



## Test beam results from 3D and epitaxial sensors flip-chip bonded to the ALICE pixel front-end chip

### *Vito Manzari* – INFN Bari (vito.manzari@cern.ch)





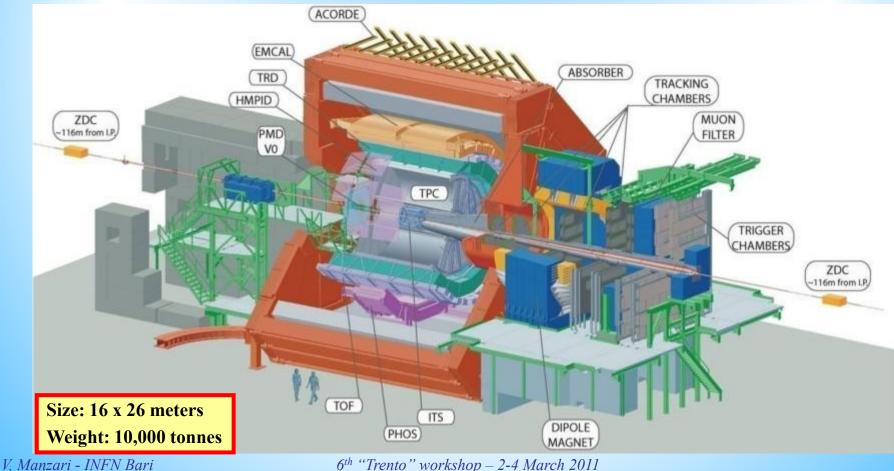
Outline



- The ALICE Inner Tracking System
- > Hybrid Pixels for the ITS upgrade: 3D and Epitaxial sensors
- Beam test setup
- Preliminary results
- Summary and conclusions



## The ALICE experiment



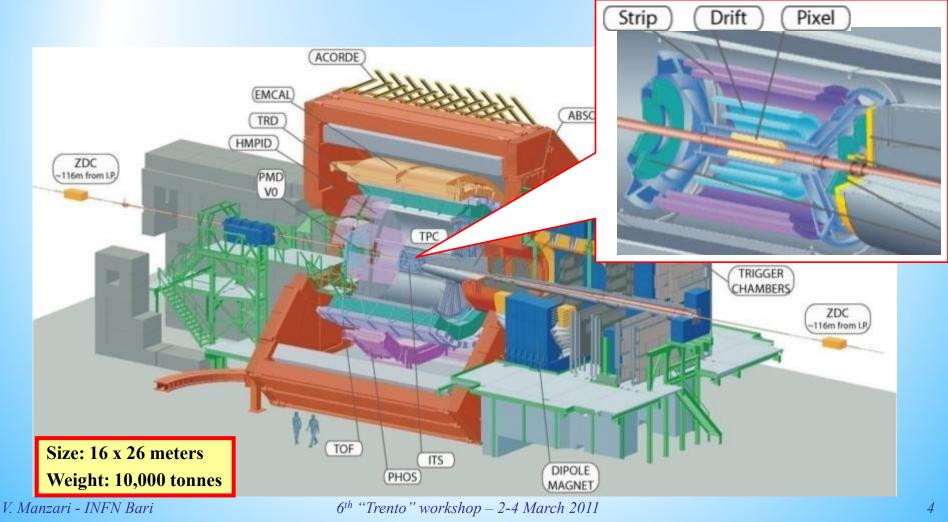

### Ultra-relativistic nucleus-nucleus collisions

- study behavior of strongly interacting matter under extreme conditions of compression and heat

#### Proton-Proton collisions

- reference data for heavy-ion program
- unique physics (momentum cutoff <100MeV/c, excellent PID, efficient minimum bias trigger)

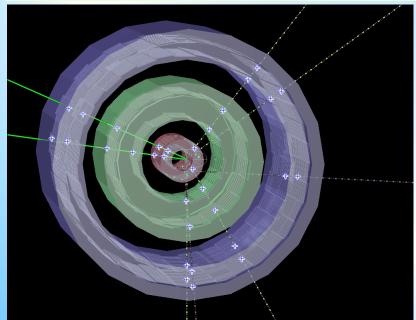


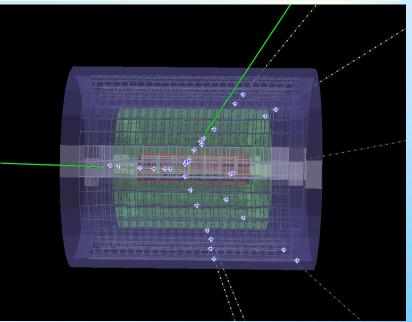

# The ALICE Inner Tracking System



6-layer barrel

INFN


- ➤ 3 different silicon detector technologies, 2 layers each (inner → outer):
  - Pixels (SPD), Drift (SDD), double-side Strips (SSD)




## The ALICE Inner Tracking System



| Layer | Det. | Radius<br>(cm) | Lengt<br>h<br>(cm) | Surface<br>(m <sup>2</sup> ) | Chan. Spatial<br>precision<br>(µm) |    | Cell<br>(µm²) | Max<br>occupancy<br>central PbPb | Power dissipation<br>(W) |        |         |
|-------|------|----------------|--------------------|------------------------------|------------------------------------|----|---------------|----------------------------------|--------------------------|--------|---------|
|       |      |                |                    |                              |                                    | rφ | Z             |                                  | (%)                      | barrel | end-cap |
| 1     | CDD  | 3.9            | 28.2               | 0.21                         | 0.01                               | 10 | 100           | 50 425                           | 2.1                      | 1 251- | 20      |
| 2     | SPD  | 7.6            | 28.2               | 0.21                         | 9.8M                               | 12 | 100           | 50x425                           | 0.6                      | 1.35k  | 30      |
| 3     | CDD  | 15.0           | 44.4               | 1 2 1                        | 12212                              | 25 | 25            | 202-204                          | 2.5                      | 1.0(1- | 1 751-  |
| 4     | SDD  | 23.9           | 59.4               | 1.31                         | 133K                               | 35 | 25            | 202x294                          | 1.0                      | 1.06k  | 1.75k   |
| 5     | CCD  | 38.0           | 86.2               | 5.0                          | 2.04                               | 20 | 920           | 0540000                          | 4.0                      | 950    | 1 1 51- |
| 6     | SSD  | 43.0           | 97.8               | 5.0                          | 2.6M                               | 20 | 830           | 95x40000                         | 3.3                      | 850    | 1.15k   |





V. Manzari - INFN Bari

INFN

Istituto Nazionale di Fisica Nucleare Sez. di Bari

6<sup>th</sup> "Trento" workshop – 2-4 March 2011



Pb-Pb event





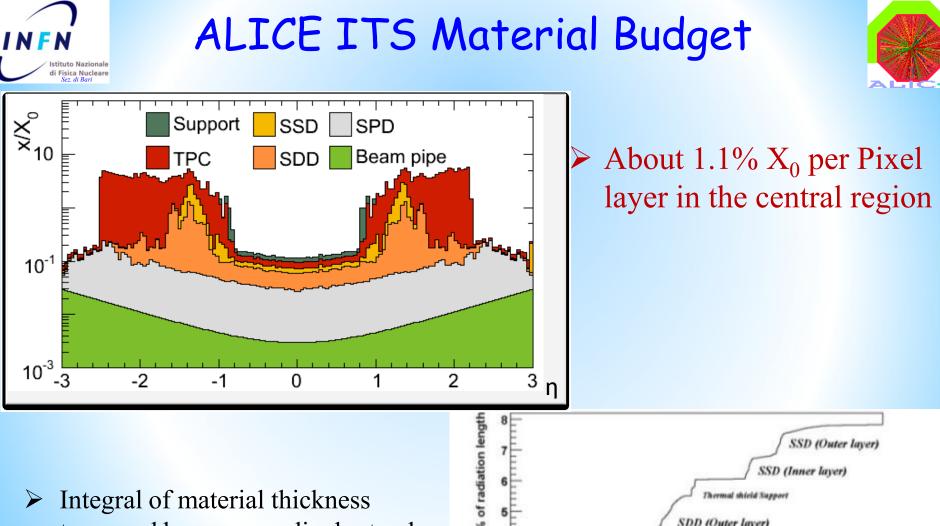
6



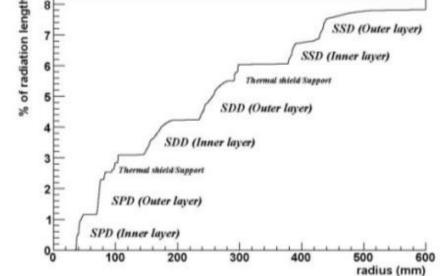
## ITS Upgrade



- > Aims to extend
  - the physics capabilities for the identification of short-lived particles containing heavy quarks through reconstruction and identification of the displaced vertex at mid-rapidity
  - the acceptance to larger rapidity
- ➤ Goals:
  - Improve impact parameter resolution, pointing resolution  $\approx 50 \ \mu m$  up to very low  $p_T$ 
    - Get closer to the Interaction Point: ≤25mm innermost radius (at present 39mm)
      - reduce beam pipe radius (at present 29mm)
    - Reduce material budget, especially innermost layers (at present  $\approx 1.1\%$  X<sub>0</sub> per layer)
      - reduce mass of silicon, power and signals bus, cooling, mechanics
      - monolithic pixels
    - Reduce pixel size, mainly for medium/high  $p_T$  (at present 50µm x 425µm)
  - Improve standalone tracking and PID capabilities
  - Improve readout and trigger capabilities




## Pixel R&D




> In particular, for the innermost layers two main options are being considered:

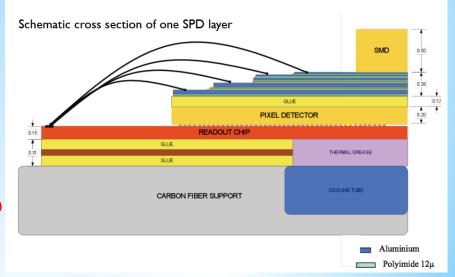
- Monolithic pixel detectors
  - MIMOSA or future developments like LePix
  - Lower material budget and larger area (low cost)
  - Radiation tolerance and readout speed to be evaluated
- Hybrid pixel detectors
  - "state-of-the-art" of pixel detectors at LHC
  - R&D on low cost bump-bonding and low material budget
    - Reduce the thickness of the silicon substrates (sensor and ASIC)
    - Reduce the need for overlaps between modules (new sensor technologies: active edge, 3D)
- Charge collection speed is not an issues and only a moderate radiation tolerance is needed



Integral of material thickness traversed by a perpendicular track originating at the primary vertex versus radius



V. Manzari - INFN Bari


6<sup>th</sup> "Trento" workshop – 2-4 March 2011



## **ALICE Pixel Material Budget**

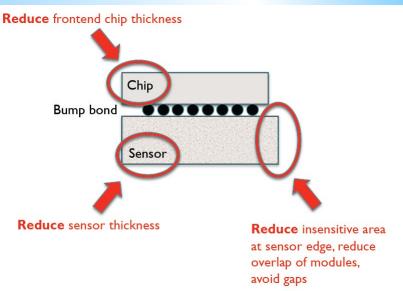


- Contributions to one current Pixel layer
  - Carbon fiber support: 200 µm
  - Cooling tube (Phynox): 40 µm wall thickness
  - Grounding foil (Al-Kapton): 75 μm
  - Pixel chip (Silicon): 150  $\mu$ m  $\Rightarrow$  0.16% X<sub>0</sub>
  - Bump bonds (Pb-Sn): diameter  $\sim$ 15-20  $\mu$ m
  - Silicon sensor: 200  $\mu$ m  $\Rightarrow$  0.22% X<sub>0</sub>
  - Pixel bus (Al+Kapton): 280 µm ➡ 0.48% X<sub>0</sub>
  - SMD components
  - Glue (Eccobond 45) and thermal grease



#### Two main contributors: silicon and interconnect structure (bus)






➢ How can the material budget be reduced?

- Reduce silicon chip thickness
- Reduce silicon sensor thickness
- Thin monolithic structures
- Reduce bus contribution (reduce power)
- Reduce edge regions on sensor
- Review also other components (but average contribution 0.01-0.02%)
- > What can be a reasonable target
  - Hybrid pixels:
    - silicon: 0.16% X<sub>0</sub> (at present 0.38%)
    - bus: 0.24% X<sub>0</sub> (at present 0.48%)
    - others: ?? (at present 0.24%)
  - Monolithic:  $0.3 \div 0.4\%$  X<sub>0</sub> (e.g. STAR)

Fisica Nucleare







## Silicon Thickness: Status and R&D

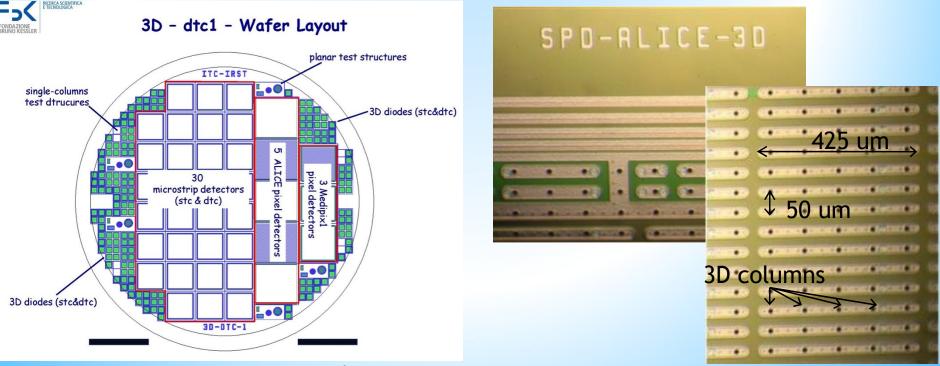


|   |                     | Si sensor [µm] | X <sub>0</sub> [%] | ASIC [µm] | X₀ [%] | X <sub>0</sub> total [%] |
|---|---------------------|----------------|--------------------|-----------|--------|--------------------------|
| C | ALICE SPD           | 200            | 0.22               | 150       | 0.16   | 0.38                     |
|   | R&D<br>intermediate | 180, 150       | 0.19, 0.16         | 80        | 0.09   | 0.28, 0.25               |
| 6 | R&D target          | 100            | 0.11               | 50        | 0.05   | 0.16                     |

#### Reminder:

- Currently 1.14% X<sub>0</sub> per layer
- 2 main contributors: silicon (0.38%) and bus (~0.48%)

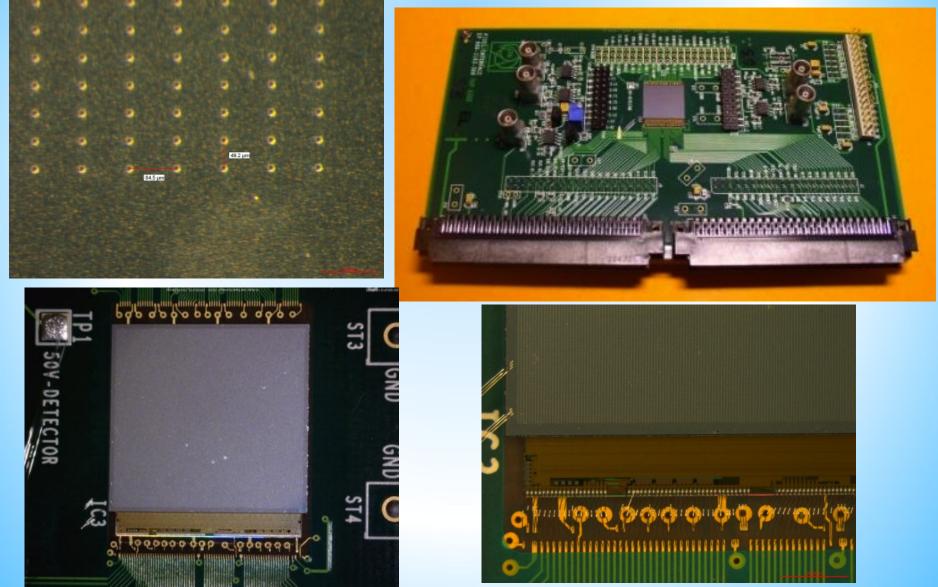



## ALICE 3D-Pixel



### ALICE 3D-Pixel sensor

IEEE TRANSACTIONS ON NUCL. SC., VOL. 55, NO. 5 (2008) 2775


- FBK multi-project wafer
  - n-type, Float Zone, crystal orientation <100>, nominal resistivity > 6 k $\Omega$  cm
  - Substrate thickness 300µm, Column depth 180µm
  - Double-sided Double-Type Column (DDTC)
- Bump-bonded at VTT to ALICE pixel front-end chip





### ALICE 3D-Pixel





V. Manzari - INFN Bari

6<sup>th</sup> "Trento" workshop – 2-4 March 2011



## Thinner Sensor Wafers



- > Procurement and Processing of thin ( $\approx 100 \mu m$ ) blank wafers is challenging
  - Processing and Handling during bump-bonding
- > Alternative:
  - Epitaxial Wafers which can be thinned during the bumping process
  - Epitaxial wafers provide a mean to use very thin sensor wafers (carrier wafer "included for free")
- First tests to use epitaxial sensors with a pixel chip done by PANDA (Daniela Calvo et al.) [see NIM A 595(2008)]
  - Using existing ALICE SPD chips and sensor layout
  - Process epi wafers with 50 -100 um epi layer at FBK, native thickness 525 um
  - Bump bond and back grind them at VTT 100 -150 um
  - All wafers broke in the thinning step, but few singles could be recovered



## **Epitaxial Sensor Wafers**



### ALICE Epi-Pixel sensor

- Goal: achieve a sensor thickness of 100  $\mu$ m (~ 0.11% X<sub>0</sub>)
- Test the sensors with the current ALICE pixel chip (optimized for 200µm sensor)
  - Purchase of 16 epi wafers from ITME (Poland): epi layer thickness  $100 \mu m$  and  $120 \mu m$
- First set of wafers processed at FBK
- 3 wafers processed at VTT
  - Substrate 525 $\mu$ m, n/Sb, res 0.008-0.02  $\Omega$ cm, <111>
  - Epi layer 95-105μm, n/P, res 2000±100 Ωcm
  - 2 wafers went successfully through all process steps, including thinning and back side patterning, no breakage!

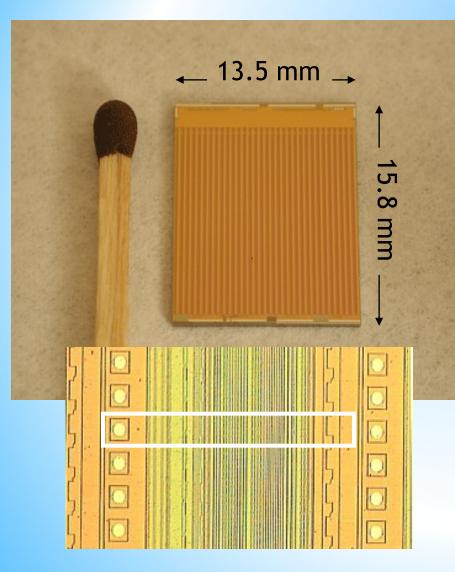


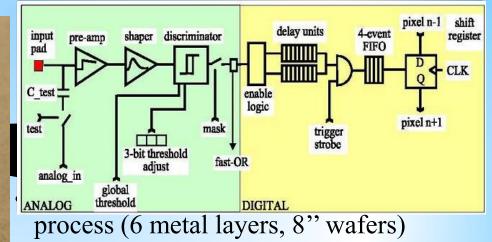
## ALICE Epi-Pixel



### ALICE Epi-Pixel sensor

- 5 singles flip-chip bonded to the current ALICE pixel front-end chip
- Overall sensor thickness: 105-115  $\mu$ m (epi layer +  $\approx$ 10  $\mu$ m)
- 2 assemblies mounted on test-cards:
  - Preliminary electrical tests in lab showed good results


~30 nA at 20V at RT, min. threshold ~ 1500 el., ~30 missing pixels


| SUCKERSCHEINEREN (EINERSCHEINERSCHEINERCHEINER (EINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHEINERSCHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| N IN THE THE REPORT OF THE PARTY OF THE PART |                   |
| NINCHARDED CONTRACTOR CONTRACTOR (CONTRACTOR CONTRACTOR CONT                                                                                                                                                                                                                                              |                   |
| NORTHER CARDANESS (CONCREMENTATION CONCREMENTATION (CONCREMENTATION) (CONCREMENTATION)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| ALAN MUMANINA (LANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALANDARCHICALA                                                                                                                                                                                                                                             |                   |
| ALLER MALTER PORTED (CHARTER MARTER DECEMBER ) (CHARTER DECEMBER ) (CHARTER DECEMBER )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| EN DALIMENT MALTANICAN) (CONCOMUNICANICANICANICANICANICANICANICANICANICA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
| REAL OF CHECKEN BALTON (CONTINUES CONTINUES CONTIN                                                                                                                                                                                                                                             |                   |
| MARKAR HEARING (CREATER AND A CREATER CREATER AND A CREATE | 000 0 000 0 000 0 |
| REAL PROPERTY (CONTRACTOR OF THE REAL PROPERTY (CONTRACTOR OF THE REAL PROPERTY) (CONTRACTOR OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |



## ALICE Pixel front end chip







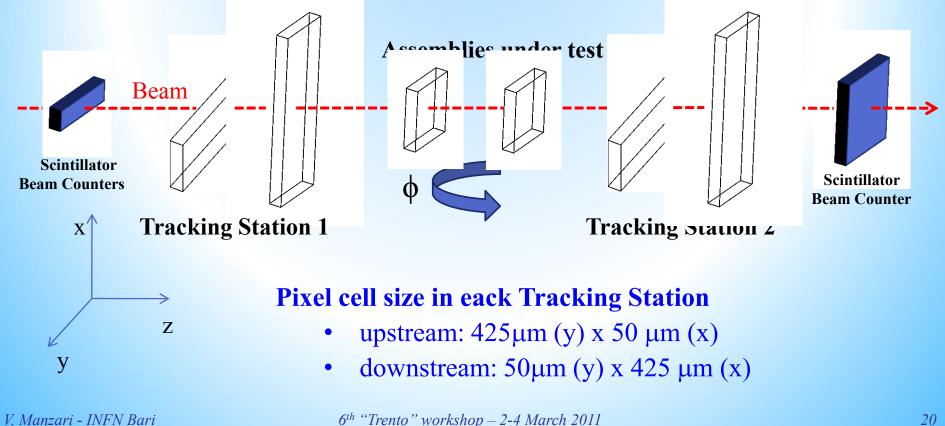
- Radiation tolerant design (enclosed gates, guard rings)
- 8192 pixel cells
- JTAG
- FastOR trigger signal
- 50  $\mu$ m (rf) x 425  $\mu$ m (z) pixel cell
- ~100  $\mu$ W/channel
- ~1000 e<sup>-</sup> mean threshold (~200 e<sup>-</sup> RMS)
- ~110 e<sup>-</sup> mean noise



### **Beam Test**



- Assemblies to be tested:
  - 2 ALICE 3D-Pixel
  - 2 ALICE Epi-Pixel
- ≻Beam
  - From 8/11/2010 to 15/11/2010
    - Bad coincidence with the start-up of the first LHC heavy ion run!
  - SPS Beam line H4
  - Positive beam (pions, protons), 350 GeV/c, up to 10<sup>4</sup> particles/spill
  - Duty cicle 49s, Flat top  $\approx$  9s, Trigger rate  $\approx$ 3KHz
- Tracking Telescope
  - 4 ALICE Pixel modules arranged in two stations
- ≻Trigger
  - FastOr logic used for selecting events (1 hit per tracking plane)
  - Scintillators for beam monitoring (never used for data taking)




## **Beam Test**



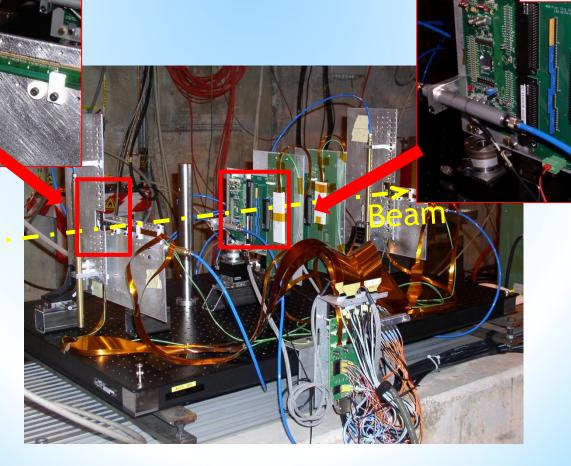
Tracking telescope:

- 2 stations, each made of 2 ALICE Pixel modules arranged in cross geometry
  pixel cell dimensions 50 x 425 µm<sup>2</sup>
- Estimated tracking precision  $\approx 10 \mu m$  both in x and y directions
- Micrometric position adjustment:
  - x-y movements for the tracking planes and x-y- $\phi$  for the assemblies under test





### Beam Test Set-up

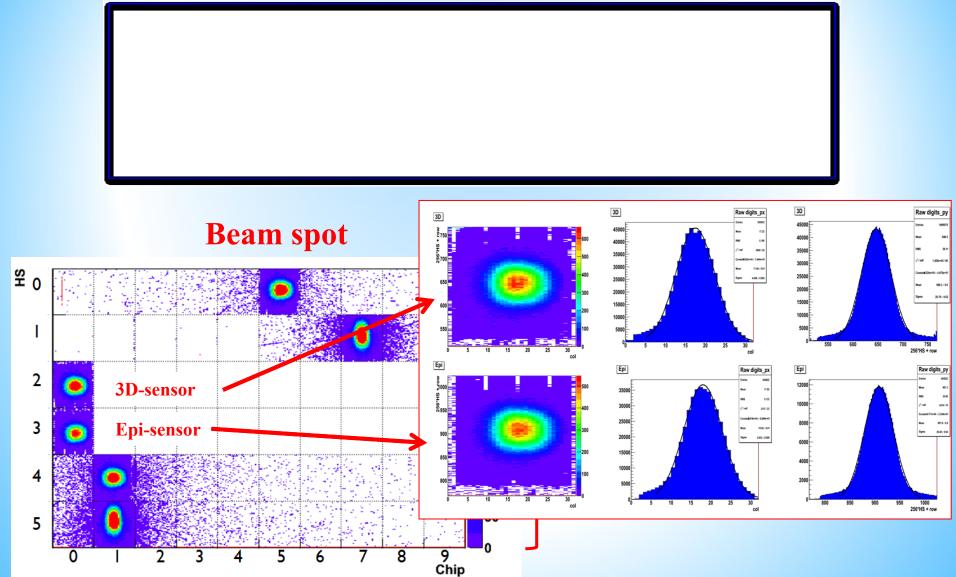



Device Under Test



Tracking **Planes** 

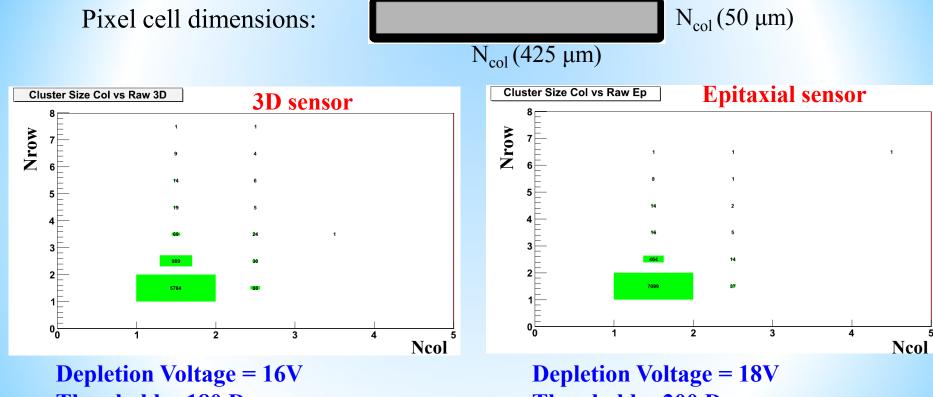
 Use of standard mechanical components (optical table, micrometric movement, etc.)




• Maximum compatibility with the ALICE DAQ, Trigger, DCS and on-line



### **Beam Test Measurements**








### Cluster Size





Threshold = 180 Dac Track impact angle = 0° Depletion Voltage = 18V Threshold = 200 Dac Track impact angle = 0°

#### > Almost all single and double clusters ( $\approx 97\%$ )

- 3D  $\rightarrow \approx 82\%$  cluster 1 &  $\approx 15\%$  cluster 2
- Epitaxial  $\rightarrow \approx 92\%$  cluster 1 &  $\approx 6\%$  cluster 2

6<sup>th</sup> "Trento" workshop – 2-4 March 2011



## Alignment

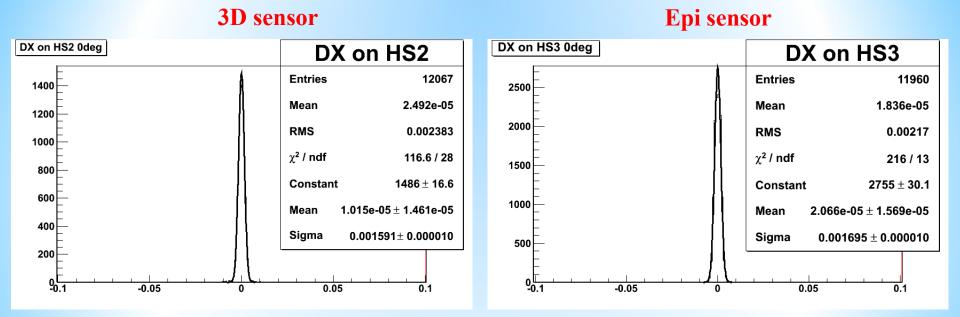


### Track Selection

- Mask noisy pixels
- Select a clean event sample: i.e. events with one hit in each tracking plane

### Tracking Telescope alignment

- Fitting straight tracks excluding the detectors under test
  - 4 space points per track
  - Distance between planes within a tracking station  $\approx 1$  cm
  - Tracks with small angles (less than 1°)
  - Multiple scattering negligible
    - 350 GeV tracks
    - low material budget ( $<1\% X_0$  per plane)


### Final alignment

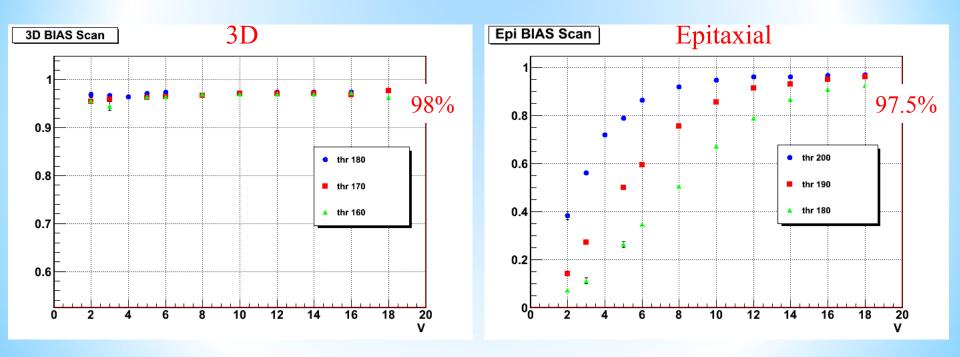
- **Re-fitting tracks including the detector under test** 
  - Use 5 points for the track fitting excluding one plane at a time
  - Iterative procedure for all planes



## 3D and Epi Residuals






0° Tracks, 16 V Bias Minimum Threshold: 3D  $\rightarrow$  180 DAC ( $\approx$ 4300 el), Epi  $\rightarrow$  200 DAC ( $\approx$ 3000 el)

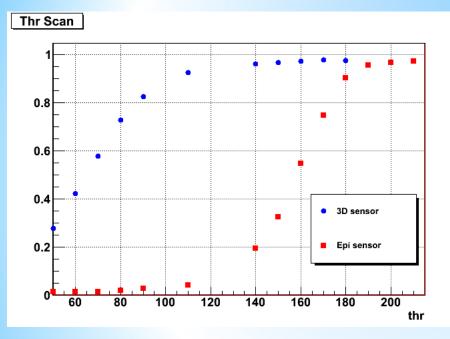


Efficiency vs V<sub>bias</sub>



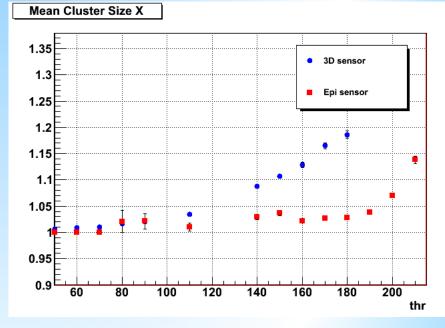
### 0° tracks




Detection Efficiency vs Depletion Voltage

6<sup>th</sup> "Trento" workshop – 2-4 March 2011

### Efficiency and Mean Cluster Size vs Thr




### 0° tracks – 16 V depletion voltage



#### **Detection Efficiency vs Threshold**

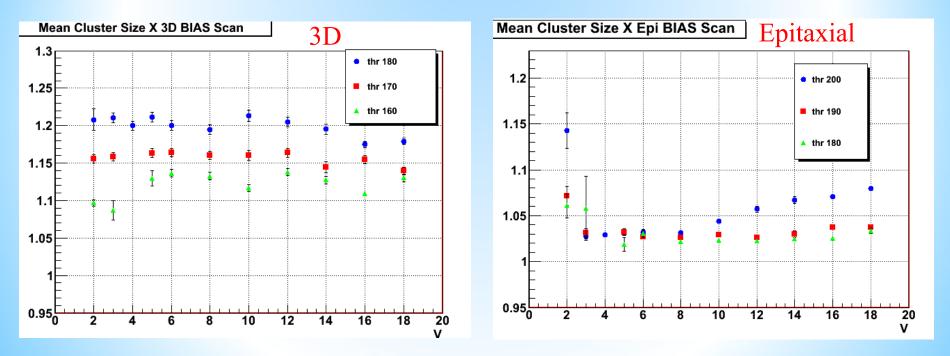
| Thr (DAC) | Thr (el.) |
|-----------|-----------|
| 200       | 3000      |
| 190       | 3600      |
| 180       | 4200      |
| 170       | 4800      |



Mean Cluster Size along short pixel dimension (50 µm) vs Threshold

 increasing DAC values correspond to decreasing effective threshold

V. Manzari - INFN Bari

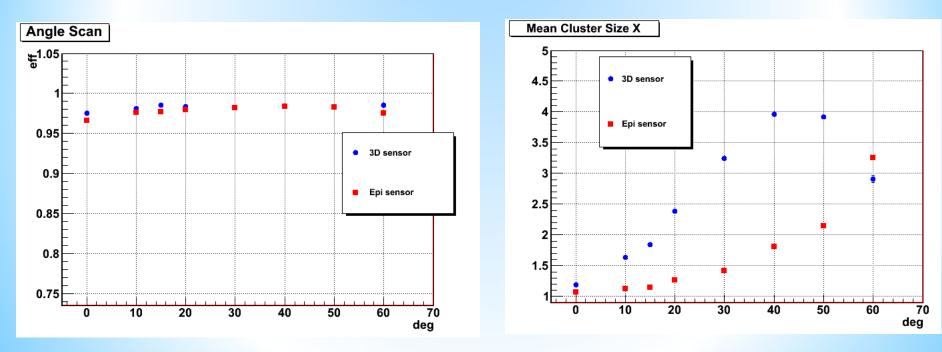

lstituto Nazionale di Fisica Nucleare



## Mean Cluster Size vs V<sub>bias</sub> and Thr



0° tracks



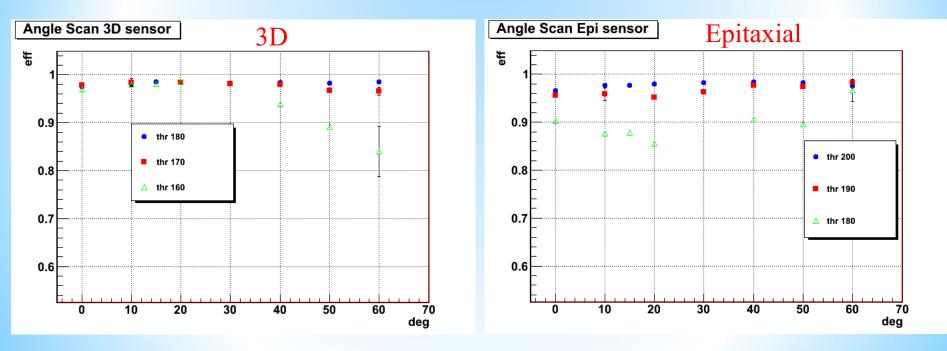

Mean Cluster Size along short pixel dimension (50 µm) vs Depletion Voltage





16V Depletion Voltage Threshold: 180 for 3D and 200 for Epi



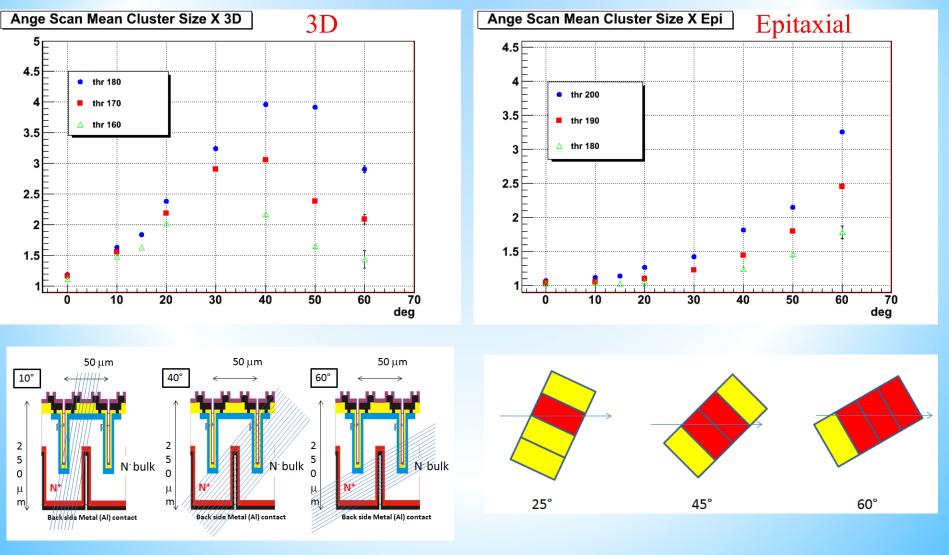

Detection Efficiency vs Track Impact Angle Mean Cluster Size along short pixel dimension (50 µm) vs Track Impact Angle



Efficiency vs Angle



### 16 V depletion voltage




Detection Efficiency vs Track impact angle

## Mean Cluster Size vs Angle and Thr



Mean Cluster Size vs Track Impact Angle – 16 V Depletion Voltage



V. Manzari - INFN Bari

Istituto Nazionale di Fisica Nucleare Sez. di Bari

6<sup>th</sup> "Trento" workshop – 2-4 March 2011

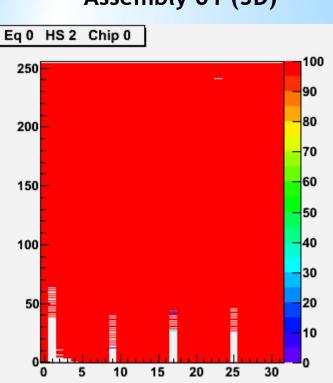


## Summary and Conclusions



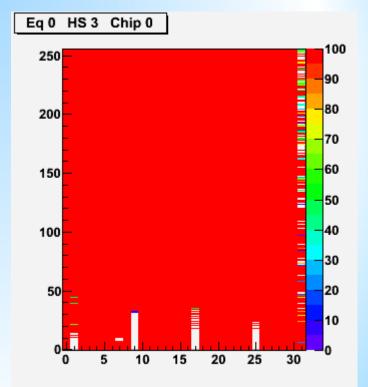
- 3D Double-sided Double-Type Column and Epitaxial sensors have been bump-bonded to the current ALICE pixel front-end chip and tested in a beam at the SPS
- Preliminary results are very promising and in particular the epitaxial thin sensor is very attractive for very light hybrid pixel detectors
- > Outlook:
  - ALICE Epi-Pixel sensor with active edge
  - Upgrade the beam test facility with a finer pitch tracking telescope






### **Back-up slides**




## Uniformity matrix scan





#### Assembly 01 (3D)

#### Assembly 02 (EPI 100um)

