

Tuesday 22nd March 2022

ITS3: PRELIMINARY CFD SIMULATIONS

Aitor Amatriain Carballo

Outline

ITS3: PRELIMINARY CFD MODEL

- Geometry
- Parameters

ITS3: PRELIMINARY NUMERICAL RESULTS

• Parametric study

CONCLUSIONS AND FUTURE WORK

ITS3 PRELIMINARY CFD MODEL: GEOMETRY

ALICE ITS3 WP5

- BBM Half of the circumference with a wall on the upper side
- ITS3 → Two halves → Full geometry

- RVC supports are not taken into account
- Rings cover all the circumference
- No holes in the foam

Previous assumptions — Axisymmetric geometry

ITS3 PRELIMINARY CFD MODEL: PHYSICS

• Length of the domain and mesh size obtained from length-independence and meshindependence studies

ALICE ITS3 WP

• 3D mesh for computational reasons (submodels not available in 2D)

- Updated design from last weeks: four separated air flows (orange, red, green, blue)
- Carbon foam: ALLCOMP LD
- $Q_p = 2500 \text{ mW/cm}^2$
- Assumption for all simulated cases: $\frac{Q_p}{Q_m} = 1000$
- Glue between chips and foams of thickness h=50 μm and k=1 W/(m*K)
- Same velocity in all inlets

RESULTS: INFLUENCE OF VELOCITY, GLUE AND DISSIPATED HEAT

- $\Delta T_{max} = T_{max} T_{inlet}$
- Effect of \approx +1 °C/50 μm

- $v > 2 \text{ m/s} \rightarrow \text{ALICE ITS Ventilation}$?
- Optimum $v \approx 5 \text{ m/s} (\Delta P \sim v)$

If v increases, convective heat transfer increases The slope of the curves decrease with v as heat is not removed from the bottom side of LO, and

 k_{chip} is finite

RESULTS: INFLUENCE OF FOAM THERMAL CONDUCTIVITY

Influence of foam thermal conductivity

- Important variations in T_{max} for $k \leq 5$ W/(m*K)
- Then efficiency is lost as the air is heated
- The matrix is cooling the air \longrightarrow Holes if $T_{max,M} > T_{max,P}$
- Pressure loss $\Delta P \sim k \longrightarrow$ Optimum around k = 5 W/(m*K)
- Gap between L0 and beampipe does not absorb heat

RESULTS: ADDITION OF A FOAM BETWEEN LO AND BEAMPIPE (BP)

ALICE ITS3 WP5

Influence of a foam between LO and BP

25 W/(m*K)

- Difficult to implement but interesting to study
- Important variations in T_{max} for k = 5 W/(m*K)
- Then efficiency is lost as gap (only 1.5 mm of height) is fully heated

ALICE ITS3 WP5

Influence of LO-L1 inlet temperature

- Another parameter to control T_{max}
- Effectiveness of around 1/1 (°C) in the optimum region (5 m/s)
- Humidity controlled in ITS Ventilation —— If not, multiphase simulations in ANSYS Fluent

CONCLUSIONS

- 50 μm of glue give an increase of 1 °C in the maximum T, which is always in L0
- Higher thermal conductivities reduce maximum T → Optimum around 10 W/(m*K) for pressure loss minimization
- The control of inlet T can lead to higher efficiencies in the system

FUTURE WORK

- Simulation of full geometries (supports)
- Validation of baseline models with experiments (new thermal setup)