Fabrication of Full 3D Active Edge Sensors

Angela Kok et al

SINTEF - Oslo, Norway

ICT

Fabrication of full 3D active edge sensors

- Introduction
- Technology
	- fusion bonding
	- DRIE
	- Polysilicon deposition
- Overall fabrication steps
- Fabrication results in the first two prototype run
	- Processing
	- Yield
	- Test results
- Processing results from current run
- Yield factor issues

ICT

Introduction

3D silicon detectors - by S. Parker in 1995

Combination of traditional **VLSI** processing and **MEMS** (Micro Electro Mechanical Systems) technology

Electrodes are processed inside the detector bulk instead of being implanted on the wafer's surface.

Active edges

- by C. Kenney in 1997

The edge is an electrode!

Dead volume at the Edge < 2 microns! Essential for

ICT

-Large area coverage

-Forward physics

- 1. NIMA 395 (1997) 328
- 2. IEEE Trans Nucl Sci 464 (1999) 1224
- 3. IEEE Trans Nucl Sci 482 (2001) 189
- 4. IEEE Trans Nucl Sci 485 (2001) 1629
- 5. IEEE Trans Nucl Sci 48 6 (2001) 2405
- 6. CERN Courier, Vol 43, Jan 2003, pp 23-26
- 7. NIM A 509 (2003) 86-91
- 8. NIM A 524 (2004) 236-244
- 9. NIM A 549 (2006) 127
- 10. NIM A 560 (2006) 272
- 11. IEEE TNS 53 (2006) 1676
- 12. NIM A 587 (2008) 243-249

Technology required

- **: Wafer bonding,**
- **DRIE and polysilicon**

deposition

SINTEF MiNaLab (Micro- and Nanotechnology Laboratory)

■ Shared facility for the University of Oslo and SINTEF with two separate clean room floors: SINTEF: 800 m²
University of Oslo: 600 m² University of Oslo:

SINTEF:

- **Silicon production line with capacity of 10.000 150 mm wafers**
- **100 mm and 150 mm wafers**
- Microenvironments with class 10
- The most advanced laboratory in Norway for micro- and nanotechnology, situated on the campus of UiO
- 3D Consortium formed in 2006 primarily with Chris Kenney et al. to transfer 3D to a more production environment

Wafer fusion bonding

- **Support wafer essential to fabricate active edge**
- **Relieve stress and provide support**
- **Fusion boding**
- **Oxide to oxide bonding**
- **High temperature annealing**
- **Voids affect overall yield**

p

A perfectly bonded laminator (wafer)

Wafer bowing, wafer cleanliness affect the bonding results tremendously. Special care must be taken to achieve optimal results!

Bonding results from latest batch

17 perfectly bonded wafers

3 wafers with defects/voids 5 wafers with very small defects along the edges

Deep Reactive Ion Etching

Alcatel AMS-200

- Key technology for 3D silicon
- Vertical sidewalls passivated by polymer(C4F8)
- Radicals etch exposed substrate (SF6)
- Aluminium has excellent selectivity
- Aspect ratio up to 50:1 (depending on size of openings)

Deep Reactive Ion Etching

**IEEE Nuclear Science Syposium 2009 N25-164*

DRIE results of active edges/trenches

н

FILLING AND DOPING THE HOLES

The holes can be filled with doped gas molecules at low pressure and moderate temperatures to form p & n electrodes within the detector.

• **POLYCRYSTALLINE SILICON** IS DEPOSITED IN A LOW PRESSURE CHEMICAL VAPOUR DEPOSITION (LPCVD) USING A THERMAL DECOMPOSITION OF SILANE.

$$
SiH_4 \longrightarrow ^{600^{\circ}C} Si + 2H_2
$$

• **DOPED** WITH EITHER BORON OR PHOSPHOROUS TO PRODUCE EITHER N OR P-TYPE ELECTRODES

 $2P_2O_5$ +5 Si-> 4P + 5 SiO₂ $2B_2O_3$ +3Si -> 4 B +3 SiO₂

• **ANNEALING** FOLLOWS, IN WHICH THE DOPANTS ARE DIFFUSED INTO THE SURROUNDING SINGLE CRYSTAL SILICON FORMING PN JUNCTIONS

FILLING AND DOPING THE HOLES

3D Detector – Fabrication Steps (1)

3D Detector – Fabrication Steps

Design layout for the first two prototype runs

Series A – only small FE-I3 Series B –FE-I3, FE-I4, CMS

Issues in the first SINTEF fabrication

Improvements in second run

- **By changing the hole profiles**
- **HOLES are fully filled**
- **Surfaces are reasonably flat**
- **Better yield in lithography**

SINTEF

CMS Sensors

600

3D Silicon CMS Pixel Sensors

Ozhan Koybasi, *Student Member, IEEE,* Enver Alagoz, Alex Krzywda, Kirk Arndt, Gino Bolla, Daniela Bortoletto, Thor-Erik Hansen, Trond Andreas Hansen, Geir Uri Jensen, Angela Kok, Simon Kwan, Nicolas Lietaer, Ryan Rivera, Ian Shipsey, Lorenzo Uplegger, and Cinzia Da Via

ICT

Test – bump bonding tests for CMS devices

E.Alagoz¹ , O.Koybasi¹ , K.Arndt¹ , D.Bortoletto¹ , I.Shipsey¹ , G.Bolla¹ , R.Riviera² , M.Turqueti² , L.Uplegger² and S.W.L.Kwan²

1Purdue University, 3Fermilab

FNAL with 120 GeV protons (CMS 2E)

- ADC to electron conversion: Vcal* [DAC] = ADC x gain - offset Charge (e-) = $Vcal x 65.5 - 410$
	- * 1 Vcal [DAC] = 65.5 electrons
- $T \approx 11$ °C on carbon fiber (estimated to be 6° C higher on the sensor)

ATLAS sensors

- **Noise was too high for a good convergence**
	- **All modules suffered from irreversible breakdown after some hours of operation**

ATLAS FE-I3 sensors

- After identifying some mismatch in sensor and electronic design
- Problem solved
- Latest result from DESY testbeam shows good performances

ICT

Results taken by Alessandro La Rosa and Philippe Grenier

Recent batch common floor plan

DRIE and polyfilling results – 3rd series

ICT

DRIE and polyfilling results – 3rd series

Status of current batch

- Test metallisation
- **Measurements**
- Final metallisation
- Passivation
- Ready for bump-bonding and module assembly by the end of March

Further Yield Factor Observed

- **Poly residue**
	- **Risks of short circuits**
	- **But overetch would destroy electrodes**
- **Topography makes litho difficult**
- **Chemical mechanical polishing could help**

Yield factor when processing larger FE-I4 sensors

X-RAY STUDIES OF ELECTRODE RESPONSE

Data showing the response of electrodes using to a 2 um wide X-ray beam

 $Goal = \text{Improve signal}$ collection within the poly

Oxygen trapping

Replace POCL3 with PH3

Replace BBr3/O2 with B2H6

Tried diborane doping on SINTEF second run wafers

Both phosphine and diborane were used in the 3 rd run!

ICT

Summary

- 2 prototype runs have been completed
- Great improvement in wafer yield in second run
- Both wafer level and test beam results are promising
- Yield is yet to be improved
- Large FE-I4 sensors in the 3rd run are near completion
- Several yield factor stil need to be considered
	- More uniform poly removal eg. CMP
	- Resistcoating over the topography
	- Wafer bonding
- Electrode efficiency will be further investigated by oxygen free doping
- Further test such as support wafer removal need to be investigated for compatibility with detector system

ICT

