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• Introduction

• Technology

• fusion bonding

• DRIE

• Polysilicon deposition

• Overall fabrication steps

• Fabrication results in the first two prototype run

• Processing

• Yield

• Test results

• Processing results from current run

• Yield factor issues
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Introduction
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3D silicon detectors 

- by S. Parker in 1995 

Combination of  traditional VLSI processing and 

MEMS (Micro Electro Mechanical Systems) 

technology

Electrodes are processed inside the detector 

bulk instead of being implanted on the wafer's 

surface.

Active edges 

- by C. Kenney in 1997

The edge is an electrode! 

Dead volume at the Edge < 2 microns! Essential for 

-Large area coverage

-Forward physics

Technology required 

: Wafer bonding,  

DRIE and polysilicon 

deposition

support 

wafer oxide

p n

p

n
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SINTEF MiNaLab (Micro- and Nanotechnology Laboratory)

 Shared facility for the University of Oslo and SINTEF with 
two separate clean room floors: 
SINTEF: 800 m2

University of Oslo: 600 m2

 SINTEF:

 Silicon production line with capacity of 10.000 150 mm 
wafers

 100 mm and 150 mm wafers

 Microenvironments with class 10

 The most advanced laboratory in Norway for micro- and 
nanotechnology, situated on the campus of UiO 

 3D Consortium formed in 2006 primarily with Chris Kenney 
et al. to transfer 3D to a more production environment



ICT 5

Wafer fusion bonding
 Support wafer essential to fabricate active edge

 Relieve stress and  provide support 

 Fusion boding 

 Oxide to oxide bonding

 High temperature annealing

 Voids affect overall yield

Hydrophilic surfaces prepared by 

a RCA and a piranha rinse

Pre-bonding in a SUSS bonder SB6 at 

50oC, follow by high temp annealing

Process wafer
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Chips sit on top of a 

void can fall off – yield 

issue

Wafer bowing, wafer 

cleanliness affect the 

bonding results 

tremendously. Special 

care must be taken to  

achieve optimal 

results!
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Bonding results from latest batch

17 perfectly bonded wafers

3 wafers with defects/voids 5 wafers with very small defects along the edges
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Deep Reactive Ion Etching

 Alcatel AMS-200
 Key technology for 3D silicon

 Vertical sidewalls passivated by polymer(C4F8)

 Radicals etch exposed substrate (SF6)

 Aluminium has excellent selectivity

 Aspect ratio up to 50:1 (depending on size of openings)
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Deep Reactive Ion Etching

*IEEE Nuclear Science Syposium  2009 N25-164

Vertical 15 µm round holes

Aspect ratio 20:1

5 µm trenches

Aspect ratio 54:1

Notching at silicon 

oxide interface

Low Frequency bias 

allows discharge of oxide

Reduced notching

Oxide

Silicon

Protective 

polymer layer

Hole diameter 

varies from top to 

bottom
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DRIE results of active edges/trenches
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FILLING AND DOPING THE HOLES

• POLYCRYSTALLINE SILICON IS DEPOSITED 
IN A LOW PRESSURE CHEMICAL VAPOUR 
DEPOSITION  (LPCVD)  USING A THERMAL 
DECOMPOSITION OF SILANE.

• DOPED WITH EITHER BORON OR 
PHOSPHOROUS TO PRODUCE EITHER N OR 
P-TYPE ELECTRODES

2P2O5 +5 Si-> 4P + 5 SiO2

2B2O3 +3Si -> 4 B +3 SiO2

• ANNEALING FOLLOWS, IN WHICH THE 

DOPANTS ARE DIFFUSED INTO THE  

SURROUNDING  SINGLE CRYSTAL SILICON 

FORMING PN JUNCTIONS

The holes can be filled with doped 

gas molecules at low pressure and  

moderate temperatures to form p & 

n electrodes within the detector.

2

600

4 2HSiSiH
C




* C. Kenney, J. Hasi (SLAC)
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Hole profiles led to partially 

filled electrodes

FILLING AND DOPING THE HOLES

Holes profile that gave fully 

filled electrodes
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3D Detector – Fabrication Steps (1)

SiO2 1.5μm

Si Support Wafer

SiO2 1.5μm

SiO2 1.5μm

Device wafer

SiO2 1.5μm
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3D Detector – Fabrication Steps

SiO2 1.5μm

Si Support Wafer

SiO2 1.5μm

SiO2 1.5μm

Device wafer

SiO2 1.5μm

μm
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Design layout for the first two prototype runs
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Issues in the first SINTEF fabrication

 Stress in wafer

 Wafer breakage

 Vacuum problem during processing

 Alignment difficulties

3D first series

standard

5µm 18µm

Large topography after removal of excess 

poly

Resist coating extremely difficult

Hole profiles led to partially filled 

electrodes

SINTEF 3D - 4E
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Detector 21
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To match the process 

time with the holes, 

trenches are wide at 

the bottom

 Wafer breakage

 Difficult lithography

 Unfilled electrodes

 Wide trenches

 Extremely low yield

IV measured on 

single pixel show 

good characteristics

Wafer from first run – a 

bowing of nearly 100 µm

Compare to about 10 

µm bow in a standard 

test wafer
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Fully filled 

electrodes

After polyfilling

No voids

A small void

After polyfilling

Reasonably 

flat surface

Improvements in second run

• By changing the 

hole profiles

• HOLES are fully 

filled

• Surfaces are 

reasonably flat

• Better yield in 

lithography
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Fully filled 

electrodes

IV curves on test chip
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•Bowing reduce to less than 20 µm

•Wafer yield increased to 90%

No voids

Reasonably 

flat surface

2.5 mm
88µm

50µm

Improvements in second run

First Series – almost

100 µm of bowing

SecondSeries –

about 20 µm bowing
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Yield

Fully filled 

electrodes

 Part of 1 FE-I4 sensor was not processed, too close to the 

wafer edge

 Overall yield about 34% (FE-I3 + CMS)

 CMS has the best yield

 Difficult to see correlation between yield and pixel conf.

 But perhaps the chips with lower no. of electrodes per pixel 

do seem to have a better yield.

Yield for each pixel configuration
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• See Ozhan Koybasi’s talk data at FNAL accepted at IEEE TNS
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CMS Sensors
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Voltage (V)Electrical Characterization and Preliminary Beam Test Results of 

3D Silicon CMS Pixel Sensors
Ozhan Koybasi, Student Member, IEEE, Enver Alagoz, Alex Krzywda, Kirk Arndt, Gino Bolla, Daniela 

Bortoletto, Thor-Erik Hansen, Trond Andreas Hansen, Geir Uri Jensen, Angela Kok, Simon Kwan, Nicolas 

Lietaer, Ryan Rivera, Ian Shipsey, Lorenzo Uplegger, and Cinzia Da Via                                 

IV better after bump-

bonding, MOS effect of 

test metal

Noise for 4E sensors is high 

due to higher capacitance –

can be improved by further 

calibration of ROC

Measured efficiency as 

predicted for 285 µm thick 

siliscon sensor – no 

unusual behaviour
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2E Wafer B5 #2 2E Wafer B2-16 #6

4E Wafer B5 #8 4E Wafer B2-16 #5

8

Test – bump bonding tests for CMS devices

E.Alagoz1, O.Koybasi1, K.Arndt1, D.Bortoletto1, I.Shipsey1, G.Bolla1, R.Riviera2, 

M.Turqueti2, L.Uplegger2 and S.W.L.Kwan2

1Purdue University, 3Fermilab
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• ADC to electron conversion:

Vcal* [DAC] = ADC x gain - offset

Charge (e-) = Vcal x 65.5 – 410

* 1 Vcal [DAC] = 65.5 electrons

• T ≈ 11 oC on carbon fiber 

(estimated  to be 6 oC higher 

on the sensor)

Vbias = 40V

FNAL with 120 GeV protons (CMS 2E)
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 Noise was too high for a good convergence

 All modules suffered from irreversible breakdown after 

some hours of operation

Each square corresponds to the number of hits per pixel
*data taken by E. Bolle, H.Gjersdal and O. Rohne at the University of Oslo

One module successfully recorded 

particles from an Am-241 source

ATLAS sensors

But very high noise!

passivation

Solder 

bump

Metal 

contact

bump-bonding

n+ n+3D sensor

Readout 

chip

Readout 

channel
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• After identifying 

some mismatch in 

sensor and 

electronic design

• Problem solved

• Latest result from 

DESY testbeam 

shows good 

performances

23

ATLAS FE-I3 sensors

Results taken by Alessandro La Rosa and Philippe Grenier
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Recent batch common floor plan

8 FE-I4 Sensors

FE-I3 FE-I3

FE-I3 CMS

• Latest design, common

floor plan for ATLAS

• 8 FE-I4 sensors

• 9 FE-I3 sensors

• 3 CMS sensors

• Process modifications:

• N-doping by phosphine

• P-doping by diborane

• Addition implant to give a 

better surface fr the

contact and p-n junction
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DRIE and polyfilling results – 3rd series

13.5 um

Before poly 

filling – holes 

~13.5um wide

1.5 um

After polyfilling

After etching excess

poly, a gap was

revealed
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Poly closed at the top 

before the bottom was 

filled

The unfilled trench was

revealed once the poly

was removed

DRIE and polyfilling results – 3rd series

1µm extra poly 

was deposited 

and etched back 

to fill the trench 

completely
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Status of current batch

SiO2 1.5μm

Si Support Wafer
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SiO2 

1.5μm

Process wafer

SiO2 1.5μm

SiO2 1.5μm

Si Support Wafer

SiO2 1.5μm

SiO2 

1.5μm

Process wafer

SiO2 1.5μm

• Test metallisation

• Measurements

• Final metallisation

• Passivation

• Ready for bump-bonding and module assembly 

by the end of March
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Further Yield Factor Observed

Uneven resist

thickness due to 

topography

• Poly residue
• Risks of short circuits

• But overetch would destroy electrodes

• Topography makes litho difficult

• Chemical mechanical polishing could

help
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Yield factor when processing larger FE-I4 sensors

All broke along the trenches (possible 

also due to secondary flat edge)

Intentional cut after wafer 

was broken for inspection
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X-RAY STUDIES OF ELECTRODE RESPONSE

Data showing the response of electrodes using  to a 2 um wide X-ray beam

P+ electrode efficiency 

about 42%

BBr3 + O2
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N+ electrode

efficiency about 60%

POCL3

WITH OXYGEN

WITH OXYGEN

* C. Kenney, J. Hasi (SLAC)

Possible trouble 

removing 

residual highly 

doped glass
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Oxygen-Free Doping

Goal = Improve signal 

collection within the poly

Oxygen trapping

Replace POCL3 with PH3

Replace BBr3/O2 with B2H6

Tried diborane doping on 

SINTEF second run wafers

Both phosphine and 

diborane were used in the 

3rd run!
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Summary
• 2 prototype runs have been completed

• Great improvement in wafer yield in second run

• Both wafer level and test beam results are promising

• Yield is yet to be improved

• Large FE-I4 sensors in the 3rd run are near completion

• Several yield factor stil need to be considered

• More uniform poly removal – eg. CMP

• Resistcoating over the topography

• Wafer bonding

• Electrode efficiency will be further investigated by oxygen free doping

• Further test such as support wafer removal need to be investigated for 

compatibility with detector system

32


