Implementation of a Portal Dedicated to Higgs Bosons for Experts and the General Public DPG Spring Conference

Ivan Demchenko, Martin Kupka, André Sopczak, Antoine Vauterin, Peter Žáčik

Czech Technical University in Prague

21 March 2022

Search for the Higgs boson

• 1989 – 2000: CERN - Large Electron-Positron Collider (LEP)

- ALEPH
- DELPHI
- ► L3
- OPAL
- 1987 2011: Fermilab Tevatron accelerator
 - CDF
 - ► D0
- 2010 present: CERN Large Hadron Collider (LHC)
 - ATLAS
 - CMS
 - Ongoing Higgs measurements

Research

- 1000+ scientific publications (experimental results)
- Various types of experiments
- Various publishing methods
- New results each week
- Large number of articles important to make a categorisation system

Goals of this project

- Easy access to publications
- Collection and categorisation
- Visualisation of development precisions
- Bringing the research closer to the public

Collecting data

What data?

- Publications title, abstract, tables, graphs...
- Measured values masses, productions modes, decay modes... How?
 - Fermilab (old websites) web scraping
 - CERN CERN Document Server API
 - Measured values extract from text

Categorisation

- Goal of the publication
 - Experimental measurement
 - Search for "new physics"
- Observed events
 - Higgs boson production
 - Higgs boson decay
- Other properties
 - Number of collisions (luminosity)
 - Collision energy
 - Experiment
 - Current stage (preliminary, submitted, approved)

Natural Language Processing I

Vocabulary varies by the type of experiment

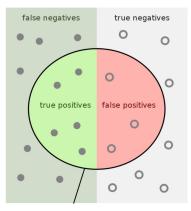
- Standard Model vs "new physics"
- Naive Bayes classifier
- Relies on the frequency of certain words
- No need to specify the words beforehand
- Training examples
- Tokenization, stopwords, lemmatization
- Python, scikit-learn, nltk

Natural Language Processing II

Numeric values and keywords detection

- Plain searching ineffective
- Named Entity Recognition
- English corpus
- Al learns to recognize written text patterns
- Further algorithmic processing

Search for charged Higgs bosons produced via vector boson fusion and decaying into a pair of W and Z bosons using proton-proton collisions at $\sqrt{s} = 13 \ TeV$.


Search for charged Higgs bosons produced via vector boson fusion and decaying into a pair of W and Z bosons using proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$.

Natural language processing III

- Categorisation model
- Manual training
- $\bullet\,$ Training and testing set $\sim\,100$ articles
- Standard *F*₁-score

11/20

Categorisation results I

Precision =
$$\frac{TP}{TP+FP}$$
Recall = $\frac{TP}{TP+FN}$
F₁ = 2 * $\frac{P*R}{P+R}$

Categorisation results II

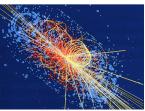
Category	Precision (%)	Recall (%)	F_1 -score (%)
Luminosity	96	88	92
Energy	100	85	92
Production mode	87	85	86
Decay mode	81	79	80

Table: NER categorisation results

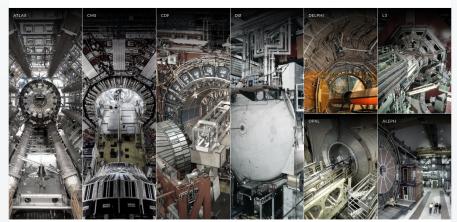
Web application

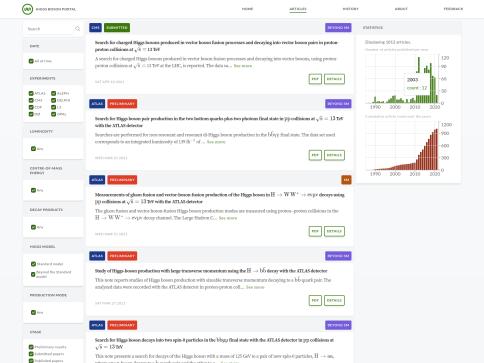
- Categorised publications stored in a database
- Daily updates
- API
- User Interface and administration

14 / 20


Web application

- Categorised publications stored in a database MongoDB
- Daily updates Python cron jobs
- API Flask
- UI and administration React.js, Tailwind.css


HBP - the portal for categorised information about the Higgs boson


The Higgs boson, named after the the physicist Peter Higgs is a subatomic particle. It is the manifestation of the Higgs field, a quantum field that is present everywhere throughout the Universe. Certain particles interact with the Higgs field field via the Higgs mechanism and as a result obtain mass. The Higgs boson is the result of an excitation in this field.

HISTORY

Deployment I

Components

What is required?

- Database hosting
- Web HTTP(S) server
- Website static files (HTML, CSS, Javascript)
- Server with enough computational power for categorisation (daily)

18 / 20

Deployment II

CERN PaaS Application Hosting service

- Components as Docker containers
- Container orchestration using **OpenShift**
- Automatic build from a GitHub repository
- One click deploy
- TLS CERN domain secure HTTPS communication
- Categorisation runs on a shared CERN cluster
- Part of CPPP (Czech Particle Physics Project)

Deployment III

cern.ch/higgs

Thank you for your attention!