ATLAS results on rare top quark processes

CERN LHC Seminar 29.03.2022

Johannes Erdmann TU Dortmund University

on behalf of the ATLAS Collaboration

Single-Top+Photon Production

Outline

What's In Common / Different ?

Common Points

- Full Run-2 data
- Single-lepton triggers (except ττ)
- Search for rare processes
 - → Background suppression using machine learning
 - → Background validation using data in background-enriched regions
- Statistical uncertainties matter

Differences

- Final state
- Machine-learning classifier
- Background estimation techniques
- SM process (top+photon) vs.

BSM process (FCNC)

• Statistics vs. Systematics

Search for single-top+y production

• Tops mainly produced in pairs

Single top via EW production

top quark

1995

The Quest for Rare Top Processes

• Single top + photon not observed, yet

- Evidence by CMS with 36 fb⁻¹ 1808.02913
- Top+γ/Z probes electroweak vertex

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{\sum_{i} C_{i} \mathcal{O}_{i}}{\Lambda^{2}} + \dots$$

- tqγ sensitive to top EW coupling
- $\sigma_{tq\gamma} \times \mathcal{B}(t \rightarrow \ell \nu b) = 406^{+25}_{-32} \text{ fb}$ (NLO QCD, 4FNS, scale: $\frac{1}{2} \sum_{i} \sqrt{m_i^2 + p_T_i^2}$)
- Ratio of "tq γ " and "t $\rightarrow \ell \nu b \gamma$ " is ~ 4:1

How Rare Is it?

ATLAS-CONF-2022-013

• Fiducial phase space at parton level: $p_T(\gamma) > 20$ GeV, $|\eta_\ell| < 2.5$, $\Delta R(\gamma, X) > 0.4$

Event selection

- One central γ with $p_T > 20$ GeV
- One central e/μ with $p_T > 27$ GeV
- One **b-tagged jet** with p_T > 25 GeV + no additional jet with loose b-tag

≥lfj SR

• E-miss > 30 GeV

Ofj SR

- m(eγ) outside 80-100 GeV
- Forward jet $(2.5 < |\eta| < 4.5)$?

Event Selection

8

	Process	0fj SR	≥lfj SR	Background Strategy
	Signal	5%	10%	
ſ	ttγ	29%	34%	data control region with 1 tight + 1 loose b-tag
	Wγ+jets	20%	12%	data control region with 1 loose b-tag
	$e \rightarrow \gamma$ fakes (mostly dileptonic tt)	24%	25%	data-MC scale factors (Z→e+fake)
	$h \rightarrow \gamma$ fakes (mostly lepton+jets tt) —	7%	7%	data-MC scale factors (ABCD)
	Additional backgrounds with real γ	15%	12%	MC + matrix method for lepton fakes
e	⁺ e ⁻ and eγ events close to	0.07 0.06 0.05 0.04 0.03 0.02		 Signal/control region selection
С	orrect MC in bins of phot		70 80 90 100 110 12 m	with reverted photon criteria
ar	nd separately for the differ	rent		 In bins of η, two bins of photon photon
\mathbf{V}	$\rightarrow e^+e^-$ reconstruction tv	DAC		and for converted/unconverted v

- e e reconstruction types

- Shapes of input variables well modeled in data

• NNs trained in SRs with 12/15 inputs based on final-state kinematics and b-tag properties

0

Background Prediction

- Profile-likelihood fit to SRs and CRs
- NN output in SRs and $tr\gamma$ CR, total yield in W γ CR $\frac{y}{w}_{\mu}$
- ~21,000 / ~46,000 events in the SRs

	≥ 1fj SR	Ofj SR	$t\bar{t}\gamma$ CR
$tq\gamma$	2390 ± 260	2480 ± 320	890 ± 120
$t (\rightarrow \ell \nu b \gamma) q$	360 ± 150	460 ± 240	120 ± 50
$t\bar{t}\gamma$ (production)	3100 ± 400	4800 ± 700	4300 ± 600
$t\bar{t}\gamma$ (radiative decay)	3800 ± 600	9300 ± 1400	5700 ± 600
$W\gamma$ +jets	2500 ± 400	9300 ± 1300	1050 ± 190
$Z\gamma$ +jets	990 ± 310	2800 ± 800	440 ± 150
$e \rightarrow \gamma$ fake photons	5200 ± 500	10300 ± 800	4800 ± 400
$h \rightarrow \gamma$ fake photons	1100 ± 400	2700 ± 800	1300 ± 500
Other prompt γ	1360 ± 350	2600 ± 900	1400 ± 400
Fake leptons	350 ± 170	900 ± 400	100 ± 50
Total	21250 ± 150	45720 ± 240	20180 ± 140
Data	21 227	45 723	20 194

- Statistical uncertainty: 3.3%
- Not a single culprit
- Main systematics from background model
 - $t\bar{t}\gamma$ and $t\bar{t}$
- Uncertainties from limited MC statistics
 - A major challenge for tt production
- Fake uncertainties are small in compariso

Uncertainties

ATLAS-CONF-2022-013

		Uncertainty	$\Delta\sigma/\sigma$
		<i>ttγ</i> modelling	±5.6%
		Background MC statistics	±3.5%
		<i>tt</i> modelling	±3.4%
		tay MC statistics	±3.4%
		$t (\rightarrow \ell \nu b \gamma) q$ modelling	±1.9%
		Additional background uncertainties	±1.9%
lling		$tq\gamma$ modelling	±1.8%
iiiig		$t (\rightarrow \ell \nu b \gamma) q$ MC statistics	±0.3%
		Lepton fakes	±2.2%
		$h \rightarrow \gamma$ photon fakes	±2.2%
		$e \rightarrow \gamma$ photon fakes	±0.6%
		Luminosity	±2.2%
		Pileup	±1.2%
		Jets and $E_{\rm T}^{\rm miss}$	±4.0%
		Photons	$\pm 2.5\%$
		Leptons	$\pm 0.9\%$
n		<i>b</i> -tagging	±0.8%
		Total systematic uncertainty	±10.9%

12

Observation

tqy production clearly visible on top of the background

• Significance: 9.1 σ observed / 6.7 σ expected

13

) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 NN_{out} **NN**_{out} ons ATLAS-CONF-2022-013

- Parton-level fiducial cross section \rightarrow compare to fixed-order SM and EFT tq γ $\sigma_{tq\gamma} \times \mathcal{B}(t \rightarrow \ell \nu b) = 580 \pm 19 \text{ (stat.)} \pm 63 \text{ (syst.) fb}$
 - ~40% higher than the prediction: 406^{+25}_{-32} fb
- Particle-level fiducial cross section \rightarrow minimal extrapolation of tq γ and t $\rightarrow \ell \nu b \gamma$

$$\sigma_{tq\gamma} \times \mathcal{B}\left(t \to \ell \nu b\right) + \sigma_{t(\to \ell \nu b\gamma)}$$

- ~equally high compared to prediction: 207^{+26}_{-11} fb
- Compatibility: $2.5\sigma / 1.9\sigma$ at parton/particle level

- $v_{\nu}a = 287 \pm 8 (stat.) \pm 31(syst.) fb$

tH? tttt? ttt?

J 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 **NN**_{out}

J 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 **NN**_{out}

) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 NN_{out} **NN**_{out} ons ATLAS-CONF-2022-013

- Parton-level fiducial cross section \rightarrow compare to fixed-order SM and EFT tq γ $\sigma_{tq\gamma} \times \mathcal{B}(t \rightarrow \ell \nu b) = 580 \pm 19 \text{ (stat.)} \pm 63 \text{ (syst.) fb}$
 - ~40% higher than the prediction: 406^{+25}_{-32} fb
- Particle-level fiducial cross section \rightarrow minimal extrapolation of tq γ and t $\rightarrow \ell \nu b \gamma$

$$\sigma_{tq\gamma} \times \mathcal{B}\left(t \to \ell \nu b\right) + \sigma_{t(\to \ell \nu b\gamma)}$$

- ~equally high compared to prediction: 207^{+26}_{-11} fb
- Compatibility: $2.5\sigma / 1.9\sigma$ at parton/particle level

- $v_{\nu}a = 287 \pm 8 (stat.) \pm 31(syst.) fb$

tH? tttt? ttt?

News on top-quark FCNC

Top Quark FCNCs

- FCNC in the SM only at loop level
- Highly suppressed due to GIM

<u>hep-ph/0409342</u>	SM BR (u)	SM BR (c)
$t \rightarrow \gamma + u/c$	4 x 10 ⁻¹⁶	5 x 10 ⁻¹⁴
$t \rightarrow Z + u/c$	8 x 10 ⁻¹⁷	I x 10-14
t → H + u/c	2 x 10 ⁻¹⁷	3 x 10 ⁻¹⁵
$t \rightarrow g + u/c$	4 x 10 ⁻¹⁴	5 x 10-12

- BR also suppressed by large $\Gamma(t \rightarrow Wb)$

Any observation of top FCNC = BSM physics !

• Mild constraints from flavour/EW precision (e.g. BR(t \rightarrow cH) < 5-7 x 10⁻⁴ from D mixing) BR(t \rightarrow cH) < 2 x 10⁻³ from Z \rightarrow cc) H. Hesari et al., 1508.07579

Top FCNCs in BSM Theories

- Top FCNC searches = searches for a highly suppressed experimental signature
- Comprehensive survey of enhancements in BSM theories done in J.A.Aguilar-Saavedra, hep-ph/0409342
 - Models that break 3x3 CKM unitarity (quark singlet)
 - Models with flavour-changing charged bosons (2HDM)
 - Models with baryon number violation (RPV SUSY)

- A couple examples of post-Higgs-discovery works:
 - MSSM + B-L symmetry J.-L. Yang et al., 1806.01476 BR(cg) ~10⁻⁶, BR(c γ) ~10⁻⁷, BR(cZ) ~10⁻⁷ Extended mirror fermion model BR(cZ) ~10⁻⁶-10⁻⁸, BR(c γ) ~10⁻⁷-10⁻⁹ <u>P.Q. Hung et al., 1709.01690</u> • Composite Higgs BR(cZ) ~10⁻⁵ and similar for BR(cH) A.Azatov et al., 1408.4525

•

<u>J. M. Yang et al., hep-ph/9705341</u>

FCNC Decay and Production

• FCNC vertex \rightarrow FCNC top decay in $t\bar{t}$ — characterized by BR(t \rightarrow q+boson)

• EFT Wilson coefficients link BR and σ

 \rightarrow FCNC single-top production — characterized by $\sigma_{t+boson}$

Boson	Best Limit on the BR (95% CL)			
γ	ATLAS 81 fb ⁻¹ , focus on $\sigma_{t+boson}$	~0.3 x 10 ⁻⁴ (up)	~2 x 10-4 (cha	
Z	ATLAS 36 fb ⁻¹ , focus on BR	~2 x 10-4 (up)	~2 x 10 ⁻⁴ (cha	
Higgs	CMS I 37 fb⁻¹, H→γγ	~2 x 10-4 (up)	~7 x 10-4 (cha	
gluon	CMS Run-I, top+jet production	~0.2 x 10-4 (up)	~4 x 10-4 (cha	

- Optimize for FCNC production & decay
- Final state similar to SM tqy process
 - \rightarrow same basic selection without forward-jet split
 - → same techniques for background estimates $(t\bar{t}\gamma \& W\gamma + jets CRs and fake estimates)$

FCNC y — Analysis Strategy

FCNC y — Multiclass Neural Network

- Deep NN (6 hidden layers)
- 37 input variables:

final-state kinematics, photon conversion

• 3 output nodes with values:

 $y_{\rm bkg}$ $y_{\rm prod}$ $y_{\rm dec}$

Signal outputs combined in 'likelihood ratio'

$$\mathcal{D} = \ln \frac{a \cdot y_{\text{prod}} + (1 - a) \cdot y_{\text{dec}}}{y_{\text{bkg}}}$$

- Separate networks for up & charm
- Multiclass approach ~30% better than optimized binary classifier

ATLAS-CONF-2022-003

NN output

FCNC y — Data vs Prediction

• Profile-likelihood fit \rightarrow Background model in agreement with the data

ATLAS-CONF-2022-003

- Limits at 95% CL
 - on Wilson coefficients for dim-6 operators
 - interpreted as BR limits

- Statistical uncertainties dominate
 - All systematics together worsen limits by ~20% (tuγ) or ~40% (tcγ)

- Factor 3.2 6.5 more sensitive than 81 fb⁻¹ analysis
 - Reason: adding events with more than one jet

FCNC y — Results

- Event selection:
 - $Z \rightarrow \ell \ell$ with $\ell = e, \mu$
 - 3 isolated ℓ with $p_T > 27 / 15 / 15$ GeV and $m_{\ell\ell} \sim m_Z$
 - I b-jet
 - Target FCNC decay or production?

- additional jet • >
- Reconstruct FCNC and SM decays

SRI

- m_T(*V*
- Reconstruct SM decay
- 0 or I additional jets (then veto SRI events)

FCNC Z — Analysis Strategy

FCNC Z — Event Reconstruction and BDTs

• χ2 minimization to • select light jet j_a (only for FCNC decay) • fit $p_z(V)$ 140 ATLAS Preliminary • Data $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} = t\bar{t}Z + tWZ$ • **SRI**: $|m_{j_a\ell\ell}^{\text{reco}} - m_t| < 2\sigma_{t_{\text{FCNC}}}$ 120 – SR1, Pre-Fit --- FCNC (u)tZ \times 5 - FCNC $t\bar{t}(uZ) \times 5$ 100 • SR2: $|m_{j_{h}\ell_{W}\nu}^{\text{reco}} - m_{t}| < 2\sigma_{t_{\text{SM}}}$ FCNC (c)tZ \times 5 FCNC $t\bar{t}(cZ) \times 5$ 80 • Train BDTs for: 60 40 • SRI (FCNC decay) 20 • SR2 (production via up) kg. Data / Bł 1.25⊧ • SR2 (production/decay 0.75 0.5 155 160 with charm)

ATLAS-CONF-2021-049

FCNC Z — Background Control and Validation ATLAS-CONF-2021-049

	SR1	SR2
	$(D_1 > -0.6)$	$(D_2^u > -0.7 \text{ or } D_2^c >$
$t\bar{t}Z + tWZ$	137 ± 12	36 ± 6
VV + LF	18 ± 7	24 ± 8
VV + HF	114 ± 19	162 ± 26
tΖ	46 ± 7	108 ± 18
$t\bar{t} + tW$ fakes	14 ± 4	27 ± 8
Other fakes	7 ± 8	5 ± 6
$t\bar{t}W$	4.2 ± 2.1	3.1 ± 1.6
ttH	4.8 ± 0.7	0.89 ± 0
Other bkg.	2.0 ± 1.0	2.5 ± 2.9
FCNC $(u)tZ$	0.9 ± 1.7	4 ± 8
FCNC $t\bar{t}(uZ)$	5 ± 9	0.8 ± 1.5
Total background	348 ± 15	369 ± 21
Data	345	380

- tt CR without Z candidate
- ttZ CR with 2 b-jets and \geq 2 extra jets
- SR sidebands in reconstructed masses

-0.4)

- .17

FCNC Z — Results

- Systematics worsen limits by ~20% (tuZ) or ~25% (tcZ)
 Sensitivity improved by
- BR(t \rightarrow uZ) < 6.2/6.6 x 10⁻⁵ [LH/RH] $BR(t \rightarrow cZ) < \frac{13}{12 \times 10^{-5}}$ [LH/RH]

ATLAS-CONF-2021-049

- Targeting leptonic and hadronic top & tau decays
 - I b-jet
 - I electron or muon OR none

(& ℓ , τ_{had} have same charge)

FCNC H(TT) — Analysis Strategy

ATLAS-CONF-2022-014

- Leptonic channels: data-MC scale factors from tt CRs (2 b-tags or 2 leptons)

FCNC H(TT) — Fake Tau Estimates

• Hadronic channels: events with looser τ ID multiplied with fake factors (from W+jets CR)

FCNC H(TT) — Boosted Decision Trees

- One BDT per signal region with 12-17 kinematic input features
- Generally important: p_T of leading T, $m_{\tau\tau}$, m_{bjj} (hadronic top regions)

FCNC H(TT) — Results

- Excess 2.3σ significant
- Statistical uncertainties dominate over systematics

ATLAS-CONF-2022-014

• FCNC decay hopeless

 \rightarrow anomalous single-top production

- Just one top
 - Swamped by W+jets, SM single top, QCD multijet & tt
- Selection:
 - I e or μ with $p_T > 27$ GeV + dilepton veto (10 GeV)
 - $E_T^{miss} > 30 \text{ GeV } m_T(\ell v) > 50 \text{ GeV}$
 - I b-jet with 30% (!) efficiency
 - No additional jet with $|\eta| < 4.5$
 - Increase lepton p_T requirement if $\Delta \Phi(\ell, jet)$ large

FCNC g — Analysis Strategy

 $\sqrt{s}=13 \text{ TeV}, 139 \text{ fb}^{-1}$

FCNC g — Background Estimation and Validation

arXiv:2112.01302

- 2 NNs due to u/c PDFs
- I hidden layer with transformation of 12/9 input variables

FCNC g — Neural Networks

arXiv:2112.01302

- 95% CL limits on σ_{FCNC} interpreted as BR limits: $BR(t \rightarrow ug) < 6.1 \times 10^{-5}$ $BR(t \rightarrow cg) < 37 \times 10^{-5}$
- Main systematics: bkg. modelling, jet/E_T^{miss}-related

$\mathcal{B}_{95}^{\exp}(t \to u + g)$	$\mathcal{B}_{95}^{\exp}(t \to c + g)$
1.1×10^{-5}	2.4×10^{-5}
3.1×10^{-5}	12×10^{-5}
3.9×10^{-5}	18×10^{-5}
4.9×10^{-5}	20×10^{-5}

Data statistical only Experimental uncertainties also All uncertainties except MC statistical All uncertainties

FCNC g — Results

Run-l analysis

- BR(t \rightarrow ug) < 12 x 10⁻⁵
- BR(t \rightarrow cg) < 64 x 10⁻⁵

- New FCNC searches for all elementary bosons
- Several improvements beyond luminosity scaling

	Previous best	Expecte	ed Limit	Observed Limit		
	ATLAS search	up	charm	up	charm	
γ	81 fb-1	~3-5	~5-6	~3-5	~4-5	
Ζ	36 fb-1	~5	~3	~3	~2	
Н	Combination, 36 fb ⁻¹	~2	~2	~2	~ .	
	H → ττ, 36 fb- ¹	~6	~4	~2	~2	
g	8 TeV	~2	~3	~2	~2	

FCNC Summary

Total improvement factor

Conclusions

- Run-2 still has more in the pocket!

Conclusions

BACKUP

Sample Stitching

- tq γ : NLO in QCD , $t \rightarrow \ell \nu b \gamma$: tq production at NLO in QCD with γ from PS
- Overlap removed based on particle-level criteria: tq events kept if $|m(\ell v \gamma) - m_W| < |m(\ell v) - m_W|$ or $|m(\ell v b \gamma) - m_t| < |m(\ell v b) - m_t|$
- Particle-level definition: I e/µ (25 GeV, $|\eta|$ <2.5), I γ (20 GeV, $|\eta|$ <2.37),
- I b-jet (25 GeV, $|\eta| < 2.5$), I v (not from hadron), $\Delta R(jet, \ell/\gamma) \& \Delta R(\gamma, X)$ requirements

FCNC Z

Source of uncertainty

Lepton ID $E_{\mathrm{T}}^{\mathrm{miss}}$ Fake lepton modeling JES and JER Flavour tagging $t\bar{t}$ modeling Other MC modeling Fake τ modeling Signal modeling including τ ID Luminosity and Pileup MC statistics

Total systematic uncertair Data statistical uncertaint

Total uncertainties

FCNC H(TT)

	ΔB [10^{-5}]
	$t \to uH$	$t \to cH$
	0.6	1.0
	0.7	0.8
	0.9	1.1
	2.4	3.2
	2.7	3.7
	2.9	4.3
	2.1	2.9
	3.2	4.6
$\operatorname{Br}(H \to \tau \tau)$	5.3	7.0
	3.3	4.4
	0.9	1.3
	5.1	7.0
nty	11.2	15.5
ty	14.1	19.6
	18	25

	$t \to cH$			$t \rightarrow uH$		
Signal Regions	95% CL upper limits $[10^{-3}]$	Significance	$B[10^{-3}]$	95% CL upper limits $[10^{-3}]$	Significance	B[10
	Observed (Expect	ed)		Observed (Expect	ed)	
$t_h \tau_{\rm had} \tau_{\rm had}$ -2j	$1.85(2.80^{+1.30}_{-0.78})$	-0.96(0.78)	$-1.03^{+1.04}_{-1.04}$	$1.10(1.65\substack{+0.79\\-0.46})$	-0.90(1.25)	-0.55
$t_h \tau_{\rm had} \tau_{\rm had}$ -3j	$1.18(1.06\substack{+0.50\\-0.30})$	0.34(1.87)	$0.16\substack{+0.47 \\ -0.47}$	$1.00(0.89\substack{+0.42\\-0.25})$	0.36(2.13)	0.14^{+}_{-}
Hadronic Combination	$1.04(0.98\substack{+0.46\\-0.28})$	0.26(1.99)	$0.11_{-0.43}^{+0.43}$	$0.78(0.78^{+0.37}_{-0.22})$	0.11(2.33)	0.04^+_{-}
$t_l au_{ m had}$ -2j	$4.86(4.32^{+1.89}_{-1.21})$	0.40(0.48)	$0.81\substack{+2.04 \\ -2.04}$	$3.93(3.55\substack{+1.56 \\ -0.99})$	0.34(0.58)	0.57^{+}_{-}
$t_l au_{ m had}$ -1j	$3.94(3.67^{+1.66}_{-1.03})$	0.24(0.57)	$0.40^{+1.70}_{-1.70}$	$3.10(2.87\substack{+1.29\\-0.80})$	0.24(0.73)	0.31^{+}_{-}
$t_h \tau_{\rm lep} \tau_{\rm had}$ -2j	$4.81(5.85\substack{+2.90\\-1.63})$	-0.52(0.39)	$-1.36^{+2.56}_{-2.56}$	$2.56(3.05\substack{+1.38\\-0.85})$	-0.48(0.69)	-0.66
$t_h \tau_{\rm lep} \tau_{\rm had}$ -3j	$2.78(2.79^{+1.36}_{-0.78})$	-0.04(0.76)	$-0.04^{+1.26}_{-1.26}$	$2.07(2.09\substack{+0.94\\-0.58})$	-0.05(0.98)	-0.04
$t_l \tau_{\rm had} \tau_{\rm had}$	$1.41(0.63^{+0.29}_{-0.18})$	2.64(3.24)	$0.74_{-0.34}^{+0.34}$	$1.01(0.45^{+0.21}_{-0.13})$	2.64(4.08)	0.53^{+}_{-}
Leptonic Combination	$1.29(0.59^{+0.27}_{-0.17})$	2.59(3.34)	$0.68^{+0.32}_{-0.32}$	$0.92(0.42^{+0.19}_{-0.12})$	2.59(4.23)	$0.48^+_{$
Combination	$0.99 \ (0.50^{+0.22}_{-0.14})$	2.34(3.69)	$0.51_{-0.25}^{+0.25}$	$0.72 \ (0.36^{+0.17}_{-0.10})$	2.31(4.49)	0.37^{+}_{-}

FCNC H(TT)

FCNC g

