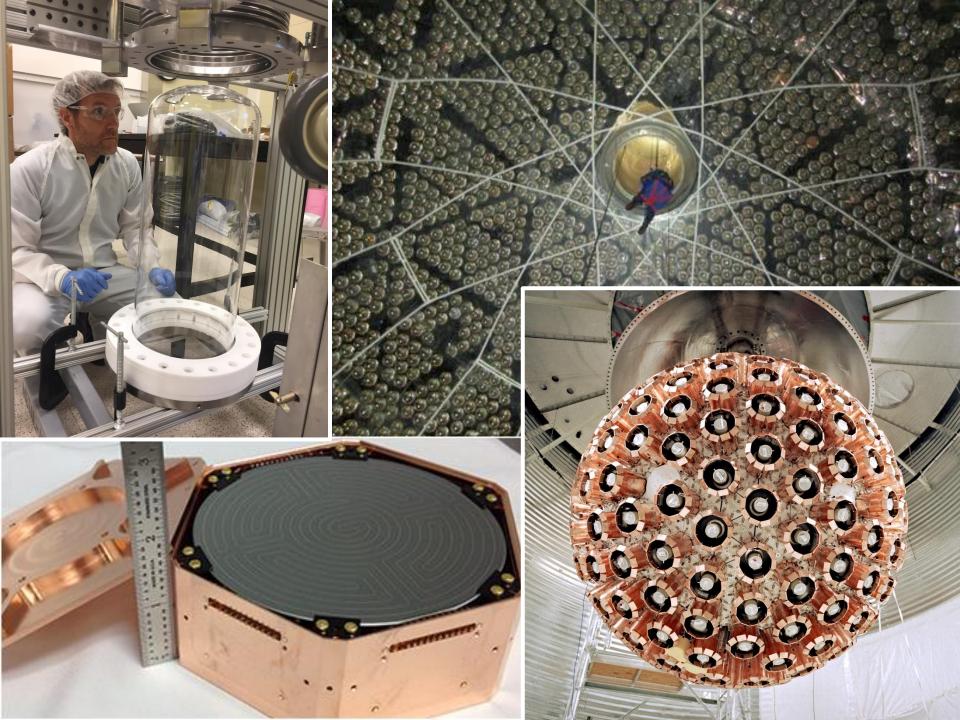
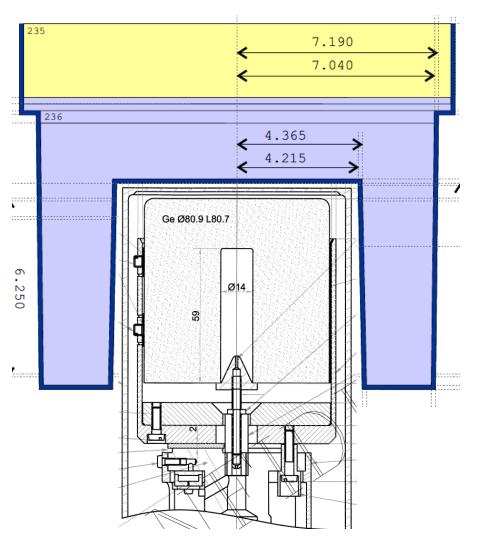
2022/05/12

Gamma Ray Counting for Low Background Experiments

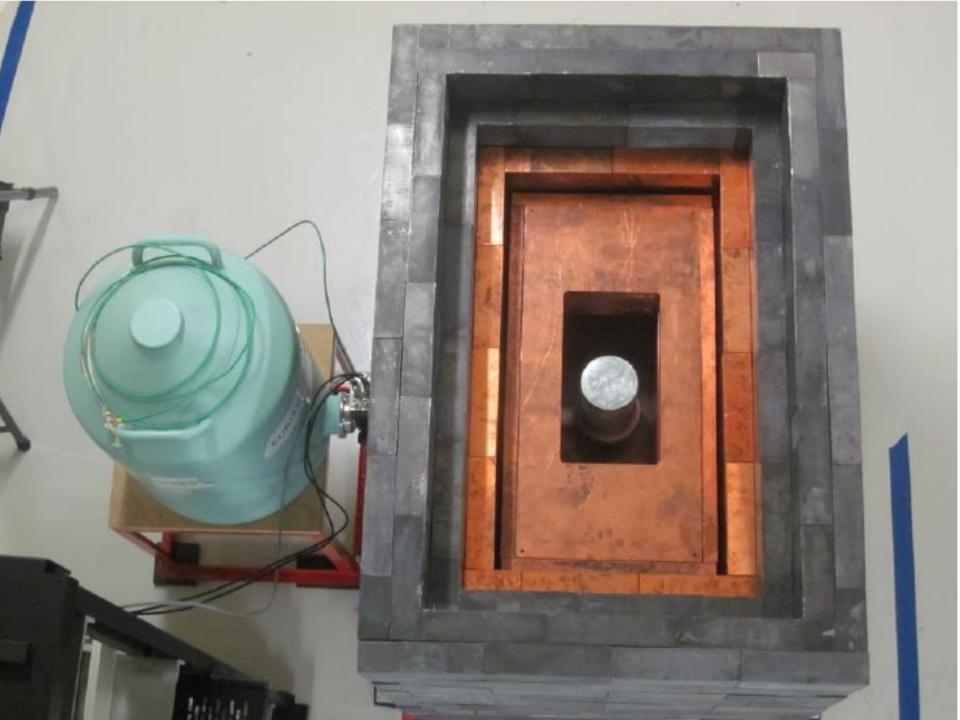
Tom Sonley Staff Scientist



Interspec Gamma Ray Software


- <u>https://github.com/sandialabs/InterSpec/releases/tag/v1.0.9</u>
- Please download and install the appropriate version for your OS.

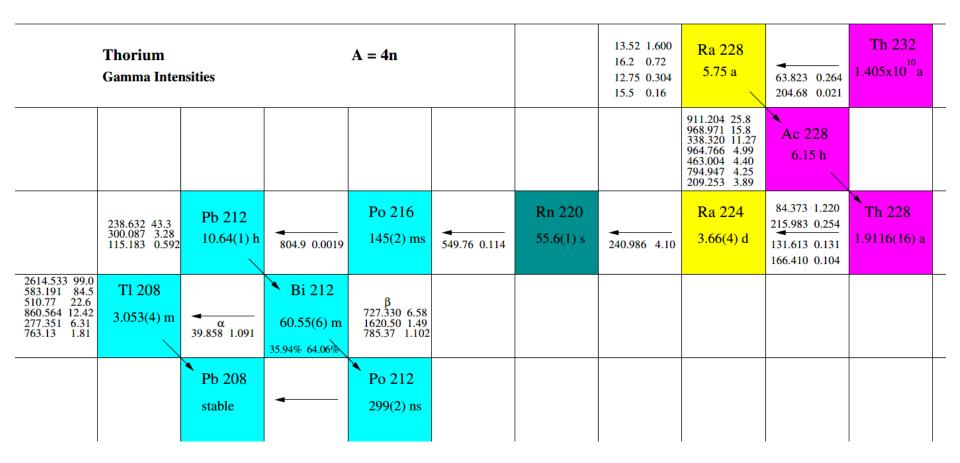
Alternatives To InterSpec


- <u>https://hekili.ca.sandia.gov/CAMBIO/</u>
 - The information will be in different locations
- Work with a friend (maybe on discord)
- Excel, Python, or Google Sheets
 - Open the Mine_Dust_Data_Excel.csv file
 - Use the "integration method" shown at the end of the presentation

Gamma Ray Detection

- High-purity germanium crystal detectors
- Cooled with liquid nitrogen
- Shielded with lowactivity copper and lead

Example Radioactivity Levels


- ¹⁴C 1 ppt of natural Carbon
- ⁴⁰K 120 ppm of natural Potassium
- ²³⁸U 1 to 10 ppm in rocks and soil
- ²³²Th 1 to 10 ppm in rocks and soil
- Thoriated welding rods: 1-4% ²³²Th
- Screened low-background materials <1 ppb U, Th
- Rn gas
 - 1 to 100 Bq/m³ on surface.
 - ~3 Bq/m³ in Sudbury
 - ~130 Bq/m³ at SNOLAB

Sources of Radioactive Backgrounds

- Nearly stable isotopes
 - ²³⁸U 4.5 x 10⁹ years
 - 232 Th 1.4 x 10¹⁰ years
 - ${}^{235}\text{U} 7 \ge 10^8 \text{ years}$
 - ${}^{40}\text{K} 1.3 \times 10^9 \text{ years}$
- Activated isotopes
 - ¹⁴C 5,700 years
 - ³⁹Ar 270 years
 - ⁷Be 53 days
- Daughter isotopes
 - ²¹⁰Pb 22 years
 - ²⁰⁸TI 3 minutes
 - ²²⁸Ac 6.2 hours

- Gaseous daughter isotopes
 - 220 Rn 56 seconds
 - ²²²Rn 3.8 days
 - ⁴He stable
- Fission products
 - ¹³⁷Cs 30 years
 - ¹³¹I 8 days
- Man-made isotopes
 - ⁶⁰Co 5.3 years
 - ³H 12 years
 - ¹⁸F 110 minutes

²³²Th Chain

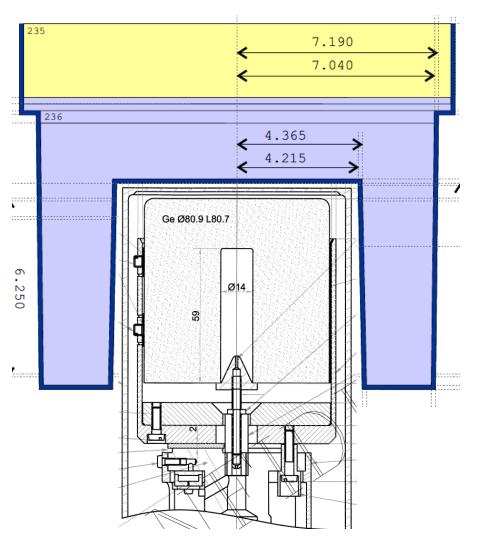
²³⁵U Chain

Actinium Gamma Intensities			A = 4n + 3					25.64 14.5 84.214 6.6	Th 231 1.0633 d	185.715 57.2 143.76 10.96 163.33 5.08 205.311 5.01 109.16 1.54 202.11 1.08	U 235	
		293.56 100 271.23 8.2 517.60 4.3 776.90 3.4 1398.8 3.4 564.09 2.8 608.30 2.8 835.32 2.6 +	Bi 215 7.6 m	α none β none	At 219 56 s ~97% ~3%	$ \begin{array}{c} \alpha & \text{none} \\ \beta & 50.13 & 36.0 \\ \beta & 79.72 & 9.1 \\ \hline \\ \beta & 234.81 & 3.0 \\ \beta & 49.89 & 2.7 \end{array} $	Fr 223 21.8 m 0.006% 99.994%	α 160.26 0.0059 Φ β none	Ac 227 21.773(3) a 1.380% 98.620%	27.36 10.29 300.07 2.47 302.65 2.19 2 83.69 1.70 330.06 1.40 19.00 0.374	Pa 231 3.276x10 ⁴ a	
	404.853 3.78 832.01 3.52 427.088 1.76	Pb 211 36.1(2) m	∢ 438.8 ~0.040	Po 215 1.781(4) ms	2 71.23 10.8 401.81 6.37	Rn 219 3.96(1) s	269.459 13.70 154.21 5.62 323.871 3.93 144.232 3.22 338.281 2.79 445.031 1.27	Ra 223 11.435(4) d	235.971 12.3 50.13 8.26 256.25 7.01 329.85 2.69 300.00 2.32 286.12 1.53			
897.80 0.260 569.702 0.00159 328.12 0.00140	4.77 m	α 351.059 12.91 β none	Bi 211 2.14(2) m 99.724% 0.276%									
		Pb 207 stable	8 97.80 0.561 569.702 0.5	Po 211 516 ms								

²³⁸U Chain

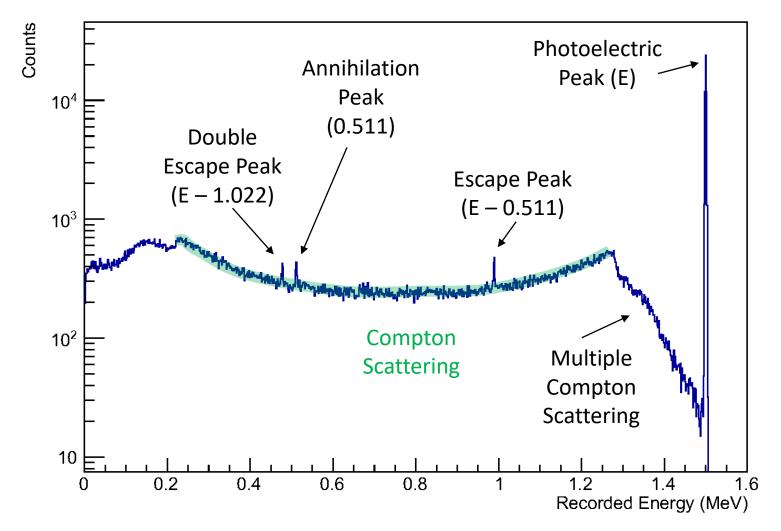
Uranium – Radium Gamma Intensities				A = 4n + 2					63.29 4.84 92.38 2.81 92.80 2.77 112.81 0.28	Th 234 24.10 d	49.55 0.064 113.5 0.010	U 238 4.468x10 ⁹ a
										1001.03 0.837 766.38 0.294	Pa 234 [*] 1.17 m 6.7 h	2.269 98.2%
	351.932 37.6 295.224 19.3 241.997 7.43 53.2275 1.2 785.96 1.07	Pb 214 26.8(9) m	α none β none	Po 218 3.10(1) m 9.980% 0.020%	5 11 0.076	Rn 222 3.8235(3) d	4 186.211 3.59	Ra 226 1600(1) a	67.672 0.378	Th 230 7.538x10 ⁴ a	53.20 0.123	U 234 7.455x10 ⁵ a
799 99 298 79 1316 21 1210 17 1070 12 1110 6.9 2010 6.9	Tl 210 1.30(3) m	β 609.312 46.1 β 1764.494 15.4 β 120.287 15.1 β 1238.110 5.79 β 2204.21 5.08 β 768.356 4.94 β 1377.669 4.00 β 934.061 3.03	α none Bi 214 19.9(4) m 0.276% 99.724%	none	At 218 1.5 s							
	46.539 4.25	Pb 210 22.3(2) a	▼ 799.7 0.0104	Po 214 164.3(20) us								
		none	Bi 210 5.013 d									
		Pb 206 stable	803.10 0.00121	Po 210 138.376 d								

Gamma Ray Generation


 $\begin{array}{c} 208 \text{Tl} \\ 22.2\% & \beta^{-} \\ 49.1\% \\ 3.47 \text{ MeV} \\ 3.2 \text{ MeV} \\ 73 & \gamma^{2} \\ 2.61 \text{ MeV} \\ \gamma_{1} \\ 0 \end{array}$

Eg (keV)	Ig (%)	Decay mode
211.40 15	0.178 20	b⁻
233.36 15	0.307 20	b⁻
252.61 10	0.69 4	b⁻
277.351 10	6.31 9	b-
277.72		b⁻
485.95 15	0.050 5	b⁻
510.77 10	22.6 3	b⁻
583.191 <i>2</i>	84.5 7	b⁻
1381.1 5	0.007 <i>3</i>	b⁻
1647.5 7	0.0020 10	b-
1744.0 7	0.0020 10	b-
2614.533 13	99	b⁻

Gammas from ²⁰⁸TI (3.053 m 4)


Lund/LBNL Nuclear Data http://nucleardata.nuclear.lu.se

Gamma Ray Detection

- High-purity germanium crystal detectors
- Cooled with liquid nitrogen
- Shielded with lowactivity copper and lead

Simulation of 1.5 MeV Gamma Rays

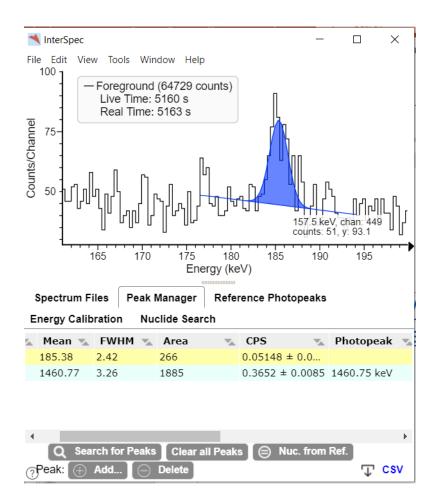
Line widths are usually set by the resolution of the detector. Germanium detectors have resolutions of 1 to 3 keV.

Analysis Method

- Focus only on photoelectric peak
- Calculate number of observed events in peak
- Convert to activity for that isotope

$$N = \Omega \epsilon \frac{Ig}{100} M t A$$

- Ω = Solid Angle factor (from Simulations)
- ϵ = Photoelectric peak efficiency (from Simulations)
- *Ig* = Branch Probability (from Lund database)
- *M* = Sample mass
- *t* = Data acquisition time
- A = Activity (units such as Bq/kg)


Analysis Goals

- What radioactive elements are present in your samples?
- What is the activity (with uncertainty) of each of these elements?
- Are these activities consistent with other measurements?

- Are there any decay chains present?
- Are the elements in the chains in equilibrium?
 - Or have certain elements been concentrated or diluted?
- What are the dominant uncertainties in your analysis?

InterSpec

- <u>https://github.com/san</u> <u>dialabs/interspec/relea</u> <u>ses</u>
- Can open many data formats
- Automatic Peak Fitting
- Automatic Background Subtraction
- Library of Gamma Ray Nuclides

InterSpec Usage

- Open the Mine_Dust_Data.chn file
- View -> Chart Options -> Linear Y-Scale
- Zoom in by dragging right
- Zoom out by dragging left
- Double-click on a peak to fit it
 - Details show up in the bottom peak manager
- Right-click on a peak to refit

- Use Nuclide Search tab to identify peaks
 - Click on peak to automatically fill energy
 - Search for decays with high "Rel B.R." = Relative Branching Ratio
 - InterSpec will sometimes list multiple "Parents" for the same decay. Just choose one.

InterSpec Parameters

mean: 294.99 keV FWHM: 2.957 keV (1.00%)
peak area: 469.0±29.6
ROI counts: 2090 Ra226 (Pb214, 295.24 keV)
Foreground (64720 cours

N = "peak area" while hovering over peak fit

$$N = \Omega \epsilon \frac{Ig}{100} M t A$$

- Foreground (64729 counts) Live Time: 5160 s Real Time: 5163 s t = "Live Time" in box over spectrum

tion Nuclide Search

901.26 13

904.19 3

911.204 4

919.01 13

921.98 10

000 5 0

0.0163

0.77 3

25.84

0.027.3

0.0147 21

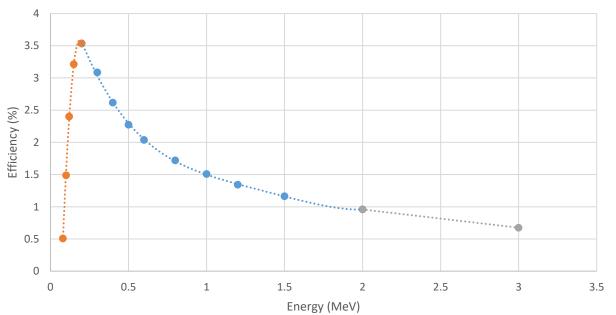
0.0147.01

b-

b-

b-

b-

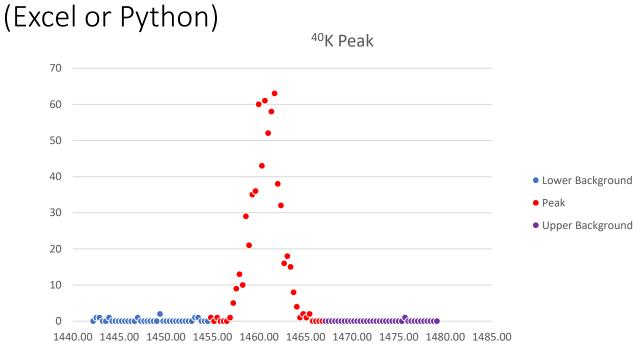

b-

Parent 🐁	Energy (keV) 🐁	Diff. 🔨	Rel. B.R. 🐁	Profile 🔨	Decay 🔨	Parent H.L.
Ra228	911.20	0.66	0.40	0.56	Ac228→Th228	5.75 y
Th232	911.20	0.66	0.63	0.54	Ac228-•Th228	1.4e+10 y
Ac228	911.20	0.66	1.00	0.51	Ac228→Th228	6.15 h
U236	911.20	0.66	0.00	0.46	Ac228→Th228	2.3e+07 y
5-887.33 10	/ ^4J.U2/ 3	b°	1 00	0.24	D-000 TL000	22.00 L

BR = Use the Decay and Energy to look up the Branching Ratio on the Lund Site

Simulation Parameters

- The product $\Omega \epsilon$ is calculated by simulation.
- Open Mine_Dust_Efficiency.csv in Excel, Python, or Google Sheets
- Interpolate between given points



Efficiency

 $N = \Omega \epsilon \frac{Ig}{100} M t A$

For example, $\Omega \epsilon$ = .012 +/- 0.001 at 1750 keV

Integration Method

- Integrate 2 to 3 peak widths around the peak
- Subtract off average background
- If same number of bins, $N_{K} = N_{Peak} N_{LB}/2 N_{UB}/2$
- For PGT detector (in keV)
 - $Width = 0.994 + 1.4e \cdot 2\sqrt{E} + 3.18e \cdot 4E$

Error Propagation

$$F = f(a, b)$$
$$\sigma_F^2 = \left(\frac{\partial F}{\partial a}\sigma_a\right)^2 + \left(\frac{\partial F}{\partial b}\sigma_b\right)^2$$

For linear multiplicative uncertainties:

$$F = \frac{dI}{c}$$

$$\sigma_F^2 = F^2 \left(\frac{{\sigma_a}^2}{a^2} + \frac{{\sigma_b}^2}{b^2} + \frac{{\sigma_c}^2}{c^2} \right)$$

Error Comparisons

Measurement precision is given by $\frac{\sigma_F}{F}$

$$\frac{\sigma_F^2}{F^2} = \left(\frac{\partial F}{\partial a}\frac{\sigma_a}{F}\right)^2 + \left(\frac{\partial F}{\partial b}\frac{\sigma_b}{F}\right)^2$$

Source	Uncertainty (%)
Uncertainty on Counts	10.2
Detection Efficiency	5
Branching Ratio	1
Sample Mass	0.1
Livetime	.001
Total	11.4

- Usually summarized in an Error Table
- Since they are added in quadrature, only the largest ones matter.
- e.g. "Uncertainty on Counts" contributes 80% of the total

Rules of Thumb

- Dominant Uncertainties
 - > 1/3 of max uncertainty
 - These must be addressed to improve the measurement
 - Papers and reports must describe how these were estimated
- Secondary Uncertainties
 - 1/3 to 1/10 of max uncertainty
 - These could become dominant in an improved measurement
 - Reports should describe the general method used to estimate them (repeated measurements, simulations, etc.)
- Negligible Uncertainties
 - < 1/10 of max uncertainty
 - They must go in the error table
 - Reports should spend less than 1 sentence describing them.