
Neutron Stars & the 
Nuclear Equation of State

Indian-Summer School 2022
Prague, June 24th-26th 

Isaac Vidaña, INFN Catania



Lecture 
Program: 
Part 2

Baryon-baryon interaction

Theoretical approaches of the nuclear EoS



But do not run. Before, let me explain you the last 
generalities on neutron stars that I could not 

tell you yesterday



Neutron Star Structure: 
General Relativity or Newtonian Gravity ?

Surface gravitational potential tell us how
much compact an object is
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è Relativistic effects are very important in
Neutron Stars and General Relativity must be
used to describe their structure
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In 1939 Tolman, Oppenheimer & Volkoff obtain
the equations that describe the structure of a static
star with spherical symmetry in General Relativity
(Chandrasekhar & von Neumann obtained them in
1934 but they did not published their work)
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boundary conditions
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P(0) = Po , m(0) = 0

€ 

P(R) = 0, m(R) = M

Tolman, Phys. Rev. 55, 364 (1939)

Oppenheimer & Volkoff, Phys. Rev. 55, 374 (1939)

Free neutron gas
Mmax = 0.7 M¤

The Tolman-Oppenheimer-Volkoff Equations



Stability solutions of the TOV equations

² The solutions of the TOV equations represent static equilibrium configurations 

² Stability is required with respect to small perturbations 

dMG

dρc
> 0, or dMG

dr
< 0



The only ingredient needed to solve the
TOV equations is the (poorly known) EoS
(i.e., p(e)) of dense matter

The role of the Equation of State 

Interactions

“stiff” EoS

“stiff” EoS

“soft” EoS

“soft” EoS

EoS

Matter
constituents

TOV



The Nuclear EoS  

However, its determination is very
challenging due to the wide range of
densities, temperatures & isospin
asymmetries found in these astrophysical
scenarios.

The Nuclear EoS is a fundamental ingredient for the understanding of the
static & dynamical properties of NS, core-collapse SN & compact star
mergers

Main difficulties associated to:

ü Complexity of the bare baryon-baryon
interaction

ü Very complicated resolution of the so-
called nuclear many-body problem

ρ0 ∈ 105 −1015#$ %& g/cm
3

T ∈ 0.1−100[ ] MeV
Y ∈ 0.05− 0.5[ ]

Conditions in the center of the star from the
onset of the collapse up to 25 ms after
bounce (15 Msun progenitor)



Baryon-baryon interaction 



Few generalities

Ø The baryon-baryon interaction can, in principle, be completely
determined from the underlying quark-gluon dynamics in QCD

QCD is commonly recognized as the fundamental theory of strong interactions. It is a non-Abelian gauge theory
described by the Lagrangian density
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Ø However, due to the mathematical problems raised by the non-
perturbative character of QCD at low & intermediate energies (in this
energy range the strong coupling constant becomes too large for
perturbative approaches) one is still far from a quantitative understanding
of the baryon-baryon interaction from the QCD point of view
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Ø This problem is circumvented by introducing simplified models where
hadronic degrees of freedom are assumed to be the only relevant ones



Few generalities

Nowadays, bare baryon-baryon interactions are derived following several approaches

In the next we will describe each one of them

Ø Phenomenological approaches

• Meson exchange-models
• Potential models

Ø Chiral effective field theory

Ø Renormalization group methods

Ø Lattice QCD calculations

Ø …



Meson-exchange models

Ø Based on the Yukawa idea

(p,K,h,h’)

(s,k,d)

(r,K*,w,f)

Ø Various models differ mainly in the mesonic content & treatment of two meson-exchange
contributions. But all them describe successfully NN scattering phase shift & deuteron
properties

Ø Some very refined models for NN interaction: Paris, Bonn, Nijmegen potentials

Ø YN & YY meson-exchange models: Juelich, Nijmegen potentials Machleidt et al., PR. 149, 1 (1987)
Nagels et al., PRD 17, 768 (1978)

“Baryon-baryon interactions are mediated by 
the exchange of mesons” 

• Long-range: pseudoscalar mesons (p,K,h,h’)
• Intermediate-range: scalar mesons (s,k,d)
• Short-range: vector mesons (r,K*,w,f)



Meson-exchange models

Guided by symmetry principles, simplicity & physical intuition, the most general interaction
Lagrangian densities that couple meson and baryon fields are the following:

𝜓: spin ½ − baryon .ields; 𝜙("), 𝜙($"), 𝜙%
(&): scalar, pseudoscalar & vector meson .ields; g’s coupling

constants to be constrained (if possible) by scattering data 

These Lagrangian densities are for isoscalar mesons, those for isovector ones are obtained by replacing 𝜙 → 𝜏 > 𝜙

ℒ" = 𝑔" B𝜓𝜓𝜙(")

ℒ$" = 𝑔$" B𝜓𝑖𝛾'𝜓𝜙($")

ℒ& = 𝑔& B𝜓𝛾%𝜓𝜙%
(&) + 𝑔( B𝜓𝜎%)𝜓 𝜕%𝜙)

(&) − 𝜕)𝜙%
(&) , 𝜎%* = +

,-
𝛾% , 𝛾*

• Scalar mesons:

• Pseudoscalar mesons:

• Vector mesons:

ℒ$& = 𝑔$& B𝜓𝛾'𝛾%𝜓𝜕%𝜙($") (pseudovector or gradient coupling suggested as an 
effective coupling by chiral symmetry)



Meson-exchange models

A typical contribution to the baryon-baryon interaction potential
arising from the exchange of a certain meson f is

1 1 2 2
f

• .!
/"01!

" : meson propagator; 𝑃2 = 1 for scalar & pseudoscalar mesons; 𝑃2 ≡ 𝑃%* = −𝑔%* +
/#/$
1!
" for vector mesons

• Γ" = 1, Γ$"= 𝑖𝛾', Γ&= 𝛾% , Γ(= 𝜎%* , Γ$&= 𝛾'𝛾%𝜕% : Dirac structures of the vertices

• 𝑚2: mass of the exchanged meson

• 𝑢- & B𝑢-: Dirac spinor & its adjoint (B𝑢𝑢 = 1, B𝑢 = 𝑢3𝛾4)

𝑝+5𝑝65 𝑉2 𝑝+𝑝6 =
B𝑢+ 𝑝+5 𝑔+Γ+𝑢+ 𝑝+ 𝑃2 B𝑢6 𝑝65 𝑔6Γ6𝑢6 𝑝6

𝑘6 − 𝑚2
6



Meson-exchange models

In general, when all types of mesons are included the total baryon-
baryon interaction potential is the sum of all the partial
contributions

Expanding the Dirac spinor in terms of 1/M (M: baryon mass) to lowest order leads to the familiar
non-relativistic expressions of the baryon-baryon potential, which through Fourier transformation give
the configuration version of the potential

• C’s: numerical factors containig all baryon-baryon-meson couplings & baryon masses

• L, S: total orbital angular momentum  & total spin

• 𝑆+6 �̂� = 3 �⃗�+ > �̂� �⃗�6 > �̂� − �⃗�+ > �⃗�6 ; �̂� =
8⃗
8
: tensor operator
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Meson-exchange models
Finally, one has to remember that all baryon-baryon-meson vertices must be modified with the
introduction of a form factor

Two types of form factors are usually employed:

or gaussian

• Originally form factors were introduced for purely mathematical reasons, namely to avoid
divergences in the scattering equation. Our present knowledge of the quark substructure of baryons
and mesons provides a physical reason for their introduction

• Meson exchange picture loses its validity in regions where modifications due to the extended
structure of hadrons comes into play

𝐹2 𝑘
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: usually 𝑛2 takes values 1 monopole form factor or 2 (dipole form factor)

𝐹2 𝑘
6
= 𝑒𝑥𝑝 − /

"

6>!
" : in both cases Λ2 is the so called cut − off mass with values between 1.2 − 2 GeV



Potential models
Ø Potential models have a complex structure which is expressed via operator invariants consistent

with the symmetries of strong interactions:

Ø The most widely known potential models are the Urbana and the Argonne ones where the NN
interaction is given as a sum of several local operators. In the case of the Argonne V18 reads:

Wiringa et al., PRC 51, 38 (1995)

• Translational invariance
• Galilean invariance
• Rotational invariance
• Space-reflection invariance

• Time-reversal invariance
• Invariance under the interchange of two baryons
• Isospin symmetry
• Hermiticity
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$@+',⋯,+A = 𝑇-? , �⃗�- > �⃗�? 𝑇-? , 𝑆-?𝑇-?,𝑇-? 𝜏D% + 𝜏D& : charge symmetry breaking



Some words on the three-nucleon force

Pieper & Wiringa, ARNPS 51, 53 (2001)

Li et al., PRC 74, 047304 (2006)

Necessary to:
² Reproduce the spectra of light nuclei

² Obtain proper saturation properties of symmetric nuclear
matter in non-relativistic many-body calculations

² Urbana-type

² Microscopic-type

Vijk
UIX =Vijk

2π +Vijk
R

€ 

Vijk
2π : Attractive Fujita-Miyazawa force

p

p

€ 

Vijk
R : Repulsive & Phenomenological

D

N

= +
N

+
Problem: NNN is not independent of NN



Chiral Perturbation Expansion

² Starting point: most general chiral effective Lagrangian
consistent with the symmetries required by QCD where p & N
(recently also D) are the relevant degrees of freedom. of the
theory

² Systematic expansion in powers of Q/Lc [Q=mp, k; Lc ~ 1 GeV]

² Consistent derivation of 2N, 3N, 4N, … forces

Weinberg, PLB 251, 288 (1990); NPB 363, 3 (1991)
Entem&Machleidt, PRC 68, 041001(R) (2003)
Epelbaum et al., NPA747, 363 (2005)



Chiral Perturbation Expansion (LO)

This contribution consist of one pseudoscalar-meson exchange
and of four-baryon contact terms each one of them constrained by
SU(3)-flavor symmetry

Ø Leading order (LO) contribution

The one pseudoscalar-meson exchange term is obtained from the Lagrangian density

ℒ = 𝑖 B𝐵𝛾%𝐷% − 𝑀4 B𝐵𝐵 +
𝐷
2
B𝐵𝛾%𝛾' 𝑢% , 𝐵 +

𝐹
2
B𝐵𝛾%𝛾' 𝑢% , 𝐵

ü ⋯ denote the trace in .lavor space

ü 𝐵 is the SU 3 − .lavor irreducible representation of the baryon octet 𝐵 =

Σ'

2
+
Λ
6

Σ( 𝑝

Σ) −
Σ'

2
+
Λ
6

𝑛

−Ξ) Ξ' −
2Λ
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Chiral Perturbation Expansion (LO)

ü 𝐷% is the covariant derivative

ü 𝑀4 is the octet baryon mass in the chiral limit

ü F and D are couping constants satisfying 𝐹 + 𝐷 = 𝑔E ≅ 1.26 (axial-vector strength)

ℒ = 𝑖 B𝐵𝛾%𝐷% − 𝑀4 B𝐵𝐵 +
𝐷
2
B𝐵𝛾%𝛾' 𝑢% , 𝐵 +

𝐹
2
B𝐵𝛾%𝛾' 𝑢% , 𝐵

ü 𝑢% = 𝑖 𝑢3𝜕%𝑢 − 𝑢𝜕%𝑢3 with

• 𝐹F= 92.4 MeV the weak pion decay constant  

𝑢 = 𝑒𝑥𝑝
𝑖𝑃
2𝐹F

being

• 𝑃: SU 3 − .lavor irreducible representarion of pseudoscalr meson 𝑃 =

𝜋'

2
+
𝜂
6

𝜋( 𝐾(
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−𝐾) 0𝐾' −
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Chiral Perturbation Expansion (LO)

The form of the baryon-baryon potentials obtained from the one pseudoscalar-meson exchange LO
contribution is similar to the ones derived from the meson-exchange approach, and in momentum space
read

𝑉z{|}} = −𝑓}1}2{𝑓}3}4{
�⃗�~ ' �⃗� �⃗�� ' �⃗�
�⃗� � +𝑚��

� 𝐼}1}2→}3}4

ü 𝑓G*G"., 𝑓G+G,. coupling constants of the two vertices

ü 𝑚$" mass of the exchanged pseudoscalar meson

ü �⃗� transferred momemtum

ü 𝐼G*G"→G+G, isospin factor



Chiral Perturbation Expansion (LO)
The contribution from the four-body contact interaction can be derived from the following minimal set
of Lagrangian densities

ℒ+ = 𝐶-
+ B𝐵I B𝐵J Γ-𝐵 J Γ-𝐵 I , ℒ6 = 𝐶-

6 B𝐵I Γ-𝐵 I B𝐵J Γ-𝐵 J , ℒK = 𝐶-
K B𝐵I Γ-𝐵 I B𝐵J Γ-𝐵 J

ü The labels a and b are the Dirac indices of the particlesHere:

ü Γ- denote the .ive elements of the Cliffod algebra (usually 3 x 3 matrices in the .lavor space)

Γ+ = 1, Γ6 = 𝛾% , ΓK = 𝜎%* , Γ, = 𝛾%𝛾', Γ' = 𝛾'

ü 𝐶-
+, 𝐶-

6, 𝐶-
K: low − energy constants LEC . At LO there are 6 independent LEC

𝑉�z}} = 𝐶�}} + 𝐶�}} �⃗�~ ' �⃗��LO contact potential
𝐶9GG and 𝐶LGG linear combination

of the 6 independent LEC



Chiral Perturbation Expansion (NLO)
Ø Next-to-leading-order (NLO) contribution

• Contact terms contribution

𝑉��z}} = 𝐶~𝑞� + 𝐶�𝑘� + 𝐶�𝑞� + 𝐶�𝑘� �⃗�~ ' �⃗�� + 𝑖
𝐶�
2

�⃗�~ + �⃗�� �⃗�×𝑘

+𝐶� �⃗� ' �⃗�~ �⃗� ' �⃗�� + 𝐶� 𝑘 ' �⃗�~ 𝑘 ' �⃗�� + 𝐶� �⃗�~ − �⃗�� �⃗�×𝑘

• Expressions for two-pseudoscalar meson exchange are rather cumbersome



Chiral Perturbation Expansion

A final comment:

The baryon-baryon potentials constructed in this way are then inserted in the
Lippmann-Schwinger equation which is regularized with a cut-off function of the
type

F 𝑝, 𝑝′ = 𝑒𝑥𝑝 −
𝑝! + 𝑝′!

Λ!

in order to remove high-energy components of the baryon and pseudoscalar meson
fields. The cut-off L is usually taken in the range 450-700 MeV



Renormalization Group Method

Ø A possible way to soften it consists in integrating out all the
momenta q larger than a certain cut-off L obtaining in this way
an effective interaction Vlow k that is equivalent to the original
one for momenta q < L

Ø The presence of a short–range hard core of the nucleon-nucleon
interaction V makes any perturbation expansion in terms of V
meaningless

This results in a modified Lippmann-Schwinger equation with a
cut-off dependent effective potential Vlow k

€ 

Bogner et al., Phys. Rep. 386, 1 (2003)

𝑇 𝑘5, 𝑘: 𝐸/ = 𝑉MNO / 𝑘5, 𝑘 +
2
𝜋
𝑃�
4

>

𝑑𝑞𝑞6
𝑉MNO / 𝑘5, 𝑞 𝑇 𝑞, 𝑘: 𝐸/

𝑘6 − 𝑞6 + 𝑖𝜂



Renormalization Group Method
Ø By demanding "# $P,$:'Q

"(
= 0 one obtains a Renormalization Group equation for V𝑙𝑜𝑤 𝑘

Ø Integrating this flow equation one obtains a “universal” nucleon-
nucleon low-momentum potential Vlow k that is:

Ø Having a much softer core the Vlow k potential can be used in
perturbation expansions and nuclear structure calculations in a
more efficient way

Ø The method has been applied also to the hyperon-nucleon case.
The results seem to indicate a similar convergence to a
“universal” softer low-momentum hyperon-nucleon interaction

Vlow k evolved 
potentials

𝑑𝑉MNO / 𝑘5, 𝑘
𝑑Λ

=
2
𝜋
𝑉MNO / 𝑘5, 𝑘 𝑇 Λ, 𝑘, Λ6

1 − �𝑘6
Λ6

ü phase shift equivalent
ü energy independent

ü hermitian
ü softer (no hard core)



Baryon-baryon interactions from Lattice QCD

Ø The key idea behind lattice QCD is to replace the infinite four-
dimensional space-time continuum with a finite hypercubic
lattice

• Quark fields are de@ined on the lattice sites

• Gluon fields live on the links

• The quantum field theory is mapped into a classical statistical system

• Computer simulations use methods analogous to those of statistical mechanics to
calculate correlation functions of hadronic operators & matrix elements of any
operator between hadronic states in terms of fundamental quark and gluon degrees
of freedom

Ø A big progress has been made by the NPLQCD & the HALQCD collaborations to derive baryon-
baryon interactions from lattice QCD

• Extremely expensive from a numerical point of view



Baryon-baryon interactions from Lattice QCD

NPLQCD & the HALQCD strategies

Ø NPLQCD

Combines calculations of correlation functions of two-baryon systems at
several light-quark-mass values with low-energy effective field theory to
extract scattering phase-shifts

Ø HALQCD

• Determine the Nambu-Bethe-Salpeter wave function on the lattice

𝜑/ 0 = 0 𝑁 (𝑥 + 𝑟, 0 𝑁(𝑥, 0) 6𝑞, 𝐸 ,𝑁 𝑥 = 𝜀$+*𝑞$(𝑥)𝑞+(𝑥)𝑞*(𝑥)

• DeCine a local potential 𝑈 𝑥, 𝑦 from𝜑/ 0

𝐸 −
ℏ-∇-

2𝜇.
𝜑/ 0 = >𝑑1𝑦𝑈 𝑥, 𝑦 𝜑/ 2 , 𝑈 𝑥, 𝑦 = 𝑉(𝑥, ∇)𝛿 (𝑥 − 𝑦)

𝑉 𝑥, ∇ = 𝑉3 𝑥 + 𝑉4 𝑥 𝑆5- + 𝑉67 𝑥 𝐿 J 𝑆 + 𝑉8 , ∇- +⋯

• Calculate observables (phase shifts, binding energies, …)



Theoretical approaches 
to the nuclear EoS



Approaches to the Nuclear EoS: “Story of Two Philosophies”

Based on two- & three-nucleon realistic
interactions which reproduce scattering
data & the deuteron properties. The EoS is
obtained by “solving” the complicated
many-body problem

Ab-initio Approaches

Based on effective density-dependent
interactions with parameters adjusted to
reproduce nuclear observables & compact star
properties.

Phenomenological Approaches

² Brueckner-Bethe-Goldstone theory

² Self Consistent Green’s Function formalism

² Variational Approach

² Quantum Monte Carlo Methods

² Non-relativistic approaches: Skyrme & Gogny

² Relativistic Mean Field Theory

² Others: QMC, BCPM



Ab-initio approaches



Difficulties of ab-initio approaches

² Different NN potentials in the market …
but all are phase-shift equivalent

² Short range repulsion makes any
perturbation expansion in terms of V
meaningless. Different ways of treating
short range correlations

² Complicated channel & operatorial
structure (central, spin-spin, spin-
isospin, tensor, spin-orbit, …)



Brueckner-Bethe-Goldstone theory      

Consider a system of A fermions described by the hamiltonian

H = Ki
i=1

A

∑ + Vij
i< j

A

∑ H ψ = E ψGround State

UNSOLVABLE because of the short-range hard core of BB interaction

Ø Idea: introduce an auxiliary single-particle potential Ui

E = E0 +ΔE
H0 φ0 = E0 φ0

H = Ki +Ui( )
i=1

A

∑ + Vij −
i< j

A

∑ Ui
i=1

A

∑

Ho
unperturbed

H1
perturbation

perturbation theoryΔE



Brueckner-Bethe-Goldstone theory      

Perturbation theory Δ𝐸 = ΦN 𝐻+ ΦN + ΦN 𝐻+
1 − ⟩|Φ4 ⟨Φ4|
𝐸4 − 𝐻4

𝐻+ ΦN + ⋯

Ø The correlated wave function Y & the uncorrelated one F0 satisfy: ⟩|Ψ = ⟩|Φ4 +
1 − ⟩|Φ4 ⟨Φ4|
𝐸4 − 𝐻4

𝐻+ ⟩|Ψ

Δ𝐸 =
Φ4 𝐻+ Ψ
Φ4 Ψ

Ø Goldstone (Proc. Roy. Soc. A 293, 267 (1957)) showed :

ΔE = φ0 H1
1− φ0 φ0
E0 −H0

H1

#

$
%

&

'
(

n

φ0 l
n=0

∞

∑

Φ4 𝐻+ Ψ factorizes into the product of Φ4 Ψ & a quantity that
contains only linked diagrams 

(e.g., those which cannot be separated in two pieces by a vertical cut without crossing a line) Goldstone Expansion



Brueckner-Bethe-Goldstone theory      

Ø The Goldstone expansion provides a simple & explicit prescription for calculating every
order of perturbation theory

Ø However, it cannot be used in its present form for nuclear matter calculations because the
short-range repulsion of the BB interaction makes all matrix elements very large and the
perturbation series does not converge

Ø The solution is provided by the Brueckner theory in which the perturbation expansion in
terms of the bare potential is replaced by another on in terms of the so-called Brueckner’s
reaction matrix. All the terms in this new perturbation series (Brueckner-Goldstone
expansion) are finite and of reasonable size.



Brueckner-Bethe-Goldstone theory      

The Brueckner’s reaction matrix (or G-matrix) is obatined by performing a partial (infinite) summation
of the set of particle-particle ladder diagrams

which defines the so-called Bethe-Goldstone equation

G =V +V Q
ω −H0 + iη

V +V Q
ω −H0 + iη

V Q
ω −H0 + iη

V + ⋅ ⋅ ⋅

= V +V Q
ω −H0 + iη

V +V Q
ω −H0 + iη

V +V Q
ω −H0 + iη

V Q
ω −H0 + iη

V + ⋅ ⋅ ⋅
#

$
%

&

'
(

G



Brueckner-Bethe-Goldstone theory      

Then:

Note that the Bethe-Goldstone equation is formally identical to the Lippmann-Schwinger
equation describing the scattering of two particles in free space

“The G-matrix describes the scattering of two particles in the 
presence of a surrounding medium”

G =V +V Q
ω −H0 + iη

G

T =V +V 1
ω −K + iη

T



Brueckner-Bethe-Goldstone theory      

Ø Medium Effects

ü Pauli blocking of intermediate states

The Pauli operator Q prevents the scattering
to any occupied state, limiting the phase
space of intermediate states

ü Dressing of intermediate particles

The s.p. spectrum is modified by U which
represents the average potential “felt” by a
particle due to the presence of the medium



Brueckner-Bethe-Goldstone theory      

Ø Hole-line expansion & the Brueckner-Hartree-Fock approximation

Goldstone expansion in terms of G
Brueckner-Goldstone expansion

Grouping by number of hole lines (c/r0<1)
hole-line or Brueckner-Bethe-Goldstone
expansion. Leading term: two-hole line or
BHF approximation

EBHF = αi K αi
i≤A
∑ +

1
2
Re αiα j G(ω) αiα j

i, j≤A
∑
#

$
%
%

&

'
(
(



Brueckner-Bethe-Goldstone theory      

The convergence of the hole-line expansion depends on the choice of the auxiliary potential U

H. Q. Song et al.,, PRL 81, 1584 (1998)

Ø Standard or Gap Choice

Ø Continuous Choice

UB (k) =

k

k ' G ω = EB (k)+EB ' (k ')( )


k

k '

k '≤kFB '

∑
B '
∑

 

UB (k) =

k

k ' G ω = EB (k)+EB ' (k ')( )


k

k '

k '≤kFB '

∑
B '
∑

 

• k < kF

UB (k) = 0

• k > kF



Self Consistent Green’s Function formalism      

In the Self Consistent Green’s Function (SCGF) approach the energy per particle of nuclear matter is
obtain through the so-called Galitskii-Migdal-Koltum (GMK) sum-rule

E = ν
ρ

d3k
2π( )3

dω
2π

1
2
2k2

2m
+ω

!
"
#

$
%
&
A

k,ω( ) f ω( )

−∞

∞

∫∫

single-particle spectral function Fermi-Dirac distribution

The key quantity of this approach is the one-body spectral function A(k,w) which represents the
probability density of removing from or adding to the system a nucleon with momentum k and energy w.
It gives access to the calculation of all the one-body properties of the system and can be obtained from
the proper or irreducible self-energy

A(

k,ω) = −2 ImΣ(


k,ω)

ω −
2k2

2m
−ReΣ(


k,ω)

#

$
%

&

'
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2

+ ImΣ(

k,ω)#
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Self Consistent Green’s Function formalism      

The computational implemention of the SCGF method requieres:

1. Calculate the effective interaction (T-matrix) describing the in medium scattering of two
nucleons

2. Extract the self energy Σ 𝑘,𝜔 to obtain the one-body propagator 𝐺 𝑘,𝜔 by solving the
Dyson equation which is then inserted in the scattering equation, repeating these steps till a
self-consisten solution is achieved.

In-medium interaction Ladder self-energy Dyson equation Free two-particle propagator

Figures adapted from A. Rios Carbone et al., PRC 88, 054326 (2013)



Variational Approach       

The variational approach to the
nuclear EoS is based on the Ritz-
Raleight variational principle

𝐸 ≤ 𝑚𝑖𝑛
Ψ< ¥𝐻 Ψ<

Ψ< Ψ<
with Ψ< 𝑟+, 𝑟6, ⋯ = ∏-R? 𝑓 𝑟-? Φ 𝑟+, 𝑟6, ⋯

ü Φ 𝑟+, 𝑟6, ⋯ : uncorrelated ground-state wave function properly antisymmetrized and product of all possible pairs 
of particles (i.e., Slater Determinant)  

ü 𝑓 𝑖𝑗 : correlator factors take into account the correlations of the system. Are determined  by means of the Ritz-
Raleight variational principle, i.e. by assuming that the mean value of the Hamiltonian reaches a minimum

S
ST

Ψ< ¥𝐻 Ψ<

Ψ< Ψ<
=0

The main task of the variational method is to find a suitable ansatz for the correlation factors f 



Variational Approach       

Ø For nuclear matter it is necessary to introduce channel-dependent correlation factors. This is
equivalent to assume that the f’s are actually two-body operators J𝐹 which one assumes can be
expanded in the same type of operators of the nucleon-nucleon interaction

k𝐹 =¨
-R?

]
$

𝑓($) 𝑟-? k𝑂-?
($)

Ø Due to the formal structure of the Argonne NN potential, most variational calculations have been
done with this class of interactions supplemented by the Urbana three-nucleon forces.

Ø The best know and most used variational nuclear matter EoS is the one of Akmal, Pandharipande &
Ravenhall (APR) (PRC 85, 1804 (1998))

Ø Other methods based on the variational approach are the Coupled-Cluster theory (Coester NPA 7,
421 (1958)). or the Variational Monte Carlo (VMC) (Wiringa et al., PRC 89, 024305 (2014))



Quantum Monte-Carlo Methods      
² VMC: ² DMC:

² GFMC: ² AFDMC:

i ∂
∂t

Ψ = Ĥ Ψ ⇒−
∂
∂τ

Ψ = Ĥ Ψ

Ψ(τ ) = exp − Ĥ −E0( )Δτ$
%

&
'∏ ΨV

Evaluate energy & other observables using the
Metropolis method

Ô =
Ψ(

Ri ) Ô Ψ(


Ri ) /W (


Ri )

i
∑

Ψ(

Ri ) Ψ(


Ri ) /W (


Ri )

i
∑

Model a diffusion process rewriting the Schoedinger
equation in imaginary time

Sample a trial wave function by evaluating path
integrals of the form

Ψ(τ ) →
n→∞

Ψ0

Rewrite Green’s function in order to change
the quadratic dependence on spin & isospin
operators to a linear one by introducing
Hubbard-Stratonovich auxiliary fields

Carlson et al., PRC 68, 025802 (2003) Gandolfi et al., PRC 79, 054005 (2009)

Wiringa et al., PRC 62, 014001 (2000) Anderson, J. Chem. Phys. 63, 1499 (19755)



A comparison of some ab-initio approaches

M. Baldo, A. Polls, A. Rios, H.-J. Schulze & I.Vidaña, PRC 86, 064001 (2012)

Tensor & spin-orbit and their in-medium treatment are at the heart of most of the 
observed discrepancies

Symmetric nuclear matter Pure neutron matter

Compare different many-body techniques using the same NN interaction (Argonne family) to find the sources of
discrepancies & ultimately determine “systematic error” associated to the nuclear EoS predicted by many-body
theory



Phenomenological 
approaches



Skyrme & Gogny interactions
² Skyrme interactions:

² Gogny interactions:

V̂ (r1,
r2 ) = t0 1+ x0P̂σ( )δ(r12 )+ t12 1+ x1P̂σ( ) k̂ 'δ(r12 )+δ(r12 )k̂ 2!

"
#
$

+t2 1+ x2P̂σ( ) k̂ 'δ(r̂12 )k̂ + t36 1+ x3P̂σ( )ρα (

R12 )δ(r̂12 )

+iW0 σ̂1 + σ̂ 2( ) k̂ ' ×δ(r̂12 )k̂"
#

$
%

Effective zero-range density dependent interaction
Evaluation of the energy density in the HF
approximation yields for nuclear matter a
simple EDF in fractional powers of the
number densities. Many parametrizations
exist

Skyrme, Nucl. Phys. 9, 615 (1959)

V̂ (r1,
r2 ) = exp −

r12
2

µ j
2

"

#
$$

%

&
'' Wj +BjP̂σ −H jP̂τ −M jP̂σ P̂τ( )

j=1,2
∑

+t0 1+ x0P̂σ( )ρα (

R12 )δ(r̂12 )

Effective finite-range density dependent interaction

Due to the finite-range terms the evaluation
of the energy density is numerically more
involved. Less number of parametrizations
in the market

Brink & Boeker, NPA91, 1 (1967)+iW0 σ̂1 + σ̂ 2( ) k̂ ' ×δ(r̂12 )k̂"
#

$
%



Relativistic Mean Field Theory Approach to the nuclear EoS

RMF models are based on effective Lagrangian densities in which the baryon-baryon interactions are
described in terms of meson exchanges. Considering only s, w & r mesons, e.g.,

Hadron contribution

Lepton contribution
(for neutron star matter)



Relativistic Mean Field Theory Approach to the nuclear EoS

The first step is to derive the Euler-Lagrangian equations of motion of the baryon & meson fields

Ø Baryon field equations of motion

Ø Meson field equations of motion



Relativistic Mean Field Theory Approach to the nuclear EoS

The next step is to solve the Euler-Lagrange equations. This is done in the mean field approximation
which consist in rerplacing the meson fields s, w, r by their expectation values <s>, <w> , <r> and the
baryon currents by their ground state expectations generated by the presence of mean meson fields

Ø Baryon field equations of motion

Ø Meson field equations of motion

iγµ∂
µ − gωBγ0 ω0 +

1
2
gρBγ0 ρ03 −mB + gσB σ

#

$%
&

'(
ψB = 0

ω0 =
gωB
mω
2
2JB +1
6π 2 bBkFB

3 ; ω k = 0
B
∑

ρ03 =
gρB
mρ
2 I3B

2JB +1
6π 2 bBkFB

3 ; ρ k3 = 0
B
∑

σ = −bmNgσN
3 σ

2
− cmNgσN

4 σ
3
+

2JB +1
2π 2 gσB

mB − gσB σ

k2 + (mB − gσB σ )2
k2 dk

0

kFB∫
B
∑



Relativistic Mean Field Theory Approach to the nuclear EoS

The EoS (energy density & pressure) can then be obtained from the energy-momentum tensor

T µν =
∂L

∂ ∂µφi( )
∂νφi −η

µνL

whose expectation value in the rest mass frame is diagonal

T µν =

ε 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

!

"

#
#
#
#
#

$

%

&
&
&
&
&

being ε = − L + ψγ0k
0ψ

p = L +
1
3
ψγ ik

iψ



Relativistic Mean Field Theory Approach to the nuclear EoS

Using the Lagrangian density of the present theory, we have

ε =
1
3
bmN g

σN
σ( )

3
+
1
4
cmN g

σN
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4
+
1
2
mσ
2 σ
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+
1
2
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2 ω0
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Ø Energy density

Ø Pressure



Relativistic Mean Field Theory Approach to the nuclear EoS

A final comment on the coupling constants

Ø The nucleon coupling constants gsN, gwN, grN, b & c are constrained by the
empirical values of density r0, energy per particle E/A, incompressibility modulus
K, symmetry energy Esym & effective mass m* at saturation

Ø The hyperon coupling constants gsY, gwY, grY are constrained by: the binding energy
of L hyperon in nuclear matter, hypernuclear levels & compact star properties
(mass)

Assuming that all hyperons in the baryon octet have the same coupling, the hyperon
couplings can be expressed as:

xσ =
gσY
gσN

, xω =
gωY
gωN

, xρ =
gρY
gρN



A comparison of  phenomenological models   
Proliferation of phenomenological models predicting different SM & NM EoS

Skyrme RMF

J. R. Stone et al., PRC 68, 034324 (2003) T. Klahn et al., PRC 74, 035802 (2006)

Few years ago M. Dutra et al., (PRC 90, 055203 (2014)) have analyzed 263 parametrizations of 7 different
types of RMF imposing constraints from SM, PNM & Symmetry Energy and its derivatives. Similar
analysis was done for 240 Skyrme forces by M. Dutra et al., (PRC 85, 035201 (2012)). In both cases a few
number of parametrizations passed the stringent tests imposed



Other phenomenological models       
² Quark Meson Coupling model:

² Barcelona-Catania-Paris-Madrid EDF:

² Other:

Downum et al., Phys. Lett. B 638, 455 (2006)

Closely related with the RMF. Nucleons are considered a bound states of quarks which couple
with mesons in the surrounding medium

EDF constructed by parametrizing BHF results obtained with realistic NN interactions. The
addition of appropiate surface & spin-orbit contributions proves an excellent description of
finite nuclei

Baldo et al., PRC 87, 064305 (2013)

ü Density-dependent separable model (SMO)
ü Three-range Yukawa (M3Y) interactions

Rikovska Stone, PRC 65, 064312 (2002)
Nakada, PRC 68, 014316 (2003)



An excellent monographs on this the nuclear
methods and the nuclear EoS and for interested
readers is:

For further reading

Other interesting reviews are:

Oertel, Hempel, Klahn & Typel, Rev. Mod. Phys. 89, 015007 (2017)

Burgio & Fantina, in “The Physics & Astrophysics of Neutron Stars”,
Springer-Verlag 2018

Burgio, Schulze, I.V. & Wei, Prog. Part. Nucl. Phys. 120, 103879 (2021)
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