^{*} \mathrm{r}_{0}\right)-\frac{2 \operatorname{If}\left(\mathrm{k}^{*}\right)^{S}}{\sqrt{\pi} \mathrm{r}_{0}} \mathrm{~F}_{2}\left(2 \mathrm{k}^{*} \mathrm{r}_{0}\right.\right.$
Based on effective range expansion, works well for large sources

Some correlations examples

Examples of Correlations from Calculations
F. Wang and s. Pratt, Phys. Rev. Lett. 83, 3138 (1999).

Strong Attraction C(k)>1

Coulomb Repulsion C(k)<1

Scattering parameters and Correlation Functions (LL model)

Lednicky-Lyuboshitz Sov. J. Nucl. Phys. A 35, 770 (1982)

$$
C(k)=1+\sum_{S} \rho_{S}\left[\frac{1}{2}\left|\frac{f^{S}(k)}{r_{0}}\right|^{2} \frac{2 \mathcal{R} f^{S}(k)}{\sqrt{\pi} r_{0}} F_{1}\left(Q r_{0}\right)-\frac{\mathcal{I f ^ { S } (k)}}{r_{0}} F_{2}\left(Q r_{0}\right)\right]
$$

Sum over all spin configurations

$$
f^{S}(k)=\left(\frac{1}{a_{0}^{S}}+\frac{1}{2} d_{0}^{S} k^{2}-i k\right)^{-1} \quad \begin{array}{ll}
a_{0}^{S} & =\text { Scattering length } \\
d_{0}^{S} & =\text { Scattering range }
\end{array}
$$

In this analytical formula the Source is assumed to be a Gaussian distribution with width-parameter r_{0}
$S(r)=\left(4 \pi r_{0}^{2}\right)^{-3 / 2} \cdot \exp \left(\frac{r^{2}}{4 r_{0}^{2}}\right)$
By fitting the measured correlation function one can extract the different parameters.

p-p Interaction

Potentials for the strong interactions tuned to scattering data of NN

p-p Correlation

pp Pairs:

- Coulomb Interaction
- Strong Interaction (AV18)
- Quantum Statistics for Fermions

Koonin Fit Function -> Extraction of the Source Radius \mathbf{R}_{G}
S. E. Koonin, Phys. Lett. B 70 (1977) 43
S. Pratt et al., Nucl. Phys. A 566 (1994) 103c
$C(k)=\int d r^{3} \phi_{\mathrm{rel}}^{2}(r, k) \exp \left(-\frac{r^{2}}{4 R_{G}^{2}}\right)$
$\phi_{\text {rel }}$ from Schroedinger Eq. with
Coulomb and Strong interaction
p-p Strong Pot.

p-p Correlation

Experimental Correlation after:
Close-Tracks rejection
Long-Range Correlation Correction via UrQMD

$$
\begin{gathered}
C(k)=\mathcal{N} \frac{N\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)_{\text {same }}}{N\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)_{\text {mixed }}} \quad \begin{array}{l}
k=\frac{1}{2}\left|\mathbf{p}_{1}-\mathbf{p}_{2}\right| \\
\mathbf{p}_{1}+\mathbf{p}_{2}=0
\end{array} \\
C(k)=\int d r^{3} \phi_{\text {rel }}^{2}(r, k) \exp \left(-\frac{r^{2}}{4 R_{G}^{2}}\right)
\end{gathered}
$$

Example for p-p correlations

$\mathrm{p}+\mathrm{Nb}$ reaction simulated in UrQMD + CRAB afterburner

Coulomb +

Source Determination at low energies via UrQMD

Λ-p source: 1.24 times smaller than $\mathrm{p}-\mathrm{p}$ source (from UrQMD)
p -scattering in the nucleus
\bar{z}

Λ-scattering in the nucleus

A-p Correlation in $\mathrm{p}+\mathrm{Nb}$ collisions at 3.5 GeV

J. Adamczewski-Musch et al.,[HADES coll.] Phys. Rev. C. 94 (2016).

- Sechi-Zorn et a
- Kadyk et al
- Alexander et al,

$$
C(k)=1+\sum_{S} \rho_{S}\left[\frac{1}{2}\left|\frac{f^{S}(k)}{R_{G}^{\Lambda p}}\right|^{2}\left(1-\frac{d_{0}^{S}}{2 \sqrt{\pi} R_{G}^{\Lambda p}}\right)+2 \frac{\mathcal{R} f^{S}(k)}{\sqrt{\pi} R_{G}^{\Lambda p}} F_{1}\left(Q R_{G}^{\Lambda p}\right)-\frac{\mathcal{I f} f^{S}(k)}{R_{G}^{\Lambda p}} F_{2}\left(Q R_{G}^{\Lambda p}\right)\right]
$$

LO

$$
\begin{aligned}
& a^{1} S_{0}=-1.91 \mathrm{fm} d^{1} S_{0}=1.40 \mathrm{fm} \\
& a^{3} S_{1}=-1.23 \mathrm{fm} d^{3} S_{1}=2.13 \mathrm{fm}
\end{aligned}
$$

NLO

$$
\begin{aligned}
& a^{1} S_{0}=-2.91 \mathrm{fm} d^{1} S_{0}=2.78 \mathrm{fm} \\
& a^{3} S_{1}=-1.54 \mathrm{fm} d^{3} S_{1}=2.72 \mathrm{fm}
\end{aligned}
$$

$a<0$ means attraction!

ALICE data

pep 13 TeV High Multiplicity trigger, RUN 2 ~1000 Millions Events
For such collisions it is possible to

1) Model an universal Source for all hadrons!
2) Produce much larger yields of even the rarest hyperons!

Source

'Tail' in the source distribution due to the specific strong resonance contribution for each pair of interest.

Source determination using p-p correlations

$$
C(k)=\int d r^{3} \phi_{\text {rel }}^{2}(r, k) \exp \left(-\frac{r^{2}}{4 R_{G}^{2}}\right) \frac{1}{s} e^{-r / s}
$$

$s=\beta \gamma \tau_{\text {res }}$
for the pertinent Ensamble of resonances decaying into protons via strong decay

Source determination using p-p correlations

Global Source for each Pair

ALI-PREL- 315640

Pair	$\mathrm{I}_{\text {Corr }}[\mathrm{fm}]$	$\mathrm{r}_{\text {Eff }}[\mathrm{fm}]$
PP	0.96	1.28
$\mathrm{p} \Lambda$	0.88	1.3
$\mathrm{p} \Sigma^{0}$	0.75	1.12
$\mathrm{p} \Xi$	0.8	0.92
$\mathrm{p} \Omega-$	0.73	0.85

Considerations about Hyperons statistics

$$
\begin{aligned}
& \Lambda \rightarrow p \pi^{-} \\
& \Xi^{-} \rightarrow \Lambda \pi^{-} \\
& \Omega^{-} \rightarrow \Lambda K^{-} \\
& \Sigma^{0} \rightarrow \Lambda \gamma
\end{aligned}
$$

Λ-p Interaction

Scattering Data

$p_{l a b}=2 \cdot k^{*}$
New Data: Factor 20-25 improvement in the statistics !
Clear evidence of the $\Sigma N-\Lambda N$ cusp

Implication for dense nuclear matter

Single Particle Potential U_{Λ}

* $\Sigma \mathrm{N}$ coupling strength deeply affects the behaviour of \wedge at finite density

* Relevance for EoS in NS and for connection to role of MNN three-body interaction - Updated NLO19 with weaker coupling strength in N $\wedge-N \Sigma$ leading to more attractive U_{Λ} at large densities and to softer EoS

$\Sigma^{0}-p$ Interaction

$$
\begin{gathered}
\Sigma^{0} \rightarrow \Lambda+\gamma \\
E_{\gamma} \approx 80 \mathrm{MeV}
\end{gathered}
$$

Interaction moderately attractive for
 $\mathrm{I}=1 / 2$ but repulsive for $\mathrm{I}=3 / 2$

Isopin I	$a_{I}^{S-0}[\mathrm{fm}]$	$a_{I}^{S-1}[\mathrm{fm}]$	$d_{I}^{S-0}[\mathrm{fm}]$	$d_{I}^{S-1}[\mathrm{fm}]$
$1 / 2$	-1.1	$-1.1+i 4.3$	-1.5	$-2.2-i 2.4$
$3 / 2$	2.51	-0.73	4.92	-1.22

ALICE coll., PLB 805 (2020) 135419

- Very challenging measurement via the difficult electromagnetic decay $\Sigma^{0} \rightarrow \Lambda \gamma$
- Data can not distinguish between different models but the interaction should be rather shallow

Lattice Potentail for $\Lambda-N$

$p-\Xi^{-}$Interaction

Interaction of p-E- pairs in four Isospin $(\mathrm{I}=0.1)$ and $\operatorname{Spin}(\mathrm{S}=0.1)$ states

Lattice Potential

Predicted correlation function

$$
\begin{aligned}
C_{\mathrm{p}-\Xi^{-}}= & \frac{1}{8} C_{\mathrm{N}-\Xi}(\mathrm{I}=0, \mathrm{~S}=0)+\frac{3}{8} C_{\mathrm{N}-\Xi}(\mathrm{I}=0, \mathrm{~S}=1) \\
& +\frac{1}{8} C_{\mathrm{N}-\Xi}(\mathrm{I}=1, \mathrm{~S}=0)+\frac{3}{8} C_{\mathrm{N}-\Xi}(\mathrm{I}=1, \mathrm{~S}=1) .
\end{aligned}
$$

ALICE Coll, Phys. Rev. Lett 123, (2019) 112002

ALICE Coll. Nature 588, 232-238 (2020)

Observation of the strong interaction beyond Coulomb

Agreement with LOCD calculations confirmed in pp and p - Pb colliding systems

Consequences for Neutron Stars

Attractive $\mathrm{p} \Xi^{-}$interaction lead to slightly attractive single particle potential in symmetric nuclear matter (SNM) and slight repulsion in neutron rich matter.
(Isospin symmetries)
$\rightarrow \Xi^{-}$appears at larger densities in NS!

Consequences for Neutron Stars

Updated RMF Model with single particle ptential consistent with the femtoscopy measurements

Attractive $\mathrm{p} \Xi^{-}$interaction lead to slightly attractive single particle potential in symmetric nuclear matter (SNM) and slight repulsion in neutron rich matter. Ξ^{-}appears at larger densities in NS!

Consequences for Neutron Stars

Attractive $\mathrm{p} \Xi^{-}$interaction lead to slightly attractive single particle potential in symmetric nuclear matter (SNM) and slight repulsion in neutron rich matter. Ξ^{-}appears at larger densities in NS!

Which are the building blocks of the interaction?

Example of local Potentials

Nucleon-Nucleon Potential

Similar to the NN potential: attractive for large distances and with a repulsive core

