

Hadron-hadron interactions and the physics of neutron stars

L. Fabbietti

Technische Universität München <u>http://www.denseandstrange.ph.tum.de</u>

Indian Summer school 2022, Prague

Nuclear Equation of State

Experimental determination of the nuclear equation of state considering only nucleons

- Use nuclei to first asses the equation of state of normal nuclear matter and then extrapolate to higher densities
- Measure dense baryonic systems via heavy ion collisions at different energies and look for obervables able to constraint the EoS
- Start from nucleon-nucleon scattering and nuclear spectroscopy where the binding energy of nuclei are determined and constrained an effective field theory for many nucleon interactions that is then extrapolated to high densities (without any connection to experiment with large baryonic densities)
- In particular: how to measure three- or four-body forces ?

EOS from Nuclei

- We want to learn something about the equation of state around normal nuclear density
- Therefore we consider normal (well known) nuclei.
- Their density profile can be measured by electron scattering

- All nuclei reach the same core density ρ₀≈0.16fm⁻³ ≈1/(6fm³) with a binding energy of about -16 MeV
- At ρ=0 the binding energy is 0 MeV because nucleons are completely separated.

Incompressibility of the EOS

- With this we know already two points of the EoS:
- The incompressibility K quantifies how much energy per nucleon you need to compress matter.
- K is defined as the 2nd derivative of the energy E with respect to ρ.

$$K = 9\rho_0^2 \frac{d^2}{d\rho^2} \left(\frac{E}{A}\right) = R^2 \frac{d^2}{dR^2} \left(\frac{E}{A}\right)$$

- Fitting a simple parabola through the two points would result in K=290 MeV.
- However the EoS could also be anything else than a parabola
- In General: EoS is called soft if K<290 MeV

EoS is called stiff if K>290 MeV

- How to measure the incompressibility K?
- One can study the radial vibration of the nucleus!
- This can e.g. be done by shooting α particles on a nucleus.

•The excitation energy has the following form:

$$E_{tot} = \int d\vec{r} \rho \frac{m_N v^2}{2} + \frac{1}{2} AK(R - R_0)^2 = \frac{Am_N \langle r^2 \rangle_A \dot{R}^2}{2} + \frac{1}{2} AK(R - R_0)^2$$
$$\Rightarrow E^* = \hbar \omega = \hbar \sqrt{\frac{K}{m_N \langle r^2 \rangle_A}}$$

- Corrections are needed due to Coulomb interaction etc.
- Finally the K factor for infinite matter compared to K measured for nucleus: K_{inf}=3/2K_{nucl}

 Task for the measurement: Measure radial excitation, i.e. vibration angular momentum L=0 (s-wave)!

• To isolate L=0 one has to measure at very forward angles! Why?

$$L < |p - p'| R = \Delta pR = p \sin(\Theta)R \approx p\Theta R$$
$$L < 1\hbar \implies \Theta < \frac{\hbar}{pR}$$

PRL 39, 19 (1977)

Compared with the value extracted before (290 MeV). EoS seems to be **soft around** ρ_0 !

PRL 39, 19 (1977)

 $^{144}Sm(\alpha, \alpha'), (E_{\alpha} = 96 \,\mathrm{MeV})$

Simultaneous fit of angular distribution and energy spectrum

All measurements of giant monopoles speak for a rather soft nuclear equation of state at saturation density

UNIVERSITÄT MÜNCHEN

Neutron Matter EoS

Experiments connected to the Symmetry Energy

Saturation Density:

- P-Rex (JLab), M-Rex(Mainz)
- MSU Experiments

Beyond Saturation Density:

- ASY-EOS (Catania)
- HIC (for nuclear matter EOS)

Parity violation and neutron density

Pressure forces neutrons out against surface tension

P-REX results

Neutron matter pressure

Density dependence over pressure for pure neutron matter

Calculations: <u>Without</u> 3N nuclear forces <u>With</u> 3N nuclear forces Experimental value: average among all measurements

Experiments connected to the Symmetry Energy

Saturation Density:

- P-Rex (JLab), M-Rex(Mainz)
- MSU Experiments

Beyond Saturation Density:

- ASY-EOS (Catania)
- HIC (for nuclear matter EOS)

Symmetry energy at subnormal densities

Parametrisation of the symmetry energy used in transport models:

$$S(\rho) = \frac{C_{s,k}}{2} \left(\frac{\rho}{\rho_0}\right)^{2/3} + \frac{C_{s,p}}{2} \left(\frac{\rho}{\rho_0}\right)^{\gamma_i}$$
$$C_{s,k} = 25 \, MeV \qquad S_0 = 30 \, MeV$$
$$C_{s,p} = 35.2 \, MeV$$

Tools: measure neutron/proton yields measure Isospin diffusion

in collisions involving ¹¹²Sn and ¹²⁴Sn nuclei at kinetic energies of 50 MeV/A

¹¹²Sn: 62 neutrons 50 protons -> neutron poor
¹²⁴Sn: 74 neutron 50 protons -> neutron rich

The parameter $\gamma~$ is extracted by comparing the experimental data to transport models

Neutron to Proton Ratios

$$DR (Y(n)/Y(p)) = R_{n/p}(A)/R_{n/p}(B)$$
$$= \frac{dM_n(A)/dE_{\text{c.m.}}}{dM_p(A)/dE_{\text{c.m.}}} \cdot \frac{dM_p(B)/dE_{\text{c.m.}}}{dM_n(B)/dE_{\text{c.m.}}},$$

 $\frac{100}{15} \frac{20}{Measured neutron energy}$ spectrum for the colliding system

 $A = {}^{124}Sn + {}^{124}Sn$ $B = {}^{112}Sn + {}^{112}Sn$

A DR> 1 since more neutron than

protons Increasing DR value as a function of energy: Neutron pushed because of the symmetry energy

PRL 102, 122701 (2009)

Neutron to Proton Ratios

0

2.0

1.5

1.0

 γ_{i}

0.5

 $A = {}^{124}Sn + {}^{124}Sn$ $B = {}^{112}Sn + {}^{112}Sn$

$$S(\rho) = \frac{C_{s,k}}{2} \left(\frac{\rho}{\rho_0}\right)^{2/3} + \frac{C_{s,p}}{2} \left(\frac{\rho}{\rho_0}\right)^{\gamma_i}$$

Explanation: since for these esp. $\rho < \rho_0$

the number of neutron is larger for smaller values of γ

But for very small γ the system disintegrates so that the ratio goes towards the limit 1.2

PRL 102, 122701 (2009)

40

60

E_{C.M.} (MeV)

20

Isospin Diffusion

SYMMETRY ENERGY AND PRESSURE

$$S(\rho) = \frac{C_{s,k}}{2} \left(\frac{\rho}{\rho_0}\right)^{2/3} + \frac{C_{s,p}}{2} \left(\frac{\rho}{\rho_0}\right)^{\gamma_i} \qquad \gamma_i \approx 0.75$$

$$S(\rho) = S_0 + \frac{L}{3} \left(\frac{\rho - \rho_o}{\rho_o} \right) + \frac{K_{\text{sym}}}{18} \left(\frac{\rho - \rho_o}{\rho_o} \right)^2 + \dots$$

$$L = 3\rho_0 |dS(\rho)d\rho|_{\rho_0} = [3/p_0]_{\rho_0}$$

P-REX

 $P = (1.41 \pm 0.41) \cdot 10^{-27} bar$ $\rightarrow P = 2.24 \pm 0.64 MeV/fm^3$

Experiments connected to the Symmetry Energy

Saturation Density:

- P-Rex (JLab), M-Rex(Mainz)
- MSU Experiments

Beyond Saturation Density:

- ASY-EOS (Catania)
- HIC (for nuclear matter EOS)

Symmetry energy at supra-normal densities

Slope Parameter at ρ_0

$$L = 3\rho_0 \left| \frac{dE_{sym}(\rho)}{d\rho} \right|_{\rho_0}$$

Not constrained at large densities. Threebody forces unknown at large densities

Heavy Ion Reactions at Intermediate Energies

- reaching 2-3 *Q*⁰
- non-equilibrated, dynamical system
- access to properties
 - microscopic transport models
- n/p ratio in dense phase depends on E_{sym}
- Study observables sensitive to the difference in neutron/proton densities/potentials
- <u>n/p ratio and flows</u>
- t/³He ratio and flows
- π^-/π^+ ratio, K^0/K^+ ratio

Definition of Flow

Again push and pull.. But respect to a reaction plane

Reaction plane: plane on which the reaction occurs Reacting nuclei trated like spheres

The strength of the interaction is extracted from the comparison with transport models

Flow in HIC at low (<GeV) energies

from the comparison with transport models

Reaction plane and angular variables

UNIVERSITÄT

Flow: sideward and elliptic

Flow in low energy HIC

Particle flow: v2

Particle flow: v2

Results compared to Models

P. Rusotto et al PLB, 267 (2011)

Comparison to models, used parametrization of E_{SYM} for densities beyond saturation density

$$E_{SYM} = E_{SYM}^{pot} + E_{SYM}^{KIN} = 22MeV \cdot \left(\frac{\rho}{\rho_0}\right)^{\gamma} + 12MeV \cdot \left(\frac{\rho}{\rho_0}\right)^{2/2}$$

ASY-EOS Experiment

Results compared to Models

courtesy Y. Leifels

Comparison to models, used parametrization of E_{SYM} for densities beyond saturation density

$$E_{SYM} = E_{SYM}^{pot} + E_{SYM}^{KIN} = 22MeV \cdot \left(\frac{\rho}{\rho_0}\right)^{\gamma} + 12MeV \cdot \left(\frac{\rho}{\rho_0}\right)^{2\gamma}$$

Current Situation

courtesy Y. Leifels

Only limited experimental data available at supra-normal densities

- FOPI: π⁻/π⁺, t/³He (Au+Au) Reisdorf NPA 781 (2007)
- FOPI+LAND: n+H/p,Russotto PLB 267 (2010)
- ASY-EOS: n/charged particles
- n/p differential elliptic flow leads to *robust* constraints for the density dependence of the symmetry energy.
- π⁻/π⁺ (E_{beam}) promising but sophisticated treatment of pion interaction in medium needed.
- for t/³He observables: models have to account for clusterization
- K⁰/K⁺ ratio sensitive to high densities

Horrowitz et al. JPhG 41 (2014 Brown: arXiv:1308.3664 Zhang: PLB 726 (2013)

Summary

Several different experiments (mostly very model dependent) suggest that the Equation of state of nuclear matter up to $2\rho_0$ is rather soft This is not so well in agreement with stiff nuclear EoS used for neutron stars

Additionally: if hyperons are added the EoS might become even softer

What is the way of the future

- 1) Measure three-body forces including hyperons via hypernuclei and correlations
- 2) Continue on experiments at low energies to study dense baryonic matter, although the studies are very model dependent !
- 3) Consider the possibility of axion fiels within neutron stars able to stiffen the EoS