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Isotropic solution in mimetic-like gravity coupled with

Lagrange multiplier

In the mimetic theory, the metric g,,,, is defined in terms of an
auxiliary metric g;,, and a scalar field 1 as

S = BB 0umdsn . (1)

The action of the mimetic-like gravity coupled with the Lagrange
multiplier A and the function w has the form

S = /dX4\/ —8g {R + A (g'uywaunayn + 1)} + Latt ) (2)

where Ly, is the Lagrangian of the matter field and 7 is the
mimetic scalar field.
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The field equations:
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where T, is the energy-momentum tensor corresponding to the
matter field.
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The field equations:

1 1 L
0= Ru — 8w R+ 58w {N (" w0pmden + 1)} = Aundun + 5 Tyw

(3)

where T, is the energy-momentum tensor corresponding to the
matter field.

The variation the action (2) w.r.t. the mimetic scalar field 1 gives:

2VH(\wd,n) = 0. (4)

At the end, the variation of the action (2) w.r.t. the Lagrange
multiplier A yields:
gpgwapnaan =-1. (5)



Isotropic solution in mimetic-like gravity coupled with

Lagrange multiplier

Applying the field equations (3) and (4) to the spherically
symmetric spacetime

dr?

2 _ £\ —
ds = f(r)dt 20

— r? (d6? + r’sin*0d¢?) ,  (6)
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The (t, t)-component of the field equation (3) is:

p(r) _ﬂ’ (7)

r2
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The (t, t)-component of the field equation (3) is:

1-—f —rf
p(r) :Tla (7)

the (r, r)-component of the field equation (3) is:

ff'r—f 4 i — dw(r)n?fhr?

both of the (0, 0) and (¢, ¢)-components of the field equation (3)
have the form:

2AF"fr— F2fr+ F(2f + £r) f + 2 £
p(r) = 4;2r ir) —, 9

p(r) =
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Lagrange multiplier

The (t, t)-component of the field equation (3) is:

— rff

p(r) —7, ()
the (r, r)-component of the field equation (3) is:

ff'r—f + i — Xw(r)n?ffr?
p(r) = AR ©

both of the (0, 0) and (¢, ¢)-components of the field equation (3)
have the form:

2HF"fr — F2Rr + (2R + flr) £+ 2 FF2
p(r) = FEATANTZ26T (g

and the field equation (4) takes the form:

0=2Nwfr+ [W'fr+w (f'r+4f)] X, (10)
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The energy-momentum tensor of isotropic fluid has the form:
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where p is the energy-density, p is the pressure, with u* being the
time-like vector defined as u* = [1,0,0, 0].
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Isotropic solution in mimetic-like gravity coupled with

Lagrange multiplier

The energy-momentum tensor of isotropic fluid has the form:

T = (p+ p)uuuy + Pguv (11)
where p is the energy-density, p is the pressure, with u* being the
time-like vector defined as u* = [1,0,0, 0].

Assuming the fluid under consideration has a perfect
fluid(p = p (p)).
Using the conservation law of matter gives:

dp

O—V“T#,—Qfd +f' (p+p) . (12)
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we assume that the energy-density and pressure are depend on the
radial coordinate.



Isotropic solution in mimetic-like gravity coupled with

Lagrange multiplier

we assume that the energy-density and pressure are depend on the
radial coordinate.
If the form of EoS p = p(p) is presented, then Eq. (12) yield:

1 ro dp P dp
Inf:—/ drdf:—/ - . 13
2 p+p p(p) +p (13)
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If we consider a compact star like neutron star, one usually
consider the EoS as:

© Energy-polytrope
p=kp'ts, (14)

where k and s are constants. It is well known that for neutron
star, s lies in the interval s € [0.5, 1].
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Lagrange multiplier

If we consider a compact star like neutron star, one usually
consider the EoS as:

© Energy-polytrope
p=kp'ts, (14)

where k and s are constants. It is well known that for neutron
star, s lies in the interval s € [0.5, 1].
@ Mass-polytrope
1

1+
P =Pm+s1p, p=Mmpm ™, (15)

with p, being the rest mass energy density and m,,, s1, and
Sm are constants.



Isotropic solution in mimetic-like gravity coupled with

Lagrange multiplier
It is the time to study the case of the energy-polytrope. Then EoS

(14) can be rewritten as:
1 1 ~ - 11 1
D) k=k w5, 5= =—1-s. (16)
1+1

p=kp
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It is the time to study the case of the energy-polytrope. Then EoS

(14) can be rewritten as:

p=kpa+d),

Eq. (13) can take the form:
dp

1 _ p(r)
§Inf——f i('ler%_i_p

1
= —_1-s. (16)
R
=g +5in(1+kpE)
(17)

%—(1+s)|n(1+kp%) ,

where ¢ is a constant of integration.
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Using the same method of polytrope we get for mass-polytrope the
function f as:

1 ¢ 1
SInf=2+ln (1—kmpmsm) : (18)

where ¢ is a constant of integration.



Isotropic solution in mimetic-like gravity coupled with

Lagrange multiplier

Using the same method of polytrope we get for mass-polytrope the
function f as:

1 ¢ 1

SInf=2+ln (1—kmpmsm) : (18)
where ¢ is a constant of integration.
Under one of the above equations of state, we may assume the
following profile of p = p(r) just for an example,

B po(l—ﬁ) when r < R
p—{ 0 when r > R (19)
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Lagrange multiplier

The mass of the compact star for polytropic EoS is defined as:

7po R3

R
M = 4 /0 yiply)dy = =5—. (20)
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The mass of the compact star for polytropic EoS is defined as:

7po R3

R
Mzwéy%MWZ 3 (20)

The unknown functions f(r) and f1(r) are defined as
1
f= ° - (21)
(L+kpo (1= %))

P0f2 P0f3
3 4R -

fA=1- (22)
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Lagrange multiplier

The Lagrangian multiplier of the above model has the form

—r 2
N (R+ /:5/02[1? D” (23)



Isotropic solution in mimetic-like gravity coupled with

Lagrange multiplier

The Lagrangian multiplier of the above model has the form

—r 2
N (R+ /:5{1/02[1? D” (23)

The form of the function w = c3r and the mimetic scalar field
becomes:

(24)
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energy-momentum components p, p must be well defined at the
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Yn this study we will take r = xR where R is the radius of the star and x is
a dimensionless parameter.
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Necessary conditions for a real physical star

e The components of metric potentials g+ and g, and the
energy-momentum components p, p must be well defined at the
center of the star and regular inside the star.

e In the interior of star p > 0. Additionally, the energy-density has
a positive finite value at the center of the star, and % < 0 at the
surface of the star.

e p > 0. Additionally, % < 0 in the interior of the stellar. At the

same time at r = R, the pressure p must be vanishing.
1

Yn this study we will take r = xR where R is the radius of the star and x is
a dimensionless parameter.
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Necessary conditions for a real physical star

e The energy conditions of an isotropic fluid sphere are given by:
(i) Null energy condition (NEC) p > 0.

(i) Weak energy condition (WEC): p+ p > 0.

(iii) Strong energy condition (SEC): p + 3p > 0.

e Moreover, the causality condition which restricted the speed of
sound to be less than 1 in the interior of the stellar must be
satisfied to have a realistic model (here we assume the speed of
light c =1),ie. 1> >0.

e Finally, the adiabatic index must has a value more than %.



PHYSICAL BEHAVIOR OF THE MODEL
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f(r) and fi(r) given
by Eq. (21) and (22)

Figure: Schematic plot of the metric potentials (21), and (22) vs. the

dimensionless x; (b) the profile of density; and (c) profile of pressure. We
have put pp =1 and K = 0.4.
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Figure: Plot of the gradient of density and pressure vs. the
dimensionless x.
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Figure: Plot of the speed of sound (a), mass-radius relation (b), and
compactness of the stellar (c) via the dimensionless x.
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Figure: Plot of the null, week and strong energy conditions vs. the
dimensionless x.
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Figure: Plot of the EoS vs. the radial coordinate r (a) and the red shift

(b).



Stability of the model

The adiabatic index I, is defined as

) e
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The adiabatic index I, is defined as

) e

Figure: Plot of the gravitational, and the hydrostatic forces vs. the
dimensionless x.
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Stability of the model

Stability in the static state:
The mass of the central density, represented as

R T 3
/V’(po)=7f/0 y2p(y)dy = pgR : (26)

The pattern of the derivative of the mass in terms of the central
density is given by the following form

OM(po) wR3
o~ 3 (27)

Equations (26) and (27) ensure the stability of the model.
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