Fuzzy Dark (matter) Imprints in Galaxies

Quantum effects on galactic scales...
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Subject matter:

For typical galactic speeds FDM has

De Broglie wavelength % ~ 100 pc or more at galactic speeds > m ~ 107%% eV

Outline:

 Why ultra light axions? (from a galactic perspective)

* Characterization of Fuzzy Dark Matter fluctuations

 Effect on stellar dynamics, central supermassive BH and associated constraints



Hot Big Bang Cold Dark Matter Driven Structure Formation
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But weakly interacting, massive particles (WIMPs)

mv2~kBT > mT->vi

Decouple early with small speed = = Drives galaxy formation



The Case for CDM

e DM needed for structure formation and CMB

* Not easily explainable by modified gravity
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- Predicted by natural Susy theories (until recently a big plus!) (Skordis et. al. 2006)

— Right abundance from weak interaction freeze out from thermal equilibrium



Galactic Scale Problems with CDM . scsmomm s
DM compensates for mass deficit in outer parts *
BUT contributes too much mass to central parts
**probably related problems: Excess of small haloes and wrong dynamics £ ol
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+ more random motion in centre of halo: Heating of central cusp by dynamical friction; El-Zant (2008)



Some Proposed Solutions

’'Heat’ DM -2 decrease DM density:

** Baryonic solutions: baryons pump energy into DM
(e.g., EI-Zant et. al 2001, 2004; Pontzen & Governato 2014; El-Zant et. al. 2016, Hashim et. al. 2022)

** Self interacting DM - Conduction

¥* Warm DM -2 preheat!

** Quantum fluctuations (‘Fuzzy Dark Matter’ of ultra light bosons)
e.g., Hu et al. (2000), Peebles (2000), Hui et. al. (2017), El-Zant et. al. (2019, 2020)




Couple of effects of DM fluctuations

Thickness and Dyn. of Galactic Disk

Tidal streams: thickness and gaps (Bonaca et. al. 2019)
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Worked Example: Ultra-light Axion = “Fuzzy DM”

Tiny Mass ~ 2 Astrophysical de Broglie wavelength
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* Large number of particles in same state and non-relativistic on galactic scales
- Schrodinger-Poisson system

dW h?
th— = VU +m VU,
dt 2y,

V2V = 4xGm, |V |*.



Structure Formation and fluctuations with fuzzy DM

(Schive et. al. 2014)

- ~as CDM on large scales

p(r)/ (p)

~Constant density cores Few smaller halos (note however interference pattern and flcutuations!)



Axion Fluctuations as Random Gaussian Field

Expand fluctuations in modes p; moving at phase velocity v such that k.v = w
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Power Spectrum of Density Fluctuations
Interpretation and Comparison with simulations (of Chan et. al. 2018)
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~ Randomly scattered masses ~ M¢¢

— Conservation of probability (number density)
- Correspondence of wavenumber and FDM vely distn function
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From Density to Force fluctuations

« Use Poisson equation V2(D — 471'Gp0(5.

» Homogeneous process = O = —4nG p05kk_2

* Force fluctuation power -2 PF (k ) — Vk2<‘¢k ‘2>



Fourier Transform = Force Correlation Function
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Stochastic equation = Random velocity from fluctuations
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Observable Effect: Galactic Disk Velocity Dispersion

-- Decompose energy input to disk via fluctuations into vertical and radial components
- Prediction: radial velocity dispersion of disk stars increases a
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Expansion of the Central Cluster of Dwarf Eridanus |l
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- -- Fluctuations cause central cluster to expand
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-- If axion mass too small = cluster too large
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BUT does cluster expand or gets displaced?
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Cluster expansion in context of El-Zant et. al. (2019) model



Observable Effect: Central Black Hole Displacement
Equipartition of SMBH KE with FDM heat bath 2

MB()']% p— meffo'sz s \/irial theorem at low masses -
e

1
I

—

Vi~ 2eme (1555) " (o)

10-22 eV 10’Mg,
Averaging over thermal distribution

Mhalo(MG) Mha,lo(MS)
1010 10" 102 103 100 10" 1012 103
[ [ I TTTTI ITT 5 IIHI‘ [ I \IIII\| I [ I\\I\Ii %
=~ - - - 10 % eV 3 H H
- 021 v Reduction in merger rate

—m—-]() 20 eV AJhalu(h’IG)

1010 1011 1012 1013
r T T I m

-
-
"

/

009

/

| I\IIIII‘ [ IIIII‘ | I\IIIII|I




Conclusions and Prospects:

- CDM Threatened: small scale problems part of a parcel of problems
» Alternatives can have observable consequences on galaxies
« FDM Alternative: Fluctuations from uncertainty principle - ’hotter’ DM

 But are fluctuations needed to solve core-cusp problem etc., too large?

Ongoing and prospective work:

** FDM Simulations of disks with FDM noise
++ Full S-P simulations

+ Effect on tidal stream (already much work) - : ' e

« FDM self interaction... baryons etc... "4 ’”4
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Effect of Non-radial Modes and Power Input
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Space and Time Correlations
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