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But do not run. Before, let me explain you the last
generalities on neutron stars that I could not
tell you yesterday




Neutron Star Structure:
General Relativity or Newtonian Gravity ?

Surface gravitational potential tell us how
much compact an object is

2GM
2
C'R
=>» Relativistic effects are very important in

Neutron Stars and General Relativity must be
used to describe their structure




The Tolman-Oppenheimer-Volkoff Equations

In 1939 Tolman, Oppenheimer & Volkoff obtain
the equations that describe the structure of a static
star with spherical symmetry in General Relativity

(Chandrasekhar & von Neumann obtained them in
1934 but they did not published their work)
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Stability solutions of the TOV equations

<> The solutions of the TOV equations represent static equilibrium configurations

<> Stability is required with respect to small perturbations
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The role of the Equation of State
The only ingredient needed to solve the com@iit@nts
TOV equations is the (poorly known) EoS ®. @.

(i.e., p(¢)) of dense matter
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The Nuclear EoS

The Nuclear EoS is a fundamental ingredient for the understanding of the
static & dynamical properties of NS, core-collapse SN & compact star

mergers

However, its determination 1is very
challenging due to the wide range of
densities, temperatures &  isospin
asymmetries found in these astrophysical
scenarios.

Main difficulties associated to:

v" Complexity of the bare baryon-baryon
interaction

v" Very complicated resolution of the so-
called nuclear many-body problem
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Baryon-baryon interaction




Few generalities

QCD 1s commonly recognized as the fundamental theory of strong interactions. It is a non-Abelian gauge theory
described by the Lagrangian density

1 —
L= _Zgﬁvggv + Z W (iy# Dy, — mg )Wy
f=u,d,s,c,b,t
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/161
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» The baryon-baryon interaction can, in principle, be completely
determined from the underlying quark-gluon dynamics in QCD S Do Tuckuin Hebidics

04 oe e*e— Annihilation
! o Hadron Collisions

@ ® Heavy Quarkonia

» However, due to the mathematical problems raised by the non-
perturbative character of QCD at low & intermediate energies (in this 03t
energy range the strong coupling constant becomes too large for
perturbative approaches) one is still far from a quantitative understanding
of the baryon-baryon interaction from the QCD point of view

Q)

» This problem is circumvented by introducing simplified models where o1
hadronic degrees of freedom are assumed to be the only relevant ones
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Few generalities

Nowadays, bare baryon-baryon interactions are derived following several approaches

» Phenomenological approaches

* Meson exchange-models
* Potential models

» Chiral effective field theory

» Renormalization group methods

» Lattice QCD calculations

>

In the next we will describe each one of them



Meson-exchange models

» Based on the Yukawa idea
100 - 1SO
“Baryon-baryon interactions are mediated by 3 o
the exchange of mesons” 3 (m.K.nn)
8 Bl s —

* Long-range: pseudoscalar mesons (n,K,1,n’) g &k

¢ Intermediate-range: scalar mesons (o,k,0)

Short-range: vector mesons (p,K*,®,0) q00k (0K ,0,0)
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» Various models differ mainly in the mesonic content & treatment of two meson-exchange
contributions. But all them describe successfully NN scattering phase shift & deuteron
properties

» Some very refined models for NN interaction: Paris, Bonn, Nijmegen potentials

. . . » Machleidt et al., PR. 149, 1 (1987
> YN & YY meson-exchange models: Juelich, Nijmegen potentials S Nusels ol PRD 17, 768 ((1978))



Meson-exchange models

Guided by symmetry principles, simplicity & physical intuition, the most general interaction
Lagrangian densities that couple meson and baryon fields are the following:

e Scalar mesons: Lo =g hpp®

. P : = 5
seudoscalar mesons Ly = gpsllilyslll ¢(ps)

— Tyay 5/ 1 (ps) (pseudovector or gradient coupling suggested as an
Lyv = Gpu ¥V Y Y0P effective coupling by chiral symmetry)

+ Vector mesons: L, = gy o + gebo (0,057 — 0,0 ), o = [y* "]

Y: spin ¥ — baryon fields; ¢, p®9), ¢p(¢v): scalar, pseudoscalar & vector meson fields; g § coupling

constants to be constrained (if possible) by scattering data

These Lagrangian densities are for isoscalar mesons, those for isovector ones are obtained by replacing ¢ — 7. (5



Meson-exchange models

A typical contribution to the baryon-baryon interaction potential P 1 pz
arising from the exchange of a certain meson ¢ is A '
m
g I | ___ >¢_ -1 & T
1 K 2 2
. Uy (p1) g1y, (p1)P¢ﬁ2 (p2)g2Touz (p2) A A
(p102|Ve |p1p2) = PER—
¢ P P
1 2
. Lo meson propagator; Py = 1 for scalar & pseudoscalar mesons; Py = By = —gpy + k:z Izcv for vector mesons
¢

2_m2"
k my

* mg: mass of the exchanged meson
¢ u; & i1;: Dirac spinor & its adjoint (tu = 1,u = ufy?)

« I =1, Ts=iy? L,=y* T;=0", [,,=y>y*d,: Diracstructures of the vertices



Meson-exchange models

In general, when all types of mesons are included the total baryon- " - z (003 |V | )
baryon interaction potential is the sum of all the partial ‘PiP2l¥IPiP2/ = / \P1P2|¥g[P1P2
contributions ¢

Expanding the Dirac spinor in terms of 1/M (M: baryon mass) to lowest order leads to the familiar
non-relativistic expressions of the baryon-baryon potential, which through Fourier transformation give
the configuration version of the potential

—m¢,r

=~

5 3 3
-S+C 1 S1, (T
+Llr, ( + myr + (m¢r)2> 12(7")}

* (’s: numerical factors containig all baryon-baryon-meson couplings & baryon masses

1 1
V(F) =Z{CC +C0‘ 0_')1 ‘0_22 +CL ( + )
¢ ¢ [0} 2

7 Mo (myr)

« L, S: total orbital angular momentum & total spin

e S, (#) =3(6,-1)(0, F)—(6,-0,); T = %; tensor operator



Meson-exchange models

Finally, one has to remember that all baryon-baryon-meson vertices must be modified with the
introduction of a form factor

Two types of form factors are usually employed:
ng
-2 Afl, = m?p
Fg (|k| ) =\ : usually ny takes values 1 (monopole form factor) or 2 (dipole form factor)
A% + |k|
¢
or gaussian

=2

-2
Fy (|k| ) = exp <— %) :in both cases Ay is the so called cut — off mass with values between 1.2 — 2 GeV

e Originally form factors were introduced for purely mathematical reasons, namely to avoid
divergences in the scattering equation. Our present knowledge of the quark substructure of baryons
and mesons provides a physical reason for their introduction

* Meson exchange picture loses its validity in regions where modifications due to the extended
structure of hadrons comes into play



Potential models

» Potential models have a complex structure which is expressed via operator invariants consistent
with the symmetries of strong interactions:

* Translational invariance * Time-reversal invariance
e Galilean invariance * Invariance under the interchange of two baryons
* Rotational invariance * Isospin symmetry

e Space-reflection invariance ¢ Hermiticity

» The most widely known potential models are the Urbana and the Argonne ones where the NN
interaction is given as a sum of several local operators. In the case of the Argonne V18 reads:

ANn=1 ... = - 2 o =g = = 2 2
Py ;) 3 Vi ()07, with O~ = [1,(6: ), 5y, L - S, 1%, 12(6; - ), (L §) | ®[L, (7 7)) ]
ij rl']' =Z ij rij .. W1
p=1 ’

05.:15’""18 = [Tij, (6; - 61)Ti;, Si;Ti; Ty (Tzl, + ‘L'Zj)]: charge symmetry breaking

)@ Wiringa et al., PRC 51, 38 (1995)



Some words on the three-nucleon force

Necessary to:

< Reproduce the spectra of light nuclei

Energy (MeV)

< Obtain proper saturation properties of symmetric nuclear
matter in non-relativistic many-body calculations

-80.
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Chiral Perturbation Expansion
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Epelbaum et al., NPA 747, 363 (2005)



Chiral Perturbation Expansion (LO)

» Leading order (LO) contribution

This contribution consist of one pseudoscalar-meson exchange ) Em—. o
and of four-baryon contact terms each one of them constrained by

SU(3)-flavor symmetry /

The one pseudoscalar-meson exchange term is obtained from the Lagrangian density

_ __ D_ F_
L= <iByMD,i — MoBB +- By*ys|u,, B] + EBy“yS{uw B}>

0 A
v" (---) denote the trace in flavor space —+—= i
() p NN
EO
v' Bisthe SU(3) — flavor irreducible representation of the baryon octet B=| =z -5t



Chiral Perturbation Expansion (LO)
L= <i§y“Dﬂ — M,BB + géy“ys [u,, B] + gf?y“y;,{uwB}>

v" D, is the covariant derivative
v' M, is the octet baryon mass in the chiral limit

v' Fand D are couping constants satisfying F + D = g, = 1.26 (axial-vector strength)

4 (uto d,u’) with (ip>b'
u, = i(u"d,u —ud,u") with u = ex ein
n " i p VZF, g
0
e F,=92.4 MeV the weak pion decay constant n—z + \/lg nt K*
0
* P: SU(3) — flavor irreducible representarion of pseudoscalr meson P=1 = —% +\/lg K°
e OO



Chiral Perturbation Expansion (LO)

The form of the baryon-baryon potentials obtained from the one pseudoscalar-meson exchange LO
contribution is similar to the ones derived from the meson-exchange approach, and in momentum space
read

VEE, = —fy o ofppp 02 4),
102 3P4 |q|2+mps 1P2 3P4

V' fs,B,p, [B,8,p coupling constants of the two vertices

v' m,s mass of the exchanged pseudoscalar meson

v' G transferred momemtum

v’ Ip p,-p,B, is0spin factor



Chiral Perturbation Expansion (LO)

The contribution from the four-body contact interaction can be derived from the following minimal set
of Lagrangian densities

LY = BB, (I;B),(TiB)y) ,  L? = C(By(T;B)Bp(T;B)y), L3 = C2(By(;B)y){By(I;B)})

Here: v" The labels a and b are the Dirac indices of the particles

v" T; denote the five elements of the Cliffod algebra (usually 3 x 3 matrices in the flavor space)

=1 T,=y% Ty=0d*, T,=y*5% Ti=y°

v C},C?% C3: low — energy constants (LEC). At LO there are 6 independent LEC

[ A A )

- - CEB and CE® linear combination
VBB — CBB 4 CBB(g, - &) ¢ s
LO C S 1 2

LO contact potential of the 6 independent LEC



Chiral Perturbation Expansion (NLO)

> Next-to-leading-order (NLO) contribution

* (Contact terms contribution

- - . CS - - - ==
Vo = C1q% + Cok? + (C3q® + C4k?) (8, - d5) + l7(01 + Uz)(qu)
+Co(q - )G - 32) + C7(k - 81) (K - 8,) + C5(F1 — 62)(qxk)

* Expressions for two-pseudoscalar meson exchange are rather cumbersome



Chiral Perturbation Expansion

A final comment:

The baryon-baryon potentials constructed in this way are then inserted in the
Lippmann-Schwinger equation which is regularized with a cut-off function of the

type

4 14
, p*+p
F(p,p") = exp (— e >

in order to remove high-energy components of the baryon and pseudoscalar meson
fields. The cut-off A is usually taken in the range 450-700 MeV



Renormalization Group Method

» The presence of a short-range hard core of the nucleon-nucleon

interaction V makes any perturbation expansion in terms of V
meaningless

» A possible way to soften it consists in integrating out all the

momenta q larger than a certain cut-off A obtaining in this way

an effective interaction V,,, ; that is equivalent to the original
one for momenta q < A

This results in a modified Lippmann-Schwinger equation with a
cut-off dependent effective potential V,,,

A
, ) 2 View k(K @)T(q, k: Ey)
T(k;k:Ek)=Vlowk(krk)+gpquq2 kz—q2+in
0

'g Bogner et al., Phys. Rep. 386, 1 (2003)
o=

S-wave

r~05fm

48



Renormalization Group Method

dr (k' k:Ey)

» By demanding ”

dVlow k(k,: k) _ E Vlow k(k,: k)T(A' k, AZ)
= 2
dA T 1 — k /A2

» Integrating this flow equation one obtains a “universal” nucleon-
nucleon low-momentum potential V,,,, ; that is:

v phase shift equivalent
v energy independent
v softer (no hard core)
v" hermitian

» Having a much softer core the V,,, ; potential can be used in
perturbation expansions and nuclear structure calculations in a

more efficient way

» The method has been applied also to the hyperon-nucleon case.
The results seem to indicate a similar convergence to a
“universal” softer low-momentum hyperon-nucleon interaction

= 0 one obtains a Renormalization Group equation for V,,,,

v, (k,K) [fm]
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» The key idea behind lattice QCD is to replace the infinite four-

Baryon-baryon interactions from Lattice QCD

dimensional space-time continuum with a finite hypercubic | u ;

lattice

Quark fields are defined on the lattice sites : Py (X )1

Gluon fields live on the links ) L U :5‘”—‘:‘

The quantum field theory is mapped into a classical statistical system

Computer simulations use methods analogous to those of statistical mechanics to
calculate correlation functions of hadronic operators & matrix elements of any
operator between hadronic states in terms of fundamental quark and gluon degrees
of freedom

Extremely expensive from a numerical point of view

» A big progress has been made by the NPLQCD & the HALQCD collaborations to derive baryon-
baryon interactions from lattice QCD




Baryon-baryon interactions from Lattice QCD

NPLQCD & the HALQCD strategies

> NPLQCD

Combines calculations of correlation functions of two-baryon systems at
several light-quark-mass values with low-energy effective field theory to
extract scattering phase-shifts

> HALQCD

* Determine the Nambu-Bethe-Salpeter wave function on the lattice

Per) = (OIN((x +1,0)N(x,0)|6q, E}, N(x) = £45:q*(x)q" (x)q° (x)

* Define alocal potential U(x, y) from @g

thZ
[E - 2 ] PEx) = J d3yU(x, Y)Pe(y) Ulx,y) = V(x,V)8 (x — y)

V(x,V) = V.(x) + Vp(2)S1s + Vig(X)L - S + {Vp, V2} + -

* Calculate observables (phase shifts, binding energies, ...)

k* cot 67 [Lu]

k* cot 619 [Lu]

Vo(r) (MeV)
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!

* kg[l.u]
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Theoretical approaches
to the nuclear EoS




Approaches to the Nuclear EoS: “Story of Two Philosophies”

Ab-initio Approaches

Based on two- & three-nucleon realistic
interactions which reproduce scattering
data & the deuteron properties. The EoS is
obtained by “solving” the complicated
many-body problem

< Brueckner-Bethe-Goldstone theory

< Self Consistent Green’s Function formalism

<> Variational Approach

< Quantum Monte Carlo Methods

Phenomenological Approaches

Based  on effective density-dependent
interactions with parameters adjusted to
reproduce nuclear observables & compact star
properties.

< Non-relativistic approaches: Skyrme & Gogny
< Relativistic Mean Field Theory
< Others: QMC, BCPM



Ab-initio approaches




Difficulties of ab-initio approaches

< Different NN potentials in the market ...

but all are phase-shift equivalent

Short any
perturbation expansion in terms of V

range repulsion makes

meaningless. Different ways of treating
short range correlations

Complicated channel & operatorial

structure  (central, spin-spin, spin-

1sospin, tensor, spin-orbit, ...)
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Brueckner-Bethe-Goldstone theory

Consider a system of A fermions described by the hamiltonian

A A
H=EK,-+EVU ‘ Ground State H‘I/J>=E‘I/J>
i=1

i<j

UNSOLVABLE because of the short-range hard core of BB interaction

» Idea: introduce an auxiliary single-particle potential U;

£ A A E=E,+AE
H = K +U)# >YV.->»U.
Z( ) g : Z Ho‘¢o>=Eo‘¢o>

v

HO
unperturbed perturbation

AE === perturbation theory



Brueckner-Bethe-Goldstone theory

1—|D )P
Perturbation theory ——  AE = (®,|H;|®,) + <<Do H, E(l) _OZO ol p, CD0> +
_ o 1 — D)D)

» The correlated wave function W & the uncorrelated one @ satisfy: |¥) = |®,) + T H{|¥)

o~ g

(Do|¥)

» Goldstone (Proc. Roy. Soc. A 293,267 (1957)) showed : Dy %3 Do ol

0, ){(0 UV W U WL
AE <¢O|H E | 0>< O| |¢O> Brdordcr

(®,|H,|¥) factorizes into the product of (®,|¥) & a quantity that

contains only linked diagrams

ldstone Expansion
(e.g., those which cannot be separated in two pieces by a vertical cut without crossing a line) Goldstone pansio



Brueckner-Bethe-Goldstone theory

» The Goldstone expansion provides a simple & explicit prescription for calculating every
order of perturbation theory

» However, it cannot be used in its present form for nuclear matter calculations because the
short-range repulsion of the BB interaction makes all matrix elements very large and the
perturbation series does not converge

» The solution is provided by the Brueckner theory in which the perturbation expansion in
terms of the bare potential is replaced by another on in terms of the so-called Brueckner’s
reaction matrix. All the terms in this new perturbation series (Brueckner-Goldstone
expansion) are finite and of reasonable size.



Brueckner-Bethe-Goldstone theory

The Brueckner’s reaction matrix (or G-matrix) is obatined by performing a partial (infinite) summation
of the set of particle-particle ladder diagrams

/ 1
X . 1 [ 1] Am nd J s b nd‘ : ) ;
Losis s o] | | ] ‘i ‘I ! massnnnn R :
( T||Illlll{ \ + i ?k l{ ? 4 ' Bessssey ]' + " ‘p q‘ ? R — & nwv 3
~ et I| | - \ ‘l k1] | | messsses | = -
'." “‘| I". "," ‘;“ “,' \ ‘ k l \ “,‘
SAnnnnnnnaned AL R R LS RLLEET R L

which defines the so-called Bethe-Goldstone equation

G=viv—2 yyv_ 2 y_ 2 y,.
w-H,+in w-H,+in w-H,+in

Q

w-H,+i

= V+V



Brueckner-Bethe-Goldstone theory

Then:

G=V+V O —G
w-H,+in

Note that the Bethe-Goldstone equation i1s formally identical to the Lippmann-Schwinger
equation describing the scattering of two particles in free space

T=V+V ! T

w-K+in

mmmmm)  “The G-matrix describes the scattering of two particles in the
presence of a surrounding medium”



Brueckner-Bethe-Goldstone theory

» Medium Effects

v" Pauli blocking of intermediate states

The Pauli operator Q prevents the scattering
to any occupied state, limiting the phase
space of intermediate states

v" Dressing of intermediate particles

The s.p. spectrum is modified by U which
represents the average potential “felt” by a
particle due to the presence of the medium




Brueckner-Bethe-Goldstone theory

» Hole-line expansion & the Brueckner-Hartree-Fock approximation

A v a v '\.;\/\4 ........
NN | NN\ NN\
Goldstone expansion in terms of G TSRO 1Y s 1Y Ao
mm) Brueckner-Goldstone expansion A shde s
A2 NN \YAY 2,
i ] . " U L RA
) Pirq P q
Grouping by number of hole lines (c/ry<l) |
hole-llr}e or Bmeckner-Bethe-Golc}stone E,. =E<O‘i K 05,->+5Re E <Ot,-06,~‘G(a)) 05,0!,-)]
expansion. Leading term: two-hole line or i=A irjsA

BHF approximation



Brueckner-Bethe-Goldstone theory

The convergence of the hole-line expansion depends on the choice of the auxiliary potential U

E/A [MeV]

0
continuous choice
=R - - -~ standard choice
-10 + )
R R --° o
L]
s . *
-15 a
A g
-20
_25 L A1 A1
0.05 0.15 0.25 0.35
p [fm ]

S H QSongetal.,, PRLSI, 1584 (1998)
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» Standard or Gap Choice

* k<kg
U=> > <1€1}"|G(w=EB(k)+EB,(k'))|1€1€'>

B' k'skg,

o k>ks

U,(k)=0
> Continuous Choice

U=, 3 (Be'[G(= E, (k) + E, () |f&")

B' k'skpg,



Self Consistent Green’s Function formalism

In the Self Consistent Green’s Function (SCGF) approach the energy per particle of nuclear matter is
obtain through the so-called Galitskii-Migdal-Koltum (GMK) sum-rule

E=%f d’k }dwl{hzszrw}A(E,w)f(w)

aY L2m 2| 2m
0 N

single-particle spectral function Fermi-Dirac distribution

The key quantity of this approach is the one-body spectral function A(k,w) which represents the
probability density of removing from or adding to the system a nucleon with momentum k and energy o.
It gives access to the calculation of all the one-body properties of the system and can be obtained from

the proper or irreducible self-energy a4

AR )= ) | 2

hk*
2m

) —

~ReX(k ,w)r +|Im 2(k ,w)]2




Self Consistent Green’s Function formalism

The computational implemention of the SCGF method requieres:

1. Calculate the effective interaction (T-matrix) describing the in medium scattering of two
nucleons

2. Extract the self energy Z(k, w) to obtain the one-body propagator G (k, w) by solving the
Dyson equation which is then inserted in the scattering equation, repeating these steps till a
self-consisten solution is achieved.

In-medium interaction Ladder self-energy Dyson equation Free two-particle propagator

A M aiad  ERE #”{%9 = H
N— A

Figures adapted from A. Rios g Carbone et al., PRC 88, 054326 (2013)




Variational Approach

The wvariational approach to the .
PP Yo A |Yr)

nuclear EoS is based on the Ritz- < mi {<—} ith W =T f(r..) P
Raleight variational principle E = min (Pr|¥r) with Wr(ry, 1z, ) = i £ (1ij) @Cry, 72, +)

v' ®(ry, 1y, ): uncorrelated ground-state wave function properly antisymmetrized and product of all possible pairs
of particles (i.e., Slater Determinant)

v" f(ij ): correlator factors take into account the correlations of the system. Are determined by means of the Ritz-
Raleight variational principle, i.e. by assuming that the mean value of the Hamiltonian reaches a minimum

5 ((LPT|ﬁ|LpT>) —0

sr \ (Pr|¥r)

=% The main task of the variational method is to find a suitable ansatz for the correlation factors f



Variational Approach

» For nuclear matter it is necessary to introduce channel-dependent correlation factors. This is

equivalent to assume that the f’s are actually two-body operators £ which one assumes can be
expanded in the same type of operators of the nucleon-nucleon interaction

F=| ] r®)oY

i<j p

» Due to the formal structure of the Argonne NN potential, most variational calculations have been
done with this class of interactions supplemented by the Urbana three-nucleon forces.

» The best know and most used variational nuclear matter EoS is the one of Akmal, Pandharipande &
Ravenhall (APR) (PRC 85, 1804 (1998))

» Other methods based on the variational approach are the Coupled-Cluster theory (Coester NPA 7,
421 (1958)). or the Variational Monte Carlo (VMC) (Wiringa et al., PRC 89, 024305 (2014))



Quantum Monte-Carlo Methods

<> VMC:

Evaluate energy & other observables using the
Metropolis method

S {WR)|O|WR))/W(R)

<0>= lz<lp(1§i)|lp(1§i)>/W(ﬁi)

1

§ Wiringa et al., PRC 62, 014001 (2000)

< GFMC:

Sample a trial wave function by evaluating path
integrals of the form

W)= Texp|-(A-E,)ar|w,)
P(@) = [%0)

n—>00

/g Carlson et al., PRC 68, 025802 (2003)

< DMC:

Model a diffusion process rewriting the Schoedinger
equation in imaginary time

a A a A
—|W)y=H|W -——|W)=H|¥
2 w)=Ajwy= - Ly = Aw)

)g Anderson, J. Chem. Phys. 63, 1499 (19755)

< AFDMC:

Rewrite Green’s function in order to change
the quadratic dependence on spin & isospin
operators to a linear one by introducing
Hubbard-Stratonovich auxiliary fields

g Gandolfi et al., PRC 79, 054005 (2009)



A comparison of some ab-initio approaches

Compare different many-body techniques using the same NN interaction (Argonne family) to find the sources of
discrepancies & ultimately determine “systematic error” associated to the nuclear EoS predicted by many-body
theory

Symmetric nuclear matter Pure neutron matter
o T 71T [T T T T ° G ———TTT— 60
-10 |+
= 20~ -
o ! >
2 30} 2 1
< I \ . =~ <
2 40 \ = k o <
50 \ R | |
60— L Al 5 NG PR IR I R 30 ol [T [ P | T P o it 0
oFrT T ] [T r T 60— T T T T T T 60
v v s ® BHF
STy L S - \A I = scGF Vis
o) ] 110 ? 2 Reomc
10 - — A 4 L & aF -
B o sl 1 ?,40 / v BBG 0
Z .15 < H1 F H4-15 = // p | » oMe
3 L LR o BHE i <
= 20 " -1 [ = SscGk —1-20 n - | 20
3 3- . * FHNC : 2
25+ & - | & armc — 25
L ‘1 V(,(?I{F)l o BEES L peia] I
-30 — : : ‘ : . . * : — 30 P I I T P I I PR
. °~2[ﬁn%]3 04 050 01 0‘2[f 0,]3 04 05 %01 02 03 04 050 0l 02 03 04 08
m -3 -3,
P P p [fm’] p [fm”]

Tensor & spin-orbit and their in-medium treatment are at the heart of most of the
observed discrepancies

M. Baldo, A. Polls, A. Rios, H.-J. Schulze & I.Vidana, PRC 86, 064001 (2012)




nenomenological
oproaches




Skyrme & Gogny interactions

<> Skyrme interactions:

Effective zero-range density dependent interaction
VG5 =1, (1+x,P )5(1’12)+ (1438, )[R 8(G,) + 8, )k’ |
sty (14 5,P, )k 8(F, )k + 2 (1+x3 )0 (Ri)S(E,)

+iW, (6, + 62)[k' x 6(ﬁ2)k]

< Gogny interactions:

Effective finite-range density dependent interaction

2
14 A A A A
—1—22)(Wj +B,P, ~H P, - M,P,P,)

J

V(EB)= > exp

Jj=1,2

+ (1+x0 ) “(R,)8(%,)

+iW, (6, +62)[12' xa(fu)lé]

—)

Evaluation of the energy density in the HF
approximation yields for nuclear matter a
simple EDF in fractional powers of the
number densities. Many parametrizations
exist

)g Skyrme, Nucl. Phys. 9, 615 (1959)

Due to the finite-range terms the evaluation
of the energy density is numerically more
involved. Less number of parametrizations
in the market

,@ Brink & Boeker, NPA 91, 1 (1967)



Relativistic Mean Field Theory Approach to the nuclear EoS

RMF models are based on effective Lagrangian densities in which the baryon-baryon interactions are
described in terms of meson exchanges. Considering only o, ® & p mesons, €.g.,

L= E%(ma" =My + 8,30 = 857, 0" = %&whf' f’“)% i
%(é‘ 0d“o - m o )— iwww“ " %miw#w“ — Hadron contribution
<P P D, B = b (8,40 — (80 )
ZU_’ (’7# )‘/’?- (fcieﬁéﬁﬁiﬁiiif lﬁﬁr)
®,, =0,0,-0,0,; P, =08,0,-0,p,

B=npAX 2035 5% A=e,u



Relativistic Mean Field Theory Approach to the nuclear EoS

The first step is to derive the Euler-Lagrangian equations of motion of the baryon & meson fields

» Baryon field equations of motion

. 1 . .
[7,,(“9“ ] ngw“ - Engt ) P”) —(mB —goBo)} Yy =0

» Meson field equations of motion
(avav + m§ )0 = E&mﬁg%
B
(ava" L mi )wu g ayaku = ngBJBYuwB
B

(avav + m;)pL - 3#07Vpi = 28,)3@)'# B
B



Relativistic Mean Field Theory Approach to the nuclear EoS

The next step is to solve the Euler-Lagrange equations. This is done in the mean field approximation
which consist in rerplacing the meson fields G, ®, p by their expectation values <>, <>, <p> and the
baryon currents by their ground state expectations generated by the presence of mean meson fields

» Baryon field equations of motion
iy 9" ! 0 =0
.9 —8u8Y0 <w0>+§gp33/0 <p >_m3 *+ 855 <O> Yy =

» Meson field equations of motion

s o2, +1 by My —8,p(0) )
0)=-bm, g, (o) —cmygt (o) + S8 g £_oob k* dk
(op=rtmonlo) om0+ 2 ) e o

(@)= Ei[f = +1bk3' (w,)=0

2J,+1
<p03> E(ZB 3B 6151-: kai“B; <pk3>=0
o




Relativistic Mean Field Theory Approach to the nuclear EoS

The EoS (energy density & pressure) can then be obtained from the energy-momentum tensor

_ oL
3(9,9:)

T av¢i - UWL

whose expectation value in the rest mass frame is diagonal

e 0 0 O
|0 P 00
00 p O
00 0 p
being €= _<L> + <1$)/0k01/1>

p=(L)+ (kv



Relativistic Mean Field Theory Approach to the nuclear EoS

Using the Lagrangian density of the present theory, we have

» Energy density

1 1 1 1 1
6=§me(goN<0>)3+ZcmN(gaN<0>)4+—mf,<O>2 b (o,) + 2 m (o)’

2" +1 kFB\/kz +(my +8,,(0)) kzdk+2 f”mzdk

B

> Pressure

1 1 1 1 1
p==3bmy (8, () = gemu(8 (@) =3mi (o) + T o) 2 m (o)

fkm k4dk

1925+ ph k'dk 1o 1
S oy 32 e



Relativistic Mean Field Theory Approach to the nuclear EoS

A final comment on the coupling constants

» The nucleon coupling constants ggn, gun, gon, b & ¢ are constrained by the
empirical values of density py, energy per particle E/A, incompressibility modulus
K, symmetry energy Eq, & effective mass m” at saturation

» The hyperon coupling constants ggy, g,y, goy are constrained by: the binding energy
of A hyperon in nuclear matter, hypernuclear levels & compact star properties
(mass)

Assuming that all hyperons in the baryon octet have the same coupling, the hyperon
couplings can be expressed as:

8 py
¥ =goY, ¥ =ng’ x, =22

o w

goN ng gpN



A comparison of phenomenological models
Proliferation of phenomenological models predicting different SM & NM EoS

Skyrme RMF
80 ! J L A : i TRl B T RN S P B R T T
SkO () bt 400 | B + ~
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60 | ceociill ) L MSK7 (lIl) i 7 it cec NLps |
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n [fm*] n [fm® ] n [fm*] 3 3 3
n [fm 7] n [fm’] n [fm’)]
g J. R. Stone et al., PRC 68, 034324 (2003) g T. Klahn et al., PRC 74, 035802 (2006)

Few years ago M. Dutra et al., (PRC 90, 055203 (2014)) have analyzed 263 parametrizations of 7 different
types of RMF imposing constraints from SM, PNM & Symmetry Energy and its derivatives. Similar
analysis was done for 240 Skyrme forces by M. Dutra et al., (PRC 85, 035201 (2012)). In both cases a few
number of parametrizations passed the stringent tests imposed



Other phenomenological models
< Quark Meson Coupling model:

Closely related with the RMF. Nucleons are considered a bound states of quarks which couple
with mesons in the surrounding medium

)g Downum et al., Phys. Lett. B 638, 455 (2006)

<> Barcelona-Catania-Paris-Madrid EDF:

EDF constructed by parametrizing BHF results obtained with realistic NN interactions. The
addition of appropiate surface & spin-orbit contributions proves an excellent description of
finite nuclei

ﬁ Baldo et al., PRC 87, 064305 (2013)

< Other:

v" Density-dependent separable model (SMO)  Rikovska Stone, PRC 65, 064312 (2002)

_ , ¥ Nakada, PRC 68, 014316 (2003)
v" Three-range Yukawa (M3Y) interactions



For further reading

An excellent monographs on this the nuclear

methods and the nuclear EoS and for interested
readers is:

NUCLEAR METHODS AND . , .
THE NUCLEAR EQUATION Other interesting reviews are:
OF STATE

g Oertel, Hempel, Klahn & Typel, Rev. Mod. Phys. 89, 015007 (2017)

Edited by

9 Burgio & Fantina, in “The Physics & Astrophysics of Neutron Stars”,
Marcello Baldo = .
Springer-Verlag 2018

/g Burgio, Schulze, 1.V. & Wei, Prog. Part. Nucl. Phys. 120, 103879 (2021)

World Scientific
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