
Pulse shape simulation for germanium
detectors - SolidStateDetectors.jl

Felix Hagemann

PIRE GEMADARC Summer School
June 22nd, 2022

Example Detector Simulation Setup

1

https://indico.cern.ch/event/1142628/timetable/#20220622

https://indico.cern.ch/event/1142628/timetable/#20220622

Example Detector Simulation Setup

2

● Open-source simulation software package, written in

● 3D calculation of electric potentials and electric fields

● Can simulate arbitrary geometries, e.g. segmented detectors

● Documentation: https://juliaphysics.github.io/SolidStateDetectors.jl/stable/

● Fast field calculation: SIMD on CPU, also supports GPU calculation

● Calculation of capacitance matrix

● Simulation of fields in undepleted detectors ⇒ C-V curves

● Experimental features: diffusion and self-repulsion of charge clouds

SolidStateDetectors.jl

3

https://juliaphysics.github.io/SolidStateDetectors.jl/stable/

Detector

geometry

Bias voltage

Impurity

density
Electric

potential

4

Charge drift

model

Drift paths

Weighting

potentials

Raw pulsesElectric field

electrons
holes

Pulse Shape Simulation Chain

1. Maxwell equation:

SSD solves this numerically

Electric Potential Calculation

● Successive Over-Relaxation (SOR) algorithm

● Red-Black division of the grid → parallelization
(CPU vectorization, GPU support)

● Adaptive grid

Detector

geometry

Bias voltage

Impurity

density
Required input:

● charge density ,

● dielectric distribution ,

● boundary conditions for

Electric

potential

5

Electric Potential Calculation

6

Numerical approach: Divide your world (detector + surroundings) into small parts
and calculate for each part (grid point) its

potential Adaptive grid: Start with a coarse grid (10 x 10 x 10 points)
and become finer (eg. 200 x 200 x 200 points)

Electric

potential

How to calculate the potential of a single grid point?

Integral form:

Divergence theorem:

Electric Potential Calculation

7

Electric

potential

Grid size:

Set of grid points:

Mid points :
(points between
actual grid points)

= N grid points

Electric Potential Calculation

8

Electric

potential

Electric Potential Calculation

9

Electric

potential

Electric Potential Calculation

10

Electric

potential

Electric Potential Calculation

11

Electric

potential

Electric Potential Calculation

12

Electric

potential

Electric Potential Calculation

13

Electric

potential

Electric Potential Calculation

Index change

System of N
linear equations

14

Electric

potential

System of N linear equations

Gauss-Seidel method

Solve this equation several times, until an equilibrium is reached
(until it “converges”, i.e. the potential does not change any more).

The Successive Over-Relaxation (SOR) method is based on the Gauss-Seidel method,
but normally converge much faster to its equilibrium.

Set initial state:

Electric Potential Calculation

15

Electric

potential

Red-Black algorithm (Even / Odd)

N equations

Red (black) points do not depend on values of other red
(black) points, so they can be updated simultaneously

Red-Black Algorithm

16

Electric

potential

julia > calculate_electric_potential!(sim)

Electric Potential Calculation

17

Electric

potential

julia >

julia > calculate_electric_potential!(sim)

Documentation on GitHub
https://juliaphysics.github.io/SolidStateDetectors.jl/stable/

Electric Potential Calculation

18

Electric

potential

https://juliaphysics.github.io/SolidStateDetectors.jl/stable/api/#SolidStateDetectors.calculate_electric_potential!-Union%7BTuple%7BT%7D,%20Tuple%7BSimulation%7BT%7D,%20Vararg%7BAny%7D%7D%7D%20where%20T%3C:Union%7BFloat16,%20Float32,%20Float64%7D

Detector

geometry

Bias voltage

Impurity

density
Electric

potential

19

Charge drift

model

Drift paths

Weighting

potentials

Raw pulsesElectric field

electrons
holes

Pulse Shape Simulation Chain

Electric field at any point r (through linear interpolation)

Mean of finite difference:

Electric Field Calculation

Electric

potential

Electric field

20

Electric Field Calculation
julia > calculate_electric_field!(sim)

21

Electric field

julia >

Detector

geometry

Bias voltage

Impurity

density
Electric

potential

22

Charge drift

model

Drift paths

Weighting

potentials

Raw pulses

electrons
holes

Electric field

Pulse Shape Simulation Chain

Ge Ge Ge Ge

Ge Ge Ge Ge

Ge Ge Ge Ge

E

one electron-hole pair per 2.96eV

conduction band

valence band

electrons

holes
23

Charge Drift Models

is the mobility tensor:

- saturates for high electric field strengths

- anisotropic in germanium

- temperature dependent

Charge Drift Models
Charge carriers in germanium move in the presence of an electric field

Drift velocity of electrons and holes:

There are models for :

L. Mihailescu et al., Nucl. Instr. and Meth. A 447 (2000) 350, doi: 10.1016/S0168-9002(99)01286-3

B. Bruyneel et al., Nucl. Instr. and Meth. A 569 (2006) 764, doi: 10.1016/j.nima.2006.08.130

but usually parameters of the models have to be fitted to each individual detector

24

Charge drift

model

https://doi.org/10.1016/S0168-9002(99)01286-3
https://doi.org/10.1016/j.nima.2006.08.130

Charge Drift Models

Electron drift in germanium Hole drift in germanium

25
SSD offers a predefined model
doi: 10.1016/j.nima.2006.08.130

Charge drift

model

http://dx.doi.org/10.1016/j.nima.2006.08.130

julia > sim.detector = SolidStateDetector(sim.detector, cdm)
julia > cdm = ADLChargeDriftModel()

Charge Drift Models

Documentation on GitHub
https://juliaphysics.github.io/SolidStateDetectors.jl/stable/

Charge drift

model

26

https://juliaphysics.github.io/SolidStateDetectors.jl/stable/man/charge_drift/#Custom-Charge-Drift-Model

Charge Drift Simulation
Drift velocity for electrons and holes:

Drift paths

Δt

27

julia > drift_charges!(evt, sim)

julia > locations = [CartesianPoint(0.035,0,0.02), CartesianPoint(-0.015,0,0.015)]
julia > energies = [1000u”keV”, 300u”keV”]
julia > evt = Event(locations, energies)

Charge Drift Simulation

electrons
holes

Drift paths

28

Detector

geometry

Bias voltage

Impurity

density
Electric

potential

29

Weighting

potentials

Raw pulsesElectric field

Charge drift

model

Drift paths

electrons
holes

Pulse Shape Simulation Chain

is the so-called weighting potential for electrode i.

It describes how much charge is induced on the electrode
depending on the position r of the charge carrier in the crystal.

Weighting Potential Calculation

Same algorithm as for the electric potential but:
● Charge density is set to 0
● The potential values at all contacts are set to 0,

but only the potential value of contact i is set to 1.

Weighting

potentials

30

Weighting Potential Calculation
julia > calculate_weighting_potential!(sim, 1)

Weighting

potentials

31

Signal Generation
Shockley-Ramo Theorem

electrons
holes

Raw pulses

32

Detector

geometry

Bias voltage

Impurity

density
Electric

potential

Charge drift

model

Drift paths

Weighting

potentials

33

Raw pulsesElectric field

electrons
holes

Pulse Shape Simulation Chain

julia > using SolidStateDetectors, Unitful

julia > sim = Simulation{Float64}(“BEGe.yaml”)
julia > calculate_electric_potential!(sim)
julia > calculate_electric_field!(sim)
julia > for i in 1:2

calculate_weighting_potential!(sim, i)
end

julia > locations = [CartesianPoint(0.035,0,0.02)]
julia > energies = [1000u”keV”]
julia > evt = Event(locations, energies)
julia > simulate!(evt, sim)

Pulse Shape Simulation Chain

34

Configuration File Impurity

density

Charge drift

model

Bias voltage

Detector

geometry

Constructive Solid Geometry

Documentation on GitHub

35

https://juliaphysics.github.io/SolidStateDetectors.jl/stable/man/csg/

Documentation on GitHub Find the latest version of the
documentation on GitHub:
https://juliaphysics.github.io/
SolidStateDetectors.jl/stable/

36

https://juliaphysics.github.io/SolidStateDetectors.jl/stable/
https://juliaphysics.github.io/SolidStateDetectors.jl/stable/

julia > using SolidStateDetectors, Unitful

julia > sim = Simulation{Float64}(“BEGe.yaml”)
julia > calculate_electric_potential!(sim)
julia > calculate_electric_field!(sim)
julia > for i in 1:2

calculate_weighting_potential!(sim, i)
end

julia > locations = [CartesianPoint(0.035,0,0.02)]
julia > energies = [1000u”keV”]
julia > evt = Event(locations, energies)
julia > simulate!(evt, sim)

Pulse Shape Simulation Chain

37

Undepleted Detectors
julia > using SolidStateDetectors, Unitful

julia > sim = Simulation{Float64}(“BEGe.yaml”)
julia > sim.detector = SolidStateDetector(sim, contact_potential = 500, contact_id = 1)
julia > calculate_electric_potential!(sim, depletion_handling = true)
julia > calculate_electric_field!(sim)
julia > for i in 1:2

calculate_weighting_potential!(sim, i, depletion_handling = true)
end

julia > calculate_mutual_capacitance(sim, (1, 2))

38

GPU Support
julia > using SolidStateDetectors, Unitful
julia > using CUDAKernels, CUDA

julia > sim = Simulation{Float64}(“BEGe.yaml”)
julia > calculate_electric_potential!(sim, device_array_type = CuArray)
julia > calculate_electric_field!(sim)
julia > for i in 1:2

calculate_weighting_potential!(sim, i, device_array_type = CuArray)
end

julia > locations = [CartesianPoint(0.035,0,0.02)]
julia > energies = [1000u”keV”]
julia > evt = Event(locations, energies)
julia > simulate!(evt, sim)

39

Simulating Group Effects
julia > using SolidStateDetectors, Unitful

julia > sim = Simulation{Float64}(“BEGe.yaml”)
julia > calculate_electric_potential!(sim)
julia > calculate_electric_field!(sim)
julia > for i in 1:2

calculate_weighting_potential!(sim, i)
end

julia > locations = [CartesianPoint(0.035,0,0.02)]
julia > energies = [1000u”keV”]
julia > evt = Event(NBodyChargeCloud(locations, energies, 100))
julia > simulate!(evt, sim, diffusion = true, self_repulsion = true)

40

