
Pulse shape simulation for germanium 
detectors - SolidStateDetectors.jl

Felix Hagemann

PIRE GEMADARC Summer School
June 22nd, 2022



Example Detector Simulation Setup
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https://indico.cern.ch/event/1142628/timetable/#20220622

https://indico.cern.ch/event/1142628/timetable/#20220622


Example Detector Simulation Setup
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● Open-source simulation software package, written in 

● 3D calculation of electric potentials and electric fields

● Can simulate arbitrary geometries, e.g. segmented detectors

● Documentation: https://juliaphysics.github.io/SolidStateDetectors.jl/stable/

● Fast field calculation: SIMD on CPU, also supports GPU calculation

● Calculation of capacitance matrix

● Simulation of fields in undepleted detectors ⇒ C-V curves

● Experimental features: diffusion and self-repulsion of charge clouds

SolidStateDetectors.jl
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https://juliaphysics.github.io/SolidStateDetectors.jl/stable/


Detector 

geometry

Bias voltage

Impurity

density
Electric 

potential

4

Charge drift 

model

Drift paths

Weighting 

potentials

Raw pulsesElectric field

electrons
holes

Pulse Shape Simulation Chain



1. Maxwell equation:

SSD solves this numerically

Electric Potential Calculation

● Successive Over-Relaxation (SOR) algorithm

● Red-Black division of the grid → parallelization 
(CPU vectorization, GPU support)

● Adaptive grid
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density
Required input:

● charge density          ,

● dielectric distribution            , 

● boundary conditions for

Electric 

potential
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Electric Potential Calculation
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Numerical approach:  Divide your world (detector + surroundings) into small parts
and calculate for each part (grid point) its 

potential  Adaptive grid:              Start with a coarse grid (10 x 10 x 10 points)
and become finer (eg. 200 x 200 x 200 points)

Electric 

potential



How to calculate the potential of a single grid point?

Integral form:

Divergence theorem:

Electric Potential Calculation
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Grid size:

Set of grid points:

Mid points :
(points between 
actual grid points)

= N grid points

Electric Potential Calculation
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Electric Potential Calculation
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Electric Potential Calculation
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Electric Potential Calculation
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Electric Potential Calculation
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Electric Potential Calculation
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Electric Potential Calculation

Index   change

System of N 
linear equations
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System of N linear equations

Gauss-Seidel method

Solve this equation several times, until an equilibrium is reached 
(until it “converges”, i.e. the potential does not change any more).

The Successive Over-Relaxation (SOR) method is based on the Gauss-Seidel method, 
but normally converge much faster to its equilibrium. 

Set initial state:

Electric Potential Calculation
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Red-Black algorithm (Even / Odd)

N equations

Red (black) points do not depend on values of other red 
(black) points, so they can be updated simultaneously

Red-Black Algorithm
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julia > calculate_electric_potential!(sim)

Electric Potential Calculation
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julia > calculate_electric_potential!(sim)

Documentation on GitHub
https://juliaphysics.github.io/SolidStateDetectors.jl/stable/

Electric Potential Calculation
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https://juliaphysics.github.io/SolidStateDetectors.jl/stable/api/#SolidStateDetectors.calculate_electric_potential!-Union%7BTuple%7BT%7D,%20Tuple%7BSimulation%7BT%7D,%20Vararg%7BAny%7D%7D%7D%20where%20T%3C:Union%7BFloat16,%20Float32,%20Float64%7D
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Electric field at any point r (through linear interpolation)

Mean of finite difference:

Electric Field Calculation
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Electric Field Calculation
julia > calculate_electric_field!(sim)
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Electric field
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Ge Ge Ge Ge

Ge Ge Ge Ge

Ge Ge Ge Ge

E

one electron-hole pair per 2.96eV

conduction band

valence band

electrons

holes
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Charge Drift Models



is the mobility tensor:

- saturates for high electric field strengths

- anisotropic in germanium

- temperature dependent

Charge Drift Models
Charge carriers in germanium move in the presence of an electric field

Drift velocity of electrons and holes:

There are models for         :

L. Mihailescu et al., Nucl. Instr. and Meth. A 447 (2000) 350, doi: 10.1016/S0168-9002(99)01286-3

B. Bruyneel et al.,  Nucl. Instr. and Meth. A 569 (2006) 764, doi: 10.1016/j.nima.2006.08.130

but usually parameters of the models have to be fitted to each individual detector
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https://doi.org/10.1016/S0168-9002(99)01286-3
https://doi.org/10.1016/j.nima.2006.08.130


Charge Drift Models

Electron drift in germanium Hole drift in germanium
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SSD offers a predefined model
doi: 10.1016/j.nima.2006.08.130
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http://dx.doi.org/10.1016/j.nima.2006.08.130


julia > sim.detector = SolidStateDetector(sim.detector, cdm)
julia > cdm = ADLChargeDriftModel( )

Charge Drift Models

Documentation on GitHub
https://juliaphysics.github.io/SolidStateDetectors.jl/stable/

Charge drift 

model
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https://juliaphysics.github.io/SolidStateDetectors.jl/stable/man/charge_drift/#Custom-Charge-Drift-Model


Charge Drift Simulation
Drift velocity for electrons and holes:

Drift paths

Δt
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julia > drift_charges!(evt, sim)

julia > locations = [CartesianPoint(0.035,0,0.02), CartesianPoint(-0.015,0,0.015)]
julia > energies = [1000u”keV”, 300u”keV”]
julia > evt = Event(locations, energies)

Charge Drift Simulation

electrons
holes

Drift paths
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is the so-called weighting potential for electrode i.

It describes how much charge is induced on the electrode 
depending on the position r of the charge carrier in the crystal.

Weighting Potential Calculation

Same algorithm as for the electric potential but:
● Charge density is set to 0
● The potential values at all contacts are set to 0, 

but only the potential value of contact i is set to 1.
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Weighting Potential Calculation
julia > calculate_weighting_potential!(sim, 1)

Weighting 
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Signal Generation
Shockley-Ramo Theorem
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julia > using SolidStateDetectors, Unitful

julia > sim = Simulation{Float64}(“BEGe.yaml”)
julia > calculate_electric_potential!(sim)
julia > calculate_electric_field!(sim)
julia > for i in 1:2

calculate_weighting_potential!(sim, i) 
end

julia > locations = [CartesianPoint(0.035,0,0.02)]
julia > energies = [1000u”keV”]
julia > evt = Event(locations, energies)
julia > simulate!(evt, sim)

Pulse Shape Simulation Chain
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Constructive Solid Geometry

Documentation on GitHub
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https://juliaphysics.github.io/SolidStateDetectors.jl/stable/man/csg/


Documentation on GitHub Find the latest version of the 
documentation on GitHub: 
https://juliaphysics.github.io/
SolidStateDetectors.jl/stable/
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https://juliaphysics.github.io/SolidStateDetectors.jl/stable/
https://juliaphysics.github.io/SolidStateDetectors.jl/stable/


julia > using SolidStateDetectors, Unitful

julia > sim = Simulation{Float64}(“BEGe.yaml”)
julia > calculate_electric_potential!(sim)
julia > calculate_electric_field!(sim)
julia > for i in 1:2

calculate_weighting_potential!(sim, i) 
end

julia > locations = [CartesianPoint(0.035,0,0.02)]
julia > energies = [1000u”keV”]
julia > evt = Event(locations, energies)
julia > simulate!(evt, sim)

Pulse Shape Simulation Chain
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Undepleted Detectors
julia > using SolidStateDetectors, Unitful

julia > sim = Simulation{Float64}(“BEGe.yaml”)
julia > sim.detector = SolidStateDetector(sim, contact_potential = 500, contact_id = 1)
julia > calculate_electric_potential!(sim, depletion_handling = true)
julia > calculate_electric_field!(sim)
julia > for i in 1:2

calculate_weighting_potential!(sim, i, depletion_handling = true) 
end

julia > calculate_mutual_capacitance(sim, (1, 2))
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GPU Support
julia > using SolidStateDetectors, Unitful
julia > using CUDAKernels, CUDA

julia > sim = Simulation{Float64}(“BEGe.yaml”)
julia > calculate_electric_potential!(sim, device_array_type = CuArray)
julia > calculate_electric_field!(sim)
julia > for i in 1:2

calculate_weighting_potential!(sim, i, device_array_type = CuArray) 
end

julia > locations = [CartesianPoint(0.035,0,0.02)]
julia > energies = [1000u”keV”]
julia > evt = Event(locations, energies)
julia > simulate!(evt, sim)
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Simulating Group Effects
julia > using SolidStateDetectors, Unitful

julia > sim = Simulation{Float64}(“BEGe.yaml”)
julia > calculate_electric_potential!(sim)
julia > calculate_electric_field!(sim)
julia > for i in 1:2

calculate_weighting_potential!(sim, i) 
end

julia > locations = [CartesianPoint(0.035,0,0.02)]
julia > energies = [1000u”keV”]
julia > evt = Event(NBodyChargeCloud(locations, energies, 100))
julia > simulate!(evt, sim, diffusion = true, self_repulsion = true)
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