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|. Introduction & Motivation

* One of the important features of GR is the existence of spacetime singularities.

« Singularity theorems (Hawking and Penrose) assured the existence of singularities for any gravitational
system starting from generic matter distribution with some energy conditions.

* In the absence of a canonical framework for quantum gravity several authors tried to smooth out these
singularities through modifying the EoS or Einstein field equations near singularities!

» E.g., for cosmological singularities we have several choices and it is very difficult to justify the use of a
specific EoS or theory of modified gravity.

« Here we constrain the discussion to two modifications of GR, one is produced by Weyl/conformal
anomaly and the other is a curvature correction inspired by string theory, or Gauss-Bonnet gravity.

» Therefore, it is natural to ask; Can these higher curvature theories change the nature of some known
singular solutions, namely, FLRW and Schwarzschild solutions?



I1. Cosmology with Weyl anomaly

Consider a theory with massless fields (¢,y, A ) coupled to a background metric g ,,..

A classical theory is called Weyl/Conformally invariant if its action is invariant under Weyl
transformation

9w=0%g,,, Y =Q%Y, disthe conformal weight
Consequently, we have T * = 0.
Quantum one-loop effects breaks this symmetry. The trace takes the form

*

'(TE ) =c1 s+ coly + c30OR.

: : 1 -
The symmetry is anomalous and ¢’s are Ey = ( R o Reval _ 4 R, R + Rg)

spin-dependent coefficients, R is the Ricci scalar, o4

1
E, is the Euler density and 1, is the Weyl scalar. 1 o
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*
D. Capper and Duff, Nouvo Cimento Soc. Ital. Fis. 23A,173 (1974); M. Duff, Nucl. Phys. B125, 334 (1977)



I1. Cosmology with Weyl anomaly

FLRW Cosmology:

 Consider a generic conformal field theory of scalars, spinors and gauge fields
coupled to a flat FLRW metric

ds? = —dt* + a(t)*[dr® + r*(dO* + sin 07do?)]

« Here we are interested in regularization-independent back-reaction (a=0) of these
fields on the geometry at early times. Einstein field equations is given by

1 R?
g R = kT 4+ k3

o . po
2. JLv 12 (][H»‘ R R[)ﬂ(ﬂ/

R;uz T

« where T (m):diag(p P, P, P), E0S consistent with conformal symmetry P=1/3 p,
(n+ 11 n+ 62 n,) <0, for the above field theory.

"B = 28807‘[2



I1. Cosmology with Weyl anomaly: FLRW cosmology

Two independent field eqn.’s are

kp —3[1 +kBH*IH? =0

2iia(1 + 268H?) + a’H*(1 — kBH?) + ka’P =0,
The last egn. can take the form
H(1+ 2k BH?) = —%[p‘ + P).
Solving the first egn. for H , we get

' 43,2
[P _l:yl_?{*fh ,-:i-.
- 26K

B < 0 implies that density and Hubble rate have max. values and scale factor has a min.



I1. Cosmology with Weyl anomaly: Solution

» Taking t =123k, afa. =1, and a, =4 K c/3
« Soln. of the cosmological egns Is

p~1/n*
2 e 1
T+ == %ttmzh‘%?‘“%/l?ﬂl — 4+ —
2\/1$\/1—rp‘1
o :J —1+ .,#-'Fl - '—;-Ji-.ifﬁgﬁ'-
26K
. o[ 1+KBH*\ 1
=2 (1+2H,3H?)H R~2%

(remember, GR FLRW soln. has R ~ti2)

Vi

dh/dt= F with h




I11. Strength of a singularity

Penrose-Hawking Theorems:
* In this context, geodesic incompleteness is the criterion for a singular spacetime.

Penrose-Hawking theorems show geodesics inextendibility of spacetimes with certain
energy conditions and global properties.

Energy conditions are needed to show gravitational focusing through Raychaudhuri’s egn.

do 6° -
— = —Ryutuf — - (expansion parameter 6 = - 3 H, for FLRW)

Formation of acoustic (or conjugate points) is an essential ingredient in singularity
theorems, where 6 > - .

In our model H = (25x) 2 at the singularity, therefore, this is not a singularity a la
Penrose-Hawking.




[11. Strength of a singularity TN
XH(1,8) N\~

Tipler's and Krolak's criteria for a strong sinqularity:

 Soln. of geodesic deviation eqn. are called Jacobi fields gn= X e = =
DZ&“ _ pH a,,Bey
dez Raﬁyu u’g

 Tiplers criterion for a strong singularity; a singularity is called strong if the volume
spanned by three orthonormal Jacobi fields shrunk to zero size at the singularity.

* Krolaks criterion for a strong singularity is similar but based on the rate of change of the
volume w.r.t. affine parameter instead of the volume at the singularity.



[11. Strength of a singularity

The singularity is Tipler strong for a null geodesic iff the following integral diverges

'||.|'
15111111./. fi’l’f AN R jpu®u®

But the singularity is Krolark strong iff the following integral diverges

A
limf A\ Rgpuu®,
A—Ao J0

For our spacetime close to t=0, (int. cond. A,= 0 at t=0) solving geodesic eqn.’s we get

% — :l: J‘I'IIIIII = —I— :]:—I_. — I':j":_ -IF_ll I .
I ' ) () = ag [1+ x HoA]l + O(A\?), t(A) = x A+ O(X%).
dar® L A |
an a2 — T

Now evaluating both integrals in the limit A> 0, we find that both integrals vanishes.



|V. Extending spacetime and singularity crossing

Geodesic extension:

» Geodesic equations for FLRW metric are

dt n I|II n .!'g I.’r- I:-f:-? r i
—_ = | — = |"J|'I_ _.I' £ ' T
d (7 a2 = — = f'(A),
‘l' d\  a? (A
« where s and V' are integration constants and A is a non-spacelike

affine parameter. s =1,0 for timelike and null affine parameter.

« Now joining the two branches (soln’s for t > 0 and t < 0) together
leads to following scale factor

a(t) = ag [1 + |Hgt| — % Ht|*"?] + O(t?).
* One can show that it is possible to extend geodesics beyond this

singularity, in fact, beyond this type of singularities (Sudden singularities).
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|\V. Extending spacetime and singularity crossing:
geodesic extension

« Now integrating geodesic eqn.’s such that t=0 at A=0, one obtains

H . i 112 .
tHA) = }L',l—.e-i_f;ﬂ[;l]lT?;.—A‘g ON%).  2(A) = = +—¢A—u..r;um;H—;:}—xf—ﬂm-’*J.
20 iy ]

Notice:

 These geodesics are defined for all values of A. Therefore, geodesics are complete
and nonspacelike test objects does not get destroyed crossing singularity.

 To have a consistent gravitational description it is not enough to have a geodesic
extension, we have to check the consistency of this extension with the field equations.



|VV. Extending spacetime and singularity crossing

Junction conditions for effective higher-curvature gravity:

« Here we use Gauss-Codazzi equations to derive junction condition for this higher-
curvature gravity.

 Let us start with Gauss’s normal coordinates near a hypersurface 2, with metric g;

ds? — edw? + _u_j'i-jff.‘l‘id:i!"ii.
where n* is a normal vector to >, withn.n=¢=-1, or 1.
) ) . . 1 -
* Extrinsic curvature Is defined as K = - = g,
2 JUw

 (Gauss-Codazzi equations reads

R'!!:j}k. = ﬁ'zgjk + € (fi-;_ii_ﬁ-kll — fi-gﬁ-fi-fj'J R!.J' — le + F {ﬁ-ij-u' - 'H‘ ﬁ‘i_,i'}
R%jk = —€(Kijjx — Kikj) — R = —e {Hijlf - 'ﬁ-l.ii’ll
R%wi = €(Kijw+ KaK':). R, = e(K,-trK?).

where K = K'; and trK? = K;; K.



|\VV. Extending spacetime and singularity crossing:
Junction conditions for effective higher-curvature gravity:

Now we want to express everything in terms of K;; and its derivatives. Field eqn.’s

| R?
Ggm + Hgm — hT,g.:;f”~ Hyy = —kf3 [E_ﬂi‘gw — Rmﬁmcw] .
Let us start with Einstein tensor:;

. . 1 . .
Gy = —5R+3e K? — trK*

G"; = —€lK;"\m— Kji]

| L 1 1
Gy = Giij+e|(K'y—0K),— KK+ —6,K? +Eﬂ* trK ]

Now for joining two spacetimes at the hypersurface w=0, we must have a continues gi;.

Integrating the above eqn.’s one obtains

7 {r . i e L -
.-}E}.l?] ./-—.:r GY,dw = [G",] =0 EE%] .[_F G'ijdw = [G'y]=€e([K";]—4§;[K])
o
lim GYidw = [G"Yi]=0 or [K;]l#0



|\VV. Extending spacetime and singularity crossing:
Junction conditions for effective higher-curvature gravity:

* Now let us express H ,, in terms of K;;

HY,= €5 ﬁ.ﬁ}j_u. RY 4+ 8k

. P R S . .
Ky K + K (E KK;+KMK j)

~Kijuw (3K KY +2K7 K ) ._

Hw!;= .ljﬁ

Ky (ﬁ . —_ﬂf‘ KT fi‘,.,.llg—fi'j;ﬁfi;,ﬂ.ﬁ]._

')
H'; = —%E_-'H K [I‘i'_u. R&';— K, R — 3K, m] +el Bk lﬂg

(3K
o A 5 o, l'-l i . - _ A
—2K" K;j — %fi K — 3 K 3{5*;.-) - ﬂ*;.-,w (E K? +trk E)

* . A i : . » A
+Krs (f{,. iKig — K, Kt — %‘TH H,,..ﬁ) + K5, Ki fi‘] .



|\VV. Extending spacetime and singularity crossing:
Junction conditions for effective higher-curvature gravity:

Since H," and H;" depends quadratically on K;,, one might choose [K;]=0, but this
doesn’t allow for surface layer to form.

It Is more convenient to split K;; into a trace and traceless part (this splitting Is adopted in
F(R) theories for junction condition too);

Ky =K;; — % K.

Now the conditions reads

Kij] =0, (K] # 0.
* These conditions leads to
0 ] ] T - d [ € - o ; i Ad 4 5
k(T = [G"] + [Hy| =0, S} = lir.1%]f dwK % (:i'h[ﬁ’j — Ré'j] - Eﬁi'j) + €28k (f‘-’.'j_l_,. - FHE fﬁfj-)]
K [T%] = [G¥] + [HY] = 0, T - -

k[T = [G'] + [H}] = Sj



|\VV. Extending spacetime and singularity crossing:
Junction conditions for effective higher-derivative gravity:

» The extended spacetime scale factor is (for all times)
, " 2 a9 2
a(t) = ao [1 + |Hot| — 3 Hpt|* =] + O(t"),

where, w =t, £ =-1 and g;; = a(t)* ¢; and

Kij =0, K = —3H(t). K,=—3H(t).

» Calculating S;;
_ o 2 Bk :
St = lim / dt K, E - 4'%:{{'}] &

a—0 ) _+ T

27
H(m2| .

= —aHy [1-Z5F | si=0
Hy~




V. Gauss-Bonnet Cosmology

« Gauss-Bonnet gravity in 5 dimensions has the action
1
167G .
 This is the most general two-derivative gravity theory in 5 dimensions. Also, it is ghost-free when
expanded about flat space.
» Let us start with FLRW cosmology in GB gravity
ds®* = —dt* + a(t)? [dz® + dy* + d=z* 4 d&?]
 Einstein field egns. reduces to

[ = [ &z /—g [R + aLy) Ly = RapepRAECP — AR,z R + R?.

6 H? .
p = 1+ 2a H?|
A
a l[f{.P—BHE]

a 3 (1+4aH?)




V. Gauss-Bonnet Cosmology

* After rescaling “H” and *“t” the system reduces to

dh  h*(2—h?) n(7)
dr 1—h% n(7)

= Yh(T)

« Which has the following soln.

11 V2 1 (h(7)
T = 5!1(1_) — 4 ta-nh (W) — C‘_].

h(T) = :I:\/l T/ 1—n3
« Joining two region | &l

240/

2
(1) = [L+7] =377

dh dz = F versus h & different branches of solutions




V. Gauss-Bonnet Cosmology

« Geodesics equations are

dt ||I yi f ﬂh’:f Ti i
d\ zi\ffﬁrﬁ = g(1), 2 fH(A).

dA
 Solving these eqgns. We get
w2y T- A . v'yxHp |-
t(A) = xA— sign(\) Lg;" X+o)  1(A) = zg+ A —sign(d) ;5 "\ 4+ 0(X)
0 0 0

* These geodesics are defined for all values of A. Therefore, geodesics are complete
and non-spacelike test objects do not get destroyed upon crossing the singularity.

 To have a consistent gravitational description it is not enough to have a geodesic
exter%_smn, we have to check the consistency of this extension with the field
equations.



V. Gauss-Bonnet Cosmology

. . : 1 .
* Junction conditions for GB gravity, where K, = "5 Guow

Hyy = 2 [Rﬂiﬂp Ri}gp — 2Ry 7P — 2Ruo Ry + RR#“]

1
~3 G (Rmﬁﬂmﬁ — 4 RasR* + RE)
H" = 12 {I{K’”’& K% — K" K*Kg, + EH“!_,TT(KE) — lfﬂ f{f}
ow | 2 2
+4i{ o LK Tr(K?*) + ", ITT{K"’) 4 o 1K~*}
ow Y9 Y6
OK% oK™ 0K
4 4 R,u, g~ P 1 R 4 ROoH Vi
T ( o w g du, Ow
0K OK* 0K 1 0K
y 4 # 4 poj al  Leop 4
H( Rigwts Bgp +9 B 5, 3% Rdw)

+ ...

Tr(K*) =K _ﬁf{ﬁ,}.f{’*ﬁ “N. Deruelle and T. Dolezel, Phys.Rev. D62 (2000) 103502

Junction condition
[K ] =0

a
lim HBdw = [HE]

o—=0 J_~



V. Gauss-Bonnet Cosmology

* The junction conditions are
kT, = [K"] — " [K| +H,, = 4Hya}

which are satisfied by the two solutions.



VI. Gauss-Bonnet Black Hole

» GB gravity has a Schwarzschild-like solution that has been introduced
by Boulware and Deser in 1985.

ds* = =f(r)dt* + f(r)"dr* + 1 (6" + sin(0)" dg* + cos(0)* dv?)

* Where f (r) has two branches

rZ +da+Vrt+ 16am
f(r) = iy

* The ““-” soln is stable while the “+” is unstable (this was shown by Boulware and
Deser). Furthermore, the “-” sign soln. goes to Schwarzschild solution in large
radial distance “r” and in the limit that o > 0

fr) =

Em 1
3

)



V1. Gauss-Bonnet Black Hole

e 9

* We are going to consider the “-” sign soln. for the cases of a >0 and o < 0.
Black Hole with a.> 0 :
* In this case the horizonisat », = v/2vm — a
 Curvature is blowing up at r*= 0, Ricci Scalar goes as
1
Va 72

R."‘\-...-'

Black Hole with o < 0:
* The horizonisat 7, = v@y’m. + o
« Curvature is blowing up at r*= 2(ma)¥4, Ricci Scalar goes as

(ma)3/®

R.ﬂu

1/4y—3/2
)")

(r — 2(ma
!



f(r) for oo > 0 and a < 0 branches




V1. Gauss-Bonnet Black Hole

Tipler's and Krolak's criteria for a strong sinqularity:

 Krolaks criterion :

1) For a >0, singularity at r* = 0, or at A,=0,

A
lim d\ R pu” u’= lim C3 Ay 2
A—Ao J0

00

I1) For o < 0, singularity at r* = 2(a@m)Y4, orat =4,

A
: r a, b
fﬂtﬁ INVE U _ i ¢, (A=) 3"
ARy



V1. Gauss-Bonnet Black Hole

Penrose-Hawking Theorems:

* Raychaudhuri’s eqn.
do L

— = —Rputuf — =,
dt Le 3

« Formation of acoustic (or conjugate points) is an essential ingredient in singularity
theorems, where 6 > - .

« Calculating 8=V _U ¢, for the GB-BH
i) For a. >0, singularity at r*=0, @ =C, I 2
i) For o <0, singularity at r*=2(am)¥4, 8 =c¢, (r—r*) 12



V1. Gauss-Bonnet Black Hole

Junction Conditions:
. 1
» Since we have K, = - > Juow

HF = 4i {h Kt K® — K" K* Ky, + lfa'*:,,-Tr(ffi’) = 1 {‘j,ffg} Tr(K*) = K%K" K7,
ow S b2
+4a{ 5“111”(1 + o 11“ K?) + o* II{J} - Y T
A V9 \vLr ) va T’{ Y6 .:lrli}l%] J. H!;dﬂ-‘ = [Hi; .
oK% ., OK* 0K
i(—'Re, P—L g, —o _ dpwm 2
T ( o dw Y ow Ow
. 0K 1, OKH OKns 1 OK
Al dp 27 4 © H dpag =" "~ cu 4
H( Rge +a By +00 B 5= = 5%, Rdu)
+ ...

« The junction conditions are not satisfied since K, tensor is divergent. For example in the a. <0,
case with a singularity at r *= 2(a m)¥4,one of the components goes as

C
Koo = . J
VT — 2 (ma)

1 l.-'f-l



VI1I. Conclusion

{—rllerlg \I/\I/e considered GR corrections due to Weyl anomaly and Gauss Bonnet in modifying FLRW cosmology at early times and showed
e following;

Curvature corrections changed the nature of the singularity from big bang to sudden singularity.
In is case the singularity is weak, and it admits geodesic extension.

Joinilfgt tilze two disjoint branches of soln.s provides us with a C? extension to geodesics that leave the spacetime geodesically
complete!

Using Gauss-Codazzi egn. 5 one can obtain junction conditions for these higher-curvature gravity which are consistent with the
geodesic extension.

For the Gauss-Bonnet theory, the derivative curvature terms were not able to smooth out or modify the singularity Schwarzschild-
like solution in a way that enables us to extend geodesics beyond this point.

Higher-curvature gravity theories are important laboratories for understanding singularities more as well as testing our ideas of how
to extend geodesics beyond these points.









V1. Gauss-Bonnet Black Hole | /

Black Hole with a > 0

» Geodesics -

L= 0ap—— ==+ 7172+ 7707 + 12 sin(0)? 6 + r* cos(0)* ¥
» Geodesics eauations:
%z—fsz r_;;:Lé "'"_;.E;:Lﬂ .;.:.:\/_f(5+fj}+gz LEZ%(LinLLﬁ_.}
« Around r =0, we have
_ / L | ) r -
r=(ym/a—1) - + O(r) f(r)=(1—ym/a)+ ot O(r")

* 7 is not continues at r = 0, for L= 0, therefore, no extension is possible!



I1. Cosmology with Weyl anomaly: a mechanical analogue

R<<R, =172

But —1+,/1+18k2p
H =+ V37

?.l'.'-i"h'

Therefore, we are considering branches with H < (23712, *

In this model H and o are bounded, but R ~% near t=0.

This singularity is milder than big bang singularity (R ~%).

Notice that the validity of the semi-classical approximation requires that

/
i

I i
I
[ =

|

[

V/

Although the force/acceleration is divergent at t=0, the mechanical system needs only a

finite amount of work to go from the singularity to any closeby point since pot. energy at

t=0 i1s finite.

* This shows that H.__ ~ -2 , Is the effective cutoff scale of gravity (also predicted by Antoniadis in arxXiv:1410.8845v2)

max \/B




V1. Gauss-Bonnet Black Hole

Black Hole with . <0 ﬂ\\ : (

 Geodesics: around r =2(ma)4

my°

I 3/8 a
i =—Cy + Cy\/r — 2 (ma)/4 f0) = (1= /m/a) +v2 () a7 /r =2 (ma) '

« This fn is continues but not differentiable at r=2(ma)Y*- which is saying that one
can extend geodesics beyond this point, but the extension is not unique.

 Another difference is that geodesic extensions are not going to be C? as in the case
for cosmology but at most C1.



|\V. Extending spacetime and singularity crossing:
geodesic extension

- For these first-order eqn.’s Picard-Lindelof theorem states that if f' and g are
continuous in A and Lipshitz continuous in t, there exist a unique soln. for the first-
order eqn.’s

« Now joining the two branches (soln’s for t > 0 and t < 0) together leads to following scale

factor _ 9 4/ L
a(t) = ag[1 + [Hgt| — 3 Hyt|* =] + O(t=).

 Notice: First, the above theorem shows the possibility of geodesic extensions for sudden
singularities in general.

« Furthermore, the invariance of Raychaudhuri egn. undert > -t, and H > -H leads to
existence of time-reflected soln. which works as a natural extension for FLRW for t<0.



I1. Cosmology with Weyl anomaly

* In the special case of conformally flat background, gluv = 7 7,.,» Stress tensor is
<T(g}{renjgu> T{m} -+ CIH (1) -+ .-SHJ_MJ (3) *

L1
» We are interested in this tensor since it modifies Einstein FE;
2 0S,,,
Ul = G — (Tw) =0,
V=9 0g,, ()
where T™ is a local (not geometric) conserved traceless tensor and H () and H ©) are given by
1 ;
H;Lr/(l) — QH;,U,V T Qg_LHJDH T §Q;LVRE —+ QRH,LW
1
3 o
H,Lw( ) — 19 — R” Rp,u,o'v
* Then the trace Is 1

{ ren}ru> — _6a0R— f3 ( #HR,uu §R2 J1

@ IS a regularization-scheme dependent (and gauge dependent too). Later we will set o = 0.

*
J. Brown and N. Cassidy, Phys. Rev. D 15, 2810 (1977)



