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Isotropic solution in mimetic-like gravity coupled with
Lagrange multiplier

In the mimetic theory, the metric gµν is defined in terms of an
auxiliary metric ḡµν and a scalar field η as

gµν = ḡµν ḡ
αβ∂αη∂βη . (1)

The action of the mimetic-like gravity coupled with the Lagrange
multiplier λ and the function ω has the form

S =

∫
dx4

√
−g {R + λ (gµνω∂µη∂νη + 1)}+ Lmatt , (2)

where Lmatt is the Lagrangian of the matter field and η is the
mimetic scalar field.



Isotropic solution in mimetic-like gravity coupled with
Lagrange multiplier

The field equations:

0 = Rµν −
1

2
gµνR +

1

2
gµν {λ (gρσω∂ρη∂ση + 1)} − λ∂µη∂νη +

1

2
Tµν ,

(3)

where Tµν is the energy-momentum tensor corresponding to the
matter field.

The variation the action (2) w.r.t. the mimetic scalar field η gives:

2∇µ(λω ∂µη) = 0 . (4)

At the end, the variation of the action (2) w.r.t. the Lagrange
multiplier λ yields:

gρσω∂ρη∂ση = −1 . (5)



Isotropic solution in mimetic-like gravity coupled with
Lagrange multiplier

The field equations:

0 = Rµν −
1

2
gµνR +

1

2
gµν {λ (gρσω∂ρη∂ση + 1)} − λ∂µη∂νη +

1

2
Tµν ,

(3)

where Tµν is the energy-momentum tensor corresponding to the
matter field.
The variation the action (2) w.r.t. the mimetic scalar field η gives:

2∇µ(λω ∂µη) = 0 . (4)

At the end, the variation of the action (2) w.r.t. the Lagrange
multiplier λ yields:

gρσω∂ρη∂ση = −1 . (5)



Isotropic solution in mimetic-like gravity coupled with
Lagrange multiplier

The field equations:

0 = Rµν −
1

2
gµνR +

1

2
gµν {λ (gρσω∂ρη∂ση + 1)} − λ∂µη∂νη +

1

2
Tµν ,

(3)

where Tµν is the energy-momentum tensor corresponding to the
matter field.
The variation the action (2) w.r.t. the mimetic scalar field η gives:

2∇µ(λω ∂µη) = 0 . (4)

At the end, the variation of the action (2) w.r.t. the Lagrange
multiplier λ yields:

gρσω∂ρη∂ση = −1 . (5)



Isotropic solution in mimetic-like gravity coupled with
Lagrange multiplier

Applying the field equations (3) and (4) to the spherically
symmetric spacetime

ds2 = f (r)dt2 − dr2

f1(r)
− r2

(
dθ2 + r2 sin2 θdϕ2

)
, (6)



Isotropic solution in mimetic-like gravity coupled with
Lagrange multiplier

The (t, t)-component of the field equation (3) is:

ρ(r) =
1− f1 − rf ′1

r2
, (7)

the (r , r)-component of the field equation (3) is:

p(r) =
f1f

′r − f + ff1 − λω(r)η′2ff1r
2

r2f
, (8)

both of the (θ, θ) and (ϕ, ϕ)-components of the field equation (3)
have the form:

p(r) =
2 f1f

′′fr − f ′2f1r + f (2 f1 + f ′1r) f
′ + 2 f ′1f

2

4f 2r
, (9)

and the field equation (4) takes the form:

0 = 2λ′ωfr +
[
ω′fr + ω

(
f ′r + 4 f

)]
λ , (10)
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Isotropic solution in mimetic-like gravity coupled with
Lagrange multiplier

The energy-momentum tensor of isotropic fluid has the form:

Tµν = (ρ+ p)uµuν + pgµν , (11)

where ρ is the energy-density, p is the pressure, with uµ being the
time-like vector defined as uµ = [1, 0, 0, 0].

Assuming the fluid under consideration has a perfect
fluid(p = p (ρ)).
Using the conservation law of matter gives:

0 = ∇µ Tµr = 2f
dp

dr
+ f ′ (ρ+ p) . (12)
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Isotropic solution in mimetic-like gravity coupled with
Lagrange multiplier

we assume that the energy-density and pressure are depend on the
radial coordinate.

If the form of EoS ρ = ρ(p) is presented, then Eq. (12) yield:

1

2
ln f = −

∫ r

dr
dp
dr

ρ+ p
= −

∫ p(r) dp

ρ(p) + p
. (13)
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Isotropic solution in mimetic-like gravity coupled with
Lagrange multiplier

If we consider a compact star like neutron star, one usually
consider the EoS as:

1 Energy-polytrope

p = kρ1+
1
s , (14)

where k and s are constants. It is well known that for neutron
star, s lies in the interval s ∈ [0.5 , 1].

2 Mass-polytrope

ρ = ρm + s1p , p = mmρ
1+ 1

sm
m , (15)

with ρm being the rest mass energy density and mm, s1, and
sm are constants.
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Isotropic solution in mimetic-like gravity coupled with
Lagrange multiplier

It is the time to study the case of the energy-polytrope. Then EoS
(14) can be rewritten as:

ρ = k̃p(1+
1
s̃
) , k̃ ≡ k

− 1

1+ 1
s , s̃ ≡ 1

1
1+ 1

s

− 1
= −1− s . (16)

Eq. (13) can take the form:

1
2 ln f = −

∫ p(r) dp

k̃p1+
1
s̃ +p

= c1
2 + s̃ ln

(
1 + k̃−1p−

1
s̃

)
= c1

2 − (1 + s) ln
(
1 + kρ

1
s

)
,

(17)

where c1 is a constant of integration.
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Using the same method of polytrope we get for mass-polytrope the
function f as:

1

2
ln f =

c̃

2
+ ln

(
1− kmρm

1
sm

)
, (18)

where c̃ is a constant of integration.

Under one of the above equations of state, we may assume the
following profile of ρ = ρ(r) just for an example,

ρ =

{
ρ0

(
1− r

R

)
when r < R

0 when r ≥ R
. (19)
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Isotropic solution in mimetic-like gravity coupled with
Lagrange multiplier

The mass of the compact star for polytropic EoS is defined as:

M = 4π

∫ R

0
y2ρ(y)dy =

πρ0R
3

3
. (20)

The unknown functions f(r) and f1(r) are defined as

f =
ec1(

1 + kρ0
(
1− r

R

))4 , (21)

f1 = 1− ρ0r
2

3
+

ρ0r
3

4R
. (22)
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Lagrange multiplier

The Lagrangian multiplier of the above model has the form

λ(r) =
c2 (R + kρ0[R − r ])2

r5/2
. (23)

The form of the function ω = c3r and the mimetic scalar field
becomes:

η(r) =
1√

c3r
(
8πr2

3 − 2r3

R − 1
) . (24)
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Necessary conditions for a real physical star

• The components of metric potentials gtt and grr , and the
energy-momentum components ρ, p must be well defined at the
center of the star and regular inside the star.

• In the interior of star ρ ≥ 0. Additionally, the energy-density has
a positive finite value at the center of the star, and dρ

dr ≤ 0 at the
surface of the star.

• p ≥ 0. Additionally, dp
dr < 0 in the interior of the stellar. At the

same time at r = R, the pressure p must be vanishing.
1

1In this study we will take r = xR where R is the radius of the star and x is
a dimensionless parameter.
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Necessary conditions for a real physical star

• The energy conditions of an isotropic fluid sphere are given by:

(i) Null energy condition (NEC) ρ > 0.

(ii) Weak energy condition (WEC): p + ρ > 0.

(iii) Strong energy condition (SEC): ρ+ 3p > 0.

• Moreover, the causality condition which restricted the speed of
sound to be less than 1 in the interior of the stellar must be
satisfied to have a realistic model (here we assume the speed of
light c = 1), i.e. 1 > dp

dρ > 0.

• Finally, the adiabatic index must has a value more than 4
3 .
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PHYSICAL BEHAVIOR OF THE MODEL

(a) Metric potentials,
f (r) and f1(r) given
by Eq. (21) and (22)

(b) Density (c) Pressure

Figure: Schematic plot of the metric potentials (21), and (22) vs. the
dimensionless x; (b) the profile of density; and (c) profile of pressure. We
have put ρ0 = 1 and K = 0.4.



PHYSICAL BEHAVIOR OF THE MODEL

(a) Gradient of density (b) Gradient of pressure

Figure: Plot of the gradient of density and pressure vs. the
dimensionless x .



PHYSICAL BEHAVIOR OF THE MODEL

(a) Speed of sound (b) Mass-radius
relation

(c) Compactness

Figure: Plot of the speed of sound (a), mass-radius relation (b), and
compactness of the stellar (c) via the dimensionless x .



PHYSICAL BEHAVIOR OF THE MODEL

(a) Null energy
conditions

(b) Weak energy
conditions

(c) Strong energy
condition

Figure: Plot of the null, week and strong energy conditions vs. the
dimensionless x .



PHYSICAL BEHAVIOR OF THE MODEL

Figure: Plot of the EoS vs. the radial coordinate r (a) and the red shift
(b).



Stability of the model

The adiabatic index Γ, is defined as

Γ =

(
ρ+ p(x)

p(x)

)(
dp(x)

dρ(x)

)
. (25)

Figure: Plot of the gravitational, and the hydrostatic forces vs. the
dimensionless x .
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Stability of the model

Stability in the static state:
The mass of the central density, represented as

M(ρ0) = π

∫ R

0
y2ρ(y)dy =

πρ0R
3

3
. (26)

The pattern of the derivative of the mass in terms of the central
density is given by the following form

∂M(ρ0)

∂ρ0
=

πR3

3
. (27)

Equations (26) and (27) ensure the stability of the model.
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Thanks to All


