Black Holes in teleparallel gravity

Christian Pfeifer Center of Applied Space Technology and Microgravity, ZARM, University of Bremen

Joint work with: E.Hackmann, S. Faraji, S. Bahamonde, A. Golovnev, M. J. Guzman, L. Ducobu, J. Said

September 2022, Workshop on Astro-particles and Gravity at Cairo University

Gefördert durch
Deutsche
Forschungsgemeinschaft

CENTER OF APPLIED SPACE TECHNOLOGY AND MICROGRAVITY

- Teleparallelism 1.
 - Teleparallel Geometry
 - Symmetry
 - Teleparallale Gravity
- 2. Black Holes in $f(T,B,\phi)$ teleparallel gravity
 - Born-Infeld f(T)-gravity
 - Teleparallel perturbations of GR
 - Scalar-Torsion gravity
- Conclusion and Outlook 3.

Geometric fields

Tetrad components $\theta^a_{\ \mu}(x)$

Tetrad components $\theta^{a}_{\mu}(x)$

- technically: basis 1-forms $\theta^a = \theta^a_{\ \mu} dx^{\mu}$
- practically: 16 field components $\theta^a_{\ \mu}$ with inverse $e_a^{\ \mu} = \theta^a_{\ \mu} e_a^{\ \nu} = \delta^{\nu}_{\mu}$, $\theta^a_{\ \nu} e_b^{\ \nu} = \delta^a_b$
- the metric is a derived object $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$, $\eta_{ab} = \text{diag}(-, +, +, +)$

Tetrad components $\theta^a_{\ \mu}(x)$

- technically: basis 1-forms $\theta^a = \theta^a_{\ \mu} dx^{\mu}$
- practically: 16 field components $\theta^a_{\ \mu}$ with inverse $e_a^{\ \mu} = \theta^a_{\ \mu} e_a^{\ \nu} = \delta^\nu_\mu$, $\theta^a_{\ \nu} e_b^{\ \nu} = \delta^a_b$
- the metric is a derived object $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$, $\eta_{ab} = \text{diag}(-, +, +, +)$

- tetrad basis representation $\Gamma^{\mu}_{\ \nu\rho} = e_a^{\ \mu} (\partial_{\rho} \theta^a_{\ \nu} + \omega^a_{\ b\rho} \theta^b_{\ \nu})$
- spin connection coefficients $\omega^a_{\ b\mu}$

Tetrad components $\theta^a_{\ \mu}(x)$

- technically: basis 1-forms $\theta^a = \theta^a_{\ \mu} dx^{\mu}$
- practically: 16 field components $\theta^a_{\ \mu}$ with inverse $e_a^{\ \mu} = \theta^a_{\ \mu} e_a^{\ \nu} = \delta^a_{\mu}$, $\theta^a_{\ \nu} e_b^{\ \nu} = \delta^a_b$
- the metric is a derived object $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$, $\eta_{ab} = \text{diag}(-, +, +, +)$

- tetrad basis representation $\Gamma^{\mu}_{\ \nu\rho} = e_a^{\ \mu} (\partial_{\rho} \theta^a_{\ \nu} + \omega^a_{\ b\rho} \theta^b_{\ \nu})$
- spin connection coefficients $\omega^a_{\ b\mu}$
- parallel transport properties:

Geometric fields

Tetrad components $\theta^a_{\ \mu}(x)$

- technically: basis 1-forms $\theta^a = \theta^a_{\ \mu} dx^{\mu}$
- practically: 16 field components $\theta^a_{\ \mu}$ with inverse $e_a^{\ \mu} \quad \theta^a_{\ \mu} e_a^{\ \nu} = \delta^{\nu}_{\mu}, \ \theta^a_{\ \nu} e_b^{\ \nu} = \delta^a_b$
- the metric is a derived object $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$, $\eta_{ab} = \text{diag}(-, +, +, +)$

An independent flat and metric compatible connection $\Gamma^{\sigma}_{\mu\nu}(x)$

- tetrad basis representation $\Gamma^{\mu}_{\ \nu\rho} = e_a^{\ \mu} (\partial_{\rho} \theta^a_{\ \nu} + \omega^a_{\ b\rho} \theta^b_{\ \nu})$
- spin connection coefficients $\omega^a_{\ b\mu}$
- parallel transport properties:

Curvature (rotation)

Non-Metricity (changing lengths)

Torsion (non closing)

Geometric fields

Tetrad components $\theta^a_{\ \mu}(x)$

- technically: basis 1-forms $\theta^a = \theta^a_{\ \mu} dx^{\mu}$
- practically: 16 field components $\theta^a_{\ \mu}$ with inverse $e_a^{\ \mu} \quad \theta^a_{\ \mu} e_a^{\ \nu} = \delta^{\nu}_{\mu}, \ \theta^a_{\ \nu} e_b^{\ \nu} = \delta^a_b$
- the metric is a derived object $g_{\mu\nu} = \eta_{ab}\theta^a{}_{\mu}\theta^b{}_{\nu}$, $\eta_{ab} = \text{diag}(-, +, +, +)$

An independent flat and metric compatible connection $\Gamma^{\sigma}_{\mu\nu}(x)$

- tetrad basis representation $\Gamma^{\mu}_{\ \nu\rho} = e_a^{\ \mu} (\partial_{\rho} \theta^a_{\ \nu} + \omega^a_{\ b\rho} \theta^b_{\ \nu})$
- spin connection coefficients $\omega^a_{\ b\mu}$
- parallel transport properties:

Curvature (rotation)

Non-Metricity (changing lengths)

$$R^{\rho}_{\sigma\mu\nu} = \partial_{\mu}\Gamma^{\rho}_{\sigma\nu} - \partial_{\nu}\Gamma^{\rho}_{\sigma\mu} + \Gamma^{\rho}_{\lambda\mu}\Gamma^{\lambda}_{\sigma\nu} - \Gamma^{\rho}_{\lambda\nu}\Gamma^{\lambda}_{\sigma\mu}$$

Torsion (non closing)

Geometric fields

Tetrad components $\theta^a_{\ \mu}(x)$

- technically: basis 1-forms $\theta^a = \theta^a_{\ \mu} dx^{\mu}$
- practically: 16 field components $\theta^a_{\ \mu}$ with inverse $e_a^{\ \mu} = \theta^a_{\ \mu} e_a^{\ \nu} = \delta^\nu_{\mu}$, $\theta^a_{\ \nu} e_b^{\ \nu} = \delta^a_b$
- the metric is a derived object $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$, $\eta_{ab} = \text{diag}(-, +, +, +)$

An independent flat and metric compatible connection $\Gamma^{\sigma}_{\mu\nu}(x)$

- tetrad basis representation $\Gamma^{\mu}_{\ \nu\rho} = e_a^{\ \mu} (\partial_{\rho} \theta^a_{\ \nu} + \omega^a_{\ b\rho} \theta^b_{\ \nu})$
- spin connection coefficients $\omega^a{}_{bu}$
- parallel transport properties:

Curvature (rotation)

Non-Metricity (changing lengths)

Torsion (non closing)

Geometric fields

Tetrad components $\theta^a_{\ \mu}(x)$

- technically: basis 1-forms $\theta^a = \theta^a_{\ \mu} dx^{\mu}$
- practically: 16 field components $\theta^a_{\ \mu}$ with inverse $e_a^{\ \mu} = \theta^a_{\ \mu} e_a^{\ \nu} = \delta^\nu_{\mu}$, $\theta^a_{\ \nu} e_b^{\ \nu} = \delta^a_b$
- the metric is a derived object $g_{\mu\nu} = \eta_{ab}\theta^a{}_{\mu}\theta^b{}_{\nu}$, $\eta_{ab} = \text{diag}(-, +, +, +)$

An independent flat and metric compatible connection $\Gamma^{\sigma}_{\mu\nu}(x)$

- tetrad basis representation $\Gamma^{\mu}_{\ \nu\rho} = e_a^{\ \mu} (\partial_{\rho} \theta^a_{\ \nu} + \omega^a_{\ b\rho} \theta^b_{\ \nu})$
- spin connection coefficients $\omega^a_{\ b\mu}$
- parallel transport properties:

Curvature (rotation)

Non-Metricity (changing lengths)

Torsion (non closing)

Geometric fields

Tetrad components $\theta^a_{\ \mu}(x)$

- technically: basis 1-forms $\theta^a = \theta^a_{\ \mu} dx^{\mu}$
- practically: 16 field components $\theta^a_{\ \mu}$ with inverse $e_a^{\ \mu} = \theta^a_{\ \mu} e_a^{\ \nu} = \delta^\nu_{\mu}$, $\theta^a_{\ \nu} e_b^{\ \nu} = \delta^a_b$
- the metric is a derived object $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$, $\eta_{ab} = \text{diag}(-, +, +, +)$

An independent flat and metric compatible connection $\Gamma^{\sigma}_{\mu\nu}(x)$

- tetrad basis representation $\Gamma^{\mu}_{\ \nu\rho} = e_a^{\ \mu} (\partial_{\rho} \theta^a_{\ \nu} + \omega^a_{\ b\rho} \theta^b_{\ \nu})$
- spin connection coefficients $\omega^a{}_{bu}$
- parallel transport properties:

Curvature (rotation)

 $R^{\rho}_{\sigma\mu\nu} = \partial_{\mu}\Gamma^{\rho}_{\sigma\nu} - \partial_{\nu}\Gamma^{\rho}_{\sigma\mu} + \Gamma^{\rho}_{\lambda\mu}\Gamma^{\lambda}_{\sigma\nu} - \Gamma^{\rho}_{\lambda\nu}\Gamma^{\lambda}_{\sigma\mu}$ $R^{\rho}_{\sigma\mu\nu} \neq 0$

• Levi-Civita $R^{\rho}_{\sigma\mu\nu} \neq 0, \ Q_{\rho\mu\nu} = 0, \ T^{\rho}_{\mu\nu} = 0 \Rightarrow \Gamma^{\sigma}_{\mu\nu} = \frac{1}{2}g^{\rho\lambda}\left(\partial_{\mu}g_{\lambda\nu} + \partial_{\nu}g_{\lambda\mu} - \partial_{\lambda}g_{\mu\nu}\right)$

C. Pfeifer, ZARM, Workshop on Astro-particles and Gravity at Cairo University 2022

Torsion (non closing) $T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$ $T^{\sigma}_{\ \mu\nu} = 0$

Geometric fields

Tetrad components $\theta^a_{\ \mu}(x)$

- technically: basis 1-forms $\theta^a = \theta^a_{\ \mu} dx^{\mu}$
- practically: 16 field components $\theta^a_{\ \mu}$ with inverse $e_a^{\ \mu} = \theta^a_{\ \mu} e_a^{\ \nu} = \delta^\nu_{\mu}$, $\theta^a_{\ \nu} e_b^{\ \nu} = \delta^a_b$
- the metric is a derived object $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$, $\eta_{ab} = \text{diag}(-, +, +, +)$

An independent flat and metric compatible connection $\Gamma^{\sigma}_{\mu\nu}(x)$

- tetrad basis representation $\Gamma^{\mu}_{\nu\rho} = e_a^{\ \mu} (\partial_{\rho} \theta^a_{\ \nu} + \omega^a_{\ b\rho} \theta^b_{\ \nu})$
- spin connection coefficients $\omega^a{}_{bu}$
- parallel transport properties:

Curvature (rotation)

$$R^{\rho}_{\ \sigma\mu\nu} = \partial_{\mu}\Gamma^{\rho}_{\ \sigma\nu} - \partial_{\nu}\Gamma^{\rho}_{\ \sigma\mu} + \Gamma^{\rho}_{\ \lambda\mu}\Gamma^{\lambda}_{\ \sigma\nu} - \Gamma^{\rho}_{\ \lambda\nu}\Gamma^{\lambda}_{\ \sigma\mu}$$

$$Q_{\rho\mu\nu} = \nabla_{\rho\sigma}$$

• Levi-Civita $R^{\rho}_{\sigma\mu\nu} \neq 0, \ Q_{\rho\mu\nu} = 0, \ T^{\rho}_{\mu\nu} = 0 \Rightarrow \Gamma^{\sigma}_{\mu\nu} = \frac{1}{2}g^{\rho\lambda}\left(\partial_{\mu}g_{\lambda\nu} + \partial_{\nu}g_{\lambda\mu} - \partial_{\lambda}g_{\mu\nu}\right)$

Geometric fields

Tetrad components $\theta^a_{\ \mu}(x)$

- technically: basis 1-forms $\theta^a = \theta^a_{\ \mu} dx^{\mu}$
- practically: 16 field components $\theta^a_{\ \mu}$ with inverse $e_a^{\ \mu} \quad \theta^a_{\ \mu} e_a^{\ \nu} =$
- the metric is a derived object $g_{\mu\nu} = \eta_{ab}\theta^a{}_{\mu}\theta^b{}_{\nu}$, $\eta_{ab} = \text{diag}(-, +, -)$

An independent flat and metric compatible connection $\Gamma^{\sigma}_{\mu\nu}(x)$

- tetrad basis representation $\Gamma^{\mu}_{\ \nu\rho} = e_a^{\ \mu} (\partial_{\rho} \theta^a_{\ \nu} + \omega^a_{\ b\rho} \theta^b_{\ \nu})$
- spin connection coefficients $\omega^a_{\ b\mu}$
- parallel transport properties:

Curvature (rotation)

$$R^{\rho}_{\sigma\mu\nu} = \partial_{\mu}\Gamma^{\rho}_{\sigma\nu} - \partial_{\nu}\Gamma^{\rho}_{\sigma\mu} + \Gamma^{\rho}_{\lambda\mu}\Gamma^{\lambda}_{\sigma\nu} - \Gamma^{\rho}_{\lambda\nu}\Gamma^{\lambda}_{\sigma\mu}$$

• Teleparallel

Non-Metrici

• Levi-Civita $R^{\rho}_{\sigma\mu\nu} \neq 0, \ Q_{\rho\mu\nu} = 0, \ T^{\rho}_{\mu\nu} = 0 \Rightarrow \Gamma^{\sigma}_{\mu\nu} = \frac{1}{2}g^{\rho\lambda}\left(\partial_{\mu}g_{\lambda\nu} + \partial_{\nu}g_{\lambda\mu} - \partial_{\lambda}g_{\mu\nu}\right)$

C. Pfeifer, ZARM, Workshop on Astro-particles and Gravity at Cairo University 2022

$$\delta^{\nu}_{\mu}, \, \theta^{a}_{\ \nu} e_{b}^{\ \nu} = \delta^{a}_{b}$$
$$+ \, , + \,)$$

$$R^{\rho}_{\sigma\mu\nu} = 0, \ Q_{\rho\mu\nu} = 0, \ T^{\rho}_{\mu\nu} \neq 0 \Rightarrow \omega^{a}_{\ b\mu} = \Lambda^{a}_{\ b}\partial_{\mu}(\Lambda^{-1})^{c}_{\ b} \quad \eta_{ab} = \eta_{cd}\Lambda^{c}_{\ a}\Lambda^{d}_{\ b}$$

Ity (changing lengths)

$$T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\ \nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

$$\int_{\nu} T^{\sigma}_{\mu\nu} \neq 0$$

$$\int_{\nu} T^{\sigma}_{\mu\nu} \neq 0$$

Teleparallel Geometry - Symmetry - Teleparallel Gravity [Ferraro 2007; Pereira 2013; Krššák 2016; MH, CP 2018]

Geometric fields

Teleparallel Geometry - Symmetry - Teleparallel Gravity [Ferraro 2007; Pereira 2013; Krššák 2016; MH, CP 2018]

Geometric fields

Lorentz transformations are gauge transformations

Geometric fields

Lorentz transformations are gauge transformations

• Affine connection and metric invariant under transformations

Geometric fields

Lorentz transformations are gauge transformations

• Affine connection and metric invariant under transformations

$$\theta^{a}{}_{\mu} \mapsto \hat{\theta}^{a}{}_{\mu} = \theta^{b}{}_{\mu} (\Lambda^{-1})^{a}{}_{b}, \quad e_{a}{}^{\mu} \mapsto \hat{e}_{a}{}^{\mu} = e_{b}{}^{\mu}\Lambda^{b}{}_{a}, \quad \hat{\Lambda}^{a}{}_{b} \mapsto \tilde{\Lambda}^{a}{}_{b} = \Lambda^{a}{}_{c}\hat{\Lambda}^{c}{}_{b}, \quad \Lambda^{a}{}_{b}, \hat{\Lambda}^{a}{}_{b} \in SO(1,3)$$

Geometric fields

Lorentz transformations are gauge transformations

• Affine connection and metric invariant under transformations

$$\begin{aligned} \theta^{a}{}_{\mu} &\mapsto \hat{\theta}^{a}{}_{\mu} = \theta^{b}{}_{\mu} (\Lambda^{-1})^{a}{}_{b}, \quad e_{a}{}^{\mu} \mapsto \hat{e}_{a}{}^{\mu} = e_{b}{}^{\mu} \Lambda^{b}{}_{a}, \quad \hat{\Lambda}^{a}{}_{b} \mapsto \tilde{\Lambda}^{a}{}_{b} = \Lambda^{a}{}_{c} \hat{\Lambda}^{c}{}_{b}, \quad \Lambda^{a}{}_{b}, \hat{\Lambda}^{a}{}_{b} \in SO(1,3) \\ g_{\mu\nu}[\hat{\theta}] = g_{\mu\nu}[\theta], \quad \Gamma^{\mu}{}_{\nu\rho}[\hat{\theta}, \hat{\Lambda}] = \Gamma^{\mu}{}_{\nu\rho}[\theta, \tilde{\Lambda}], \quad T^{\rho}{}_{\mu\nu}[\hat{\theta}, \hat{\Lambda}] = T^{\rho}{}_{\mu\nu}[\theta, \tilde{\Lambda}] \end{aligned}$$

Geometric fields

Lorentz transformations are gauge transformations

• Affine connection and metric invariant under transformations

$$\begin{aligned} \theta^{a}{}_{\mu} &\mapsto \hat{\theta}^{a}{}_{\mu} = \theta^{b}{}_{\mu} (\Lambda^{-1})^{a}{}_{b}, \quad e_{a}{}^{\mu} \mapsto \hat{e}_{a}{}^{\mu} = e_{b}{}^{\mu} \Lambda^{b}{}_{a}, \quad \hat{\Lambda}^{a}{}_{b} \mapsto \tilde{\Lambda}^{a}{}_{b} = \Lambda^{a}{}_{c} \hat{\Lambda}^{c}{}_{b}, \quad \Lambda^{a}{}_{b}, \hat{\Lambda}^{a}{}_{b} \in SO(1,3) \\ g_{\mu\nu}[\hat{\theta}] = g_{\mu\nu}[\theta], \quad \Gamma^{\mu}{}_{\nu\rho}[\hat{\theta}, \hat{\Lambda}] = \Gamma^{\mu}{}_{\nu\rho}[\theta, \tilde{\Lambda}], \quad T^{\rho}{}_{\mu\nu}[\hat{\theta}, \hat{\Lambda}] = T^{\rho}{}_{\mu\nu}[\theta, \tilde{\Lambda}] \end{aligned}$$

• Choose $\Lambda^a{}_b = (\hat{\Lambda}^{-1})^a{}_b \Rightarrow \tilde{\Lambda}^a{}_b = \delta^a_b$ $\Rightarrow \text{Affine connection: } \Gamma^{\mu}{}_{\nu\rho}[\theta^{a}{}_{\mu},\delta^{a}_{b}] = e_{a}{}^{\mu}\partial_{\rho}\theta^{a}{}_{\nu}, \quad \text{Torsion: } T^{\rho}{}_{\mu\nu}[\theta^{a}{}_{\mu},\delta^{a}_{b}] = 2e_{c}{}^{\rho}\partial_{[\mu}\theta^{c}{}_{\nu]}.$

Geometric fields

Lorentz transformations are gauge transformations

• Affine connection and metric invariant under transformations

$$\begin{aligned} \theta^{a}{}_{\mu} \mapsto \hat{\theta}^{a}{}_{\mu} &= \theta^{b}{}_{\mu} (\Lambda^{-1})^{a}{}_{b}, \quad e^{\ \mu}_{a} \mapsto \hat{e}^{\ \mu}_{a} = e^{\ \mu}_{b} \Lambda^{b}{}_{a}, \quad \hat{\Lambda}^{a}{}_{b} \mapsto \tilde{\Lambda}^{a}{}_{b} = \Lambda^{a}{}_{c} \hat{\Lambda}^{c}{}_{b}, \quad \Lambda^{a}{}_{b}, \hat{\Lambda}^{a}{}_{b} \in SO(1,3) \\ g_{\mu\nu}[\hat{\theta}] &= g_{\mu\nu}[\theta], \quad \Gamma^{\mu}{}_{\nu\rho}[\hat{\theta}, \hat{\Lambda}] = \Gamma^{\mu}{}_{\nu\rho}[\theta, \tilde{\Lambda}], \quad T^{\rho}{}_{\mu\nu}[\hat{\theta}, \hat{\Lambda}] = T^{\rho}{}_{\mu\nu}[\theta, \tilde{\Lambda}] \end{aligned}$$

• Choose $\Lambda^a{}_b = (\hat{\Lambda}^{-1})^a{}_b \Rightarrow \tilde{\Lambda}^a{}_b = \delta^a_b$

 \Rightarrow Affine connection: $\Gamma^{\mu}{}_{\nu\rho}[\theta^{a}{}_{\mu},\delta^{a}_{b}] = e_{a}{}^{\mu}\partial_{\rho}\theta^{a}{}_{\nu},$ Torsion: $T^{\rho}{}_{\mu\nu}[\theta^{a}{}_{\mu},\delta^{a}_{b}] = 2e_{a}$

Without loss of generality one can always work with the pair $(\theta^a{}_{\mu}, \delta^a_{h})$, called **Weitzenböck** gauge.

$$\partial_c^{\rho}\partial_{[\mu}\theta^c_{\nu]}.$$

$$\theta^{a}_{\ \mu}(x), \Lambda^{a}_{\ b}(x) \Rightarrow \omega^{a}_{\ b\mu} \text{ and } \Gamma^{\rho}_{\ \mu\nu}, \text{ Torsion } T^{\sigma}_{\ \mu\nu} = \Gamma^{\sigma}_{\ \nu\mu} - \Gamma^{\sigma}_{\ \mu\nu}$$

Weitz
$$(\theta^a)$$

Symmetries on a manifold M

Weitzenböck gauge $(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$

$$\theta^{a}{}_{\mu}(x), \Lambda^{a}{}_{b}(x) \Rightarrow \omega^{a}{}_{b\mu} \text{ and } \Gamma^{\rho}{}_{\mu\nu}, \text{ Torsion } T^{\sigma}{}_{\mu\nu} = \Gamma^{\sigma}{}_{\nu\mu} - \Gamma^{\sigma}{}_{\mu\nu}$$

Symmetries on a manifold M

enböck gauge

 $(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$

Geometric fields Weitzenböck gauge $(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$ $\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$ Symmetries on a manifold M

- ϕ is an action of a Lie Group G as diffeomorphism from M to M
- ϕ is a symmetry of $(M, g, \Gamma) \Leftrightarrow g = \phi^* g, \Gamma = \phi^* \Gamma$
- infinitesimally ϕ is encoded in a vector field $X = X^{\sigma} \partial_{\sigma}$

 $\theta^{a}{}_{\mu}(x), \Lambda^{a}{}_{b}(x) \Rightarrow \omega^{a}{}_{b\mu} \text{ and } \Gamma^{\rho}{}_{\mu\nu}, \text{ Torsion } T^{\sigma}{}_{\mu\nu} = \Gamma^{\sigma}{}_{\nu\mu} - \Gamma^{\sigma}{}_{\mu\nu}$

Symmetries on a manifold M

- ϕ is an action of a Lie Group G as diffeomorphism from M to M
- ϕ is a symmetry of $(M, g, \Gamma) \Leftrightarrow g = \phi^* g, \Gamma = \phi^* \Gamma$
- infinitesimally ϕ is encoded in a vector field $X = X^{\sigma} \partial_{\sigma}$

Killing equations: φ is a symmetry iff

$$\mathscr{L}_X g)_{\mu\nu} = \nabla_\mu X_\nu + \nabla_\nu X_\mu = 0$$

$$\mathscr{L}_X \Gamma)^{\mu}{}_{\nu\rho} = \nabla_{\rho} \nabla_{\nu} X^{\mu} - X^{\sigma} R^{\mu}{}_{\nu\rho\sigma} - \nabla_{\rho} (X^{\sigma} T^{\mu}{}_{\nu\sigma}) = 0$$

enböck gauge

 $(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$

 $\theta^{a}{}_{\mu}(x), \Lambda^{a}{}_{b}(x) \Rightarrow \omega^{a}{}_{b\mu} \text{ and } \Gamma^{\rho}{}_{\mu\nu}, \text{ Torsion } T^{\sigma}{}_{\mu\nu} = \Gamma^{\sigma}{}_{\nu\mu} - \Gamma^{\sigma}{}_{\mu\nu}$

Symmetries on a manifold M

- ϕ is an action of a Lie Group G as diffeomorphism from M to M
- ϕ is a symmetry of $(M, g, \Gamma) \Leftrightarrow g = \phi^* g, \Gamma = \phi^* \Gamma$
- infinitesimally ϕ is encoded in a vector field $X = X^{\sigma} \partial_{\sigma}$

Killing equations: φ is a symmetry iff

$$(\mathscr{L}_X g)_{\mu\nu} = \nabla_\mu X_\nu + \nabla_\nu X_\mu = 0$$

$$\mathscr{L}_X \Gamma)^{\mu}{}_{\nu\rho} = \nabla_{\rho} \nabla_{\nu} X^{\mu} - X^{\sigma} \Gamma^{\mu}{}_{\nu\rho\sigma} - \nabla_{\rho} (X^{\sigma} T^{\mu}{}_{\nu\sigma}) = 0$$

enböck gauge

 $(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$

In teleparallel variables

 $\theta^{a}{}_{\mu}(x), \Lambda^{a}{}_{b}(x) \Rightarrow \omega^{a}{}_{b\mu} \text{ and } \Gamma^{\rho}{}_{\mu\nu}, \text{ Torsion } T^{\sigma}{}_{\mu\nu} = \Gamma^{\sigma}{}_{\nu\mu} - \Gamma^{\sigma}{}_{\mu\nu}$

Symmetries on a manifold M

- ϕ is an action of a Lie Group G as diffeomorphsim from M to M
- ϕ is a symmetry of $(M, g, \Gamma) \Leftrightarrow g = \phi^* g, \Gamma = \phi^* \Gamma$
- infinitesimally ϕ is encoded in a vector field $X = X^{\sigma} \partial_{\sigma}$

Killing equations: φ is a symmetry iff

$$(\mathscr{L}_X g)_{\mu\nu} = \nabla_\mu X_\nu + \nabla_\nu X_\mu = 0$$

$$\mathscr{L}_X \Gamma)^{\mu}{}_{\nu\rho} = \nabla_{\rho} \nabla_{\nu} X^{\mu} - X^{\sigma} \Gamma^{\mu}{}_{\nu\rho\sigma} - \nabla_{\rho} (X^{\sigma} T^{\mu}{}_{\nu\sigma}) = 0$$

enböck gauge

 $(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$

In teleparallel variables

 $\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$

Symmetries on a manifold M

- ϕ is an action of a Lie Group G as diffeomorphism from M to M
- ϕ is a symmetry of $(M, g, \Gamma) \Leftrightarrow g = \phi^* g, \Gamma = \phi^* \Gamma$
- infinitesimally ϕ is encoded in a vector field $X = X^{\sigma} \partial_{\sigma}$

Killing equations: φ is a symmetry iff

$$(\mathscr{L}_X g)_{\mu\nu} = \nabla_\mu X_\nu + \nabla_\nu X_\mu = 0$$

$$\mathscr{L}_X \Gamma)^{\mu}{}_{\nu\rho} = \nabla_{\rho} \nabla_{\nu} X^{\mu} - X^{\sigma} \Gamma^{\mu}{}_{\nu\rho\sigma} - \nabla_{\rho} (X^{\sigma} T^{\mu}{}_{\nu\sigma}) = 0$$

enböck gauge

 $(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$

In teleparallel variables

- $g = \phi^* g$, $\Gamma = \phi^* \Gamma$ indendent of Lorentz frame
- freedom encoded in Lie Algebra homomorphism $\lambda : \mathfrak{g} \to \mathfrak{so}(1,3)$
- \mathscr{L} only determined up to compatible local Lorentz transformation

 $\theta^{a}{}_{\mu}(x), \Lambda^{a}{}_{b}(x) \Rightarrow \omega^{a}{}_{b\mu} \text{ and } \Gamma^{\rho}{}_{\mu\nu}, \text{ Torsion } T^{\sigma}{}_{\mu\nu} = \Gamma^{\sigma}{}_{\nu\mu} - \Gamma^{\sigma}{}_{\mu\nu}$

Symmetries on a manifold M

- ϕ is an action of a Lie Group G as diffeomorphism from M to M
- ϕ is a symmetry of $(M, g, \Gamma) \Leftrightarrow g = \phi^* g, \Gamma = \phi^* \Gamma$
- infinitesimally ϕ is encoded in a vector field $X = X^{\sigma} \partial_{\sigma}$

Killing equations: φ is a symmetry iff

$$(\mathscr{L}_X g)_{\mu\nu} = \nabla_\mu X_\nu + \nabla_\nu X_\mu = 0$$

$$\mathscr{L}_X \Gamma)^{\mu}{}_{\nu\rho} = \nabla_{\rho} \nabla_{\nu} X^{\mu} - X^{\sigma} \Gamma^{\mu}{}_{\nu\rho\sigma} - \nabla_{\rho} (X^{\sigma} T^{\mu}{}_{\nu\sigma}) = 0$$

enböck gauge

 $(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$

In teleparallel variables

• $g = \phi^* g$, $\Gamma = \phi^* \Gamma$ indendent of Lorentz frame

• freedom encoded in Lie Algebra homomorphism $\lambda : \mathfrak{g} \to \mathfrak{so}(1,3)$

• \mathscr{L} only determined up to compatible local Lorentz transformation

Teleparallel Killing equations:

 $(\mathscr{L}_X\theta)^a{}_\mu = -\lambda^a{}_b\theta^b{}_\mu$ $(\mathscr{L}_X T)^{\nu}{}_{\mu\nu} = 0$ $(\mathscr{L}_X \omega)^a{}_{b\mu} = \partial_\mu \lambda^a{}_b = 0$

 $\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$

 (θ^{\prime})

Weitzenböck gauge

$$(a_{\mu}^{a}, \delta_{b}^{a}) \Rightarrow \omega^{a}{}_{b\mu} = 0, \ \Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu}\partial_{\rho}\theta^{a}{}_{\nu}$$

Teleparallel Killing equations:

$$(\mathscr{L}_X \theta)^a{}_{\mu} = -\lambda^a{}_b \theta^b{}_{\mu}, \quad (\mathscr{L}_X \omega)^a{}_{b\mu} = \partial_{\mu} \lambda^a$$

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

 (θ^{\prime})

Symmetry algebra

•
$$G = SO(3), \mathfrak{g} = \mathfrak{so}(3)$$

•
$$X_z = \partial_{\phi}$$
,

•
$$X_y = -\cos \varphi \partial_{\vartheta} + \frac{\sin \varphi}{\tan \vartheta} \partial_{\varphi}$$

• $X_x = \sin \varphi \partial_{\vartheta} + \frac{\cos \varphi}{\tan \vartheta} \partial_{\varphi}$

Weitzenböck gauge

$$(a_{\mu}^{a}, \delta_{b}^{a}) \Rightarrow \omega^{a}{}_{b\mu} = 0, \ \Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu}\partial_{\rho}\theta^{a}{}_{\nu}$$

Teleparallel Killing equations:

$$(\mathscr{L}_X \theta)^a{}_{\mu} = -\lambda^a{}_b \theta^b{}_{\mu}, \quad (\mathscr{L}_X \omega)^a{}_{b\mu} = \partial_{\mu} \lambda^a$$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

Symmetry algebra

•
$$G = SO(3), \mathfrak{g} = \mathfrak{so}(3)$$

• $X_z = \partial_{\phi},$
• $X_y = -\cos \varphi \partial_{\vartheta} + \frac{\sin \varphi}{\tan \vartheta} \partial_{\varphi}$
• $\lambda : X_z \rightarrow \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
• $X_x = \sin \varphi \partial_{\vartheta} + \frac{\cos \varphi}{\tan \vartheta} \partial_{\varphi}$

Weitzenböck gauge $(\theta^{a}_{\mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu}$

Teleparallel Killing equations:

 $(\mathscr{L}_X \theta)^a_{\ \mu} = -\lambda^a_{\ b} \theta^b_{\ \mu}, \quad (\mathscr{L}_X \omega)^a_{\ b\mu} = \partial_\mu \lambda^a_{\ b} = 0$

Geometric fields

$$\theta^{a}_{\ \mu}(x), \Lambda^{a}_{\ b}(x) \Rightarrow \omega^{a}_{\ b\mu} \text{ and } \Gamma^{\rho}_{\ \mu\nu}, \text{ Torsion } T^{\sigma}_{\ \mu\nu} = \Gamma^{\sigma}_{\ \nu\mu} - \Gamma^{\sigma}_{\ \mu\nu}$$

Symmetry algebra

•
$$G = SO(3), \mathfrak{g} = \mathfrak{so}(3)$$

• $X_z = \partial_{\phi},$
• $X_y = -\cos\varphi\partial_{\vartheta} + \frac{\sin\varphi}{\tan\vartheta}\partial_{\varphi}$
• $\lambda : X_z \rightarrow \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
• $X_x = \sin\varphi\partial_{\vartheta} + \frac{\cos\varphi}{\tan\vartheta}\partial_{\varphi}$

The general spherically symmetric tetrad, $C_i = C_i(t, r)$

$$\theta^{a}{}_{\mu} = \begin{pmatrix} C_{1} & C_{2} \\ C_{3}\sin\vartheta\cos\varphi & C_{4}\sin\vartheta\cos\varphi & C_{5}\cos\varphi \\ C_{3}\sin\vartheta\sin\varphi & C_{4}\sin\vartheta\sin\varphi & C_{5}\cos\varphi \\ C_{3}\cos\vartheta & C_{4}\cos\vartheta \\ \end{pmatrix}$$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu}$$

Teleparallel Killing equations: $(\mathscr{L}_X \theta)^a_{\ \mu} = -\lambda^a_{\ b} \theta^b_{\ \mu}, \quad (\mathscr{L}_X \omega)^a_{\ b\mu} = \partial_\mu \lambda^a_{\ b} = 0$

0 0 $s \vartheta \cos \varphi - C_6 \sin \varphi - \sin \vartheta (C_5 \sin \varphi + C_6 \cos \vartheta \cos \varphi)$ $s \vartheta \sin \varphi + C_6 \cos \varphi = \sin \vartheta (C_5 \cos \varphi - C_6 \cos \vartheta \sin \varphi)$ $-C_5 \sin \vartheta$ $C_6 \sin^2 \vartheta$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

Symmetry algebra

•
$$G = SO(3), \mathfrak{g} = \mathfrak{so}(3)$$

• $X_z = \partial_{\phi},$
• $X_y = -\cos\varphi\partial_{\vartheta} + \frac{\sin\varphi}{\tan\vartheta}\partial_{\varphi}$
• $\lambda : X_z \to \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
• $X_x = \sin\varphi\partial_{\vartheta} + \frac{\cos\varphi}{\tan\vartheta}\partial_{\varphi}$

The general spherically symmetric tetrad, $C_i = C_i(t, r)$

$$\theta^{a}{}_{\mu} = \begin{pmatrix} C_{1} & C_{2} & 0 & 0 \\ C_{3}\sin\vartheta\cos\varphi & C_{4}\sin\vartheta\cos\varphi & C_{5}\cos\vartheta\cos\varphi - C_{6}\sin\varphi & -\sin\vartheta(C_{5}\sin\varphi + C_{6}\cos\vartheta\cos\varphi) \\ C_{3}\sin\vartheta\sin\varphi & C_{4}\sin\vartheta\sin\varphi & C_{5}\cos\vartheta\sin\varphi + C_{6}\cos\varphi & \sin\vartheta(C_{5}\cos\varphi - C_{6}\cos\vartheta\sin\varphi) \\ C_{3}\cos\vartheta & C_{4}\cos\vartheta & -C_{5}\sin\vartheta & C_{6}\sin^{2}\vartheta \end{pmatrix}$$

The standard spherically symmetric metric

$$g = (C_1^2 - C_3^2)dt^2 - (C_4^2 - C_4^2)dt^2 - C_4^2 - C_4^$$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu}$$

Teleparallel Killing equations: $(\mathscr{L}_X \theta)^a_{\ \mu} = -\lambda^a_{\ b} \theta^b_{\ \mu}, \quad (\mathscr{L}_X \omega)^a_{\ b\mu} = \partial_\mu \lambda^a_{\ b} = 0$

 $C_2^2)dr^2 - (C_5^2 + C_6^2)(d\vartheta^2 + sin^2\vartheta d\varphi^2) - (C_3C_4 - C_1C_2)dtdr$

Geometric fields

 $\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$

Weitze
$$(\theta^a_{\ \mu}, \delta$$

enböck gauge

$$\delta^a_b) \Rightarrow \omega^a{}_{b\mu} = 0, \ \Gamma^\mu{}_{\nu\rho} = e_a{}^\mu \partial_\rho \theta^a{}_{\nu},$$

Teleparallel Killing equations:

$$(\mathscr{L}_X \theta)^a{}_{\mu} = -\lambda^a{}_b \theta^b{}_{\mu}, \quad (\mathscr{L}_X \omega)^a{}_{b\mu} = \partial_{\mu} \lambda^a$$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

$$\mathbf{\mathfrak{v}}_{\mu} = T^{\rho}{}_{\rho\mu}, \quad \mathbf{\mathfrak{a}}_{\mu} = \frac{1}{6} \epsilon_{\mu\nu\rho\sigma} T^{\nu\rho\sigma}, \quad \mathbf{\mathfrak{t}}_{\mu\nu\rho} = T_{(\mu\nu)\rho} + \frac{1}{3} (g_{\rho(\mu}\mathbf{\mathfrak{v}}_{\nu)} - g_{\nu\mu}\mathbf{\mathfrak{v}}_{\rho})$$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

Teleparallel Killing equations:

$$(\mathscr{L}_X \theta)^a{}_{\mu} = -\lambda^a{}_b \theta^b{}_{\mu}, \quad (\mathscr{L}_X \omega)^a{}_{b\mu} = \partial_{\mu} \lambda^a$$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

$$\mathbf{\mathfrak{v}}_{\mu} = T^{\rho}{}_{\rho\mu}, \quad \mathbf{\mathfrak{a}}_{\mu} = \frac{1}{6} \epsilon_{\mu\nu\rho\sigma} T^{\nu\rho\sigma}, \quad \mathbf{t}_{\mu\nu\rho} = T_{(\mu\nu)\rho} + \frac{1}{3} (g_{\rho(\mu} \mathbf{\mathfrak{v}}_{\nu)} - g_{\nu\mu} \mathbf{\mathfrak{v}}_{\rho})$$
$$T_{\text{vec}} = \mathbf{\mathfrak{v}}_{\mu} \mathbf{\mathfrak{v}}^{\mu}, \quad T_{\text{ax}} = \mathbf{\mathfrak{a}}_{\mu} \mathbf{\mathfrak{a}}^{\mu}, \quad T_{\text{ten}} = \mathbf{t}_{\mu\nu\rho} \mathbf{t}^{\mu\nu\rho}$$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

Teleparallel Killing equations:

$$(\mathscr{L}_X \theta)^a{}_{\mu} = -\lambda^a{}_b \theta^b{}_{\mu}, \quad (\mathscr{L}_X \omega)^a{}_{b\mu} = \partial_{\mu} \lambda^a$$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

$$\mathbf{\mathfrak{v}}_{\mu} = T^{\rho}{}_{\rho\mu}, \quad \mathbf{\mathfrak{a}}_{\mu} = \frac{1}{6} \epsilon_{\mu\nu\rho\sigma} T^{\nu\rho\sigma}, \quad \mathbf{t}_{\mu\nu\rho} = T_{(\mu\nu)\rho} + \frac{1}{3} (g_{\rho(\mu} \mathbf{\mathfrak{v}}_{\nu)} - g_{\nu\mu} \mathbf{\mathfrak{v}}_{\rho})$$
$$T_{\text{vec}} = \mathbf{\mathfrak{v}}_{\mu} \mathbf{\mathfrak{v}}^{\mu}, \quad T_{\text{ax}} = \mathbf{\mathfrak{a}}_{\mu} \mathbf{\mathfrak{a}}^{\mu}, \quad T_{\text{ten}} = \mathbf{t}_{\mu\nu\rho} \mathbf{t}^{\mu\nu\rho}$$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

Teleparallel Killing equations:

$$(\mathscr{L}_X \theta)^a{}_{\mu} = -\lambda^a{}_b \theta^b{}_{\mu}, \quad (\mathscr{L}_X \omega)^a{}_{b\mu} = \partial_{\mu} \mathcal{L}_{\mu}$$

$$T = -\frac{2}{3}T_{\text{vec}} + \frac{3}{2}T_{\text{ax}} + \frac{2}{3}T_{\text{ten}} = -\mathring{R} + \mathring{\nabla}_{\mu}(2T_{\sigma}^{\ \sigma\mu})$$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

$$\mathbf{\mathfrak{v}}_{\mu} = T^{\rho}{}_{\rho\mu}, \quad \mathbf{\mathfrak{a}}_{\mu} = \frac{1}{6} \epsilon_{\mu\nu\rho\sigma} T^{\nu\rho\sigma}, \quad \mathbf{t}_{\mu\nu\rho} = T_{(\mu\nu)\rho} + \frac{1}{3} (g_{\rho(\mu} \mathbf{\mathfrak{v}}_{\nu)} - g_{\nu\mu} \mathbf{\mathfrak{v}}_{\rho})$$
$$T_{\text{vec}} = \mathbf{\mathfrak{v}}_{\mu} \mathbf{\mathfrak{v}}^{\mu}, \quad T_{\text{ax}} = \mathbf{\mathfrak{a}}_{\mu} \mathbf{\mathfrak{a}}^{\mu}, \quad T_{\text{ten}} = \mathbf{t}_{\mu\nu\rho} \mathbf{t}^{\mu\nu\rho}$$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

Teleparallel Killing equations:

$$(\mathscr{L}_X \theta)^a{}_{\mu} = -\lambda^a{}_b \theta^b{}_{\mu}, \quad (\mathscr{L}_X \omega)^a{}_{b\mu} = \partial_{\mu} \mathcal{L}_{\mu}$$

$$T = -\frac{2}{3}T_{\text{vec}} + \frac{3}{2}T_{\text{ax}} + \frac{2}{3}T_{\text{ten}} = -\mathring{R} + \underbrace{\mathring{\nabla}_{\mu}(2T_{\sigma}^{\ \sigma\mu})}_{B}$$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The torsion scalars

$$\mathbf{\mathfrak{b}}_{\mu} = T^{\rho}{}_{\rho\mu}, \quad \mathbf{\mathfrak{a}}_{\mu} = \frac{1}{6} \epsilon_{\mu\nu\rho\sigma} T^{\nu\rho\sigma}, \quad \mathbf{\mathfrak{t}}_{\mu\nu\rho} = T_{(\mu\nu)\rho} + \frac{1}{3} (g_{\rho(\mu} \mathbf{\mathfrak{b}}_{\nu)} - g_{\nu\mu} \mathbf{\mathfrak{b}}_{\rho})$$
$$T_{\text{vec}} = \mathbf{\mathfrak{b}}_{\mu} \mathbf{\mathfrak{b}}^{\mu}, \quad T_{\text{ax}} = \mathbf{\mathfrak{a}}_{\mu} \mathbf{\mathfrak{a}}^{\mu}, \quad T_{\text{ten}} = \mathbf{\mathfrak{t}}_{\mu\nu\rho} \mathbf{\mathfrak{t}}^{\mu\nu\rho}$$

Teleparallel theories of gravity $S[\theta] = \int d^4x |\theta| f(T^{\sigma}_{\mu\nu}, \partial T^{\sigma}_{\mu\nu}, \dots)$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

Teleparallel Killing equations:

$$(\mathscr{L}_X \theta)^a{}_{\mu} = -\lambda^a{}_b \theta^b{}_{\mu}, \quad (\mathscr{L}_X \omega)^a{}_{b\mu} = \partial_{\mu} \mathcal{L}_{\mu}$$

$$T = -\frac{2}{3}T_{\text{vec}} + \frac{3}{2}T_{\text{ax}} + \frac{2}{3}T_{\text{ten}} = -\mathring{R} + \underbrace{\mathring{\nabla}_{\mu}(2T_{\sigma}^{\ \sigma\mu})}_{B}$$

Geometric fields

$$\theta^{a}_{\ \mu}(x), \Lambda^{a}_{\ b}(x) \Rightarrow \omega^{a}_{\ b\mu} \text{ and } \Gamma^{\rho}_{\ \mu\nu}, \text{ Torsion } T^{\sigma}_{\ \mu\nu} = \Gamma^{\sigma}_{\ \nu\mu} - \Gamma^{\sigma}_{\ \mu\nu}$$

The torsion scalars

$$\mathfrak{v}_{\mu} = T^{\rho}{}_{\rho\mu}, \quad \mathfrak{a}_{\mu} = \frac{1}{6} \epsilon_{\mu\nu\rho\sigma} T^{\nu\rho\sigma}, \quad \mathfrak{t}_{\mu\nu\rho} = T_{(\mu\nu)\rho} + \frac{1}{3} (g_{\rho(\mu} \mathfrak{v}_{\nu)} - g_{\nu\mu} \mathfrak{v}_{\rho})$$
$$T_{\text{vec}} = \mathfrak{v}_{\mu} \mathfrak{v}^{\mu}, \quad T_{\text{ax}} = \mathfrak{a}_{\mu} \mathfrak{a}^{\mu}, \quad T_{\text{ten}} = \mathfrak{t}_{\mu\nu\rho} \mathfrak{t}^{\mu\nu\rho}$$

Teleparallel theories of gravity $S[\theta] = \int d^4x |\theta| f(T^{\sigma}_{\mu\nu}, \partial T^{\sigma}_{\mu\nu}, \dots)$

• No extra derivative terms \Rightarrow Field eq. second order

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

Teleparallel Killing equations:

$$(\mathscr{L}_X \theta)^a{}_{\mu} = -\lambda^a{}_b \theta^b{}_{\mu}, \quad (\mathscr{L}_X \omega)^a{}_{b\mu} = \partial_{\mu} \mathcal{L}_{\mu}$$

$$T = -\frac{2}{3}T_{\text{vec}} + \frac{3}{2}T_{\text{ax}} + \frac{2}{3}T_{\text{ten}} = -\mathring{R} + \underbrace{\mathring{\nabla}_{\mu}(2T_{\sigma}^{\ \sigma\mu})}_{B}$$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The torsion scalars

$$\mathbf{\mathfrak{b}}_{\mu} = T^{\rho}{}_{\rho\mu}, \quad \mathbf{\mathfrak{a}}_{\mu} = \frac{1}{6} \epsilon_{\mu\nu\rho\sigma} T^{\nu\rho\sigma}, \quad \mathbf{t}_{\mu\nu\rho} = T_{(\mu\nu)\rho} + \frac{1}{3} (g_{\rho(\mu} \mathbf{\mathfrak{b}}_{\nu)} - g_{\nu\mu} \mathbf{\mathfrak{b}}_{\rho})$$
$$T_{\text{vec}} = \mathbf{\mathfrak{b}}_{\mu} \mathbf{\mathfrak{b}}^{\mu}, \quad T_{\text{ax}} = \mathbf{\mathfrak{a}}_{\mu} \mathbf{\mathfrak{a}}^{\mu}, \quad T_{\text{ten}} = \mathbf{t}_{\mu\nu\rho} \mathbf{t}^{\mu\nu\rho}$$

Teleparallel theories of gravity $S[\theta] = \int d^4x |\theta| f(T^{\sigma}_{\mu\nu}, \partial T^{\sigma}_{\mu\nu}, \dots)$

- No extra derivative terms \Rightarrow Field eq. second order
- Field equations decay into symmetric and antisymmetric parts

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

Teleparallel Killing equations:

$$(\mathscr{L}_X \theta)^a{}_{\mu} = -\lambda^a{}_b \theta^b{}_{\mu}, \quad (\mathscr{L}_X \omega)^a{}_{b\mu} = \partial_{\mu} \mathcal{L}_{\mu}$$

$$T = -\frac{2}{3}T_{\text{vec}} + \frac{3}{2}T_{\text{ax}} + \frac{2}{3}T_{\text{ten}} = -\mathring{R} + \underbrace{\mathring{\nabla}_{\mu}(2T_{\sigma}^{\ \sigma\mu})}_{B}$$

Geometric fields

$$\vartheta^{a}{}_{\mu}(x), \Lambda^{a}{}_{b}(x) \Rightarrow \omega^{a}{}_{b\mu} \text{ and } \Gamma^{\rho}{}_{\mu\nu}, \text{ Torsion } T^{\sigma}{}_{\mu\nu} = \Gamma^{\sigma}{}_{\nu\mu} - \Gamma^{\sigma}{}_{\mu\nu}$$

The torsion scalars

$$\mathbf{\mathfrak{v}}_{\mu} = T^{\rho}{}_{\rho\mu}, \quad \mathbf{\mathfrak{a}}_{\mu} = \frac{1}{6} \epsilon_{\mu\nu\rho\sigma} T^{\nu\rho\sigma}, \quad \mathbf{t}_{\mu\nu\rho} = T_{(\mu\nu)\rho} + \frac{1}{3} (g_{\rho(\mu} \mathbf{\mathfrak{v}}_{\nu)} - g_{\nu\mu} \mathbf{\mathfrak{v}}_{\rho})$$
$$T_{\text{vec}} = \mathbf{\mathfrak{v}}_{\mu} \mathbf{\mathfrak{v}}^{\mu}, \quad T_{\text{ax}} = \mathbf{\mathfrak{a}}_{\mu} \mathbf{\mathfrak{a}}^{\mu}, \quad T_{\text{ten}} = \mathbf{t}_{\mu\nu\rho} \mathbf{t}^{\mu\nu\rho}$$

Teleparallel theories of gravity $S[\theta] = \int d^4x |\theta| f(T^{\sigma}_{\mu\nu}, \partial T^{\sigma}_{\mu\nu}, \dots)$

- No extra derivative terms \Rightarrow Field eq. second order
- Field equations decay into symmetric and antisymmetric parts

$$E_{\mu\nu} = e^a{}_\nu g_{\mu\sigma} E_a{}^\sigma = \kappa \theta \Theta_{\mu\nu}$$

$$E_{(\mu\nu)} = e^a{}_{(\nu}g_{\mu)\sigma}E_a{}^{\sigma} = \kappa\Theta_{(\mu\nu)} \qquad E_{[\mu\nu]} = e^a{}_{[\nu}g_{\mu]\sigma}E_a{}^{\sigma} = \kappa\Theta_{[\mu\nu]}$$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

Teleparallel Killing equations:

$$(\mathscr{L}_X \theta)^a{}_{\mu} = -\lambda^a{}_b \theta^b{}_{\mu}, \quad (\mathscr{L}_X \omega)^a{}_{b\mu} = \partial_{\mu} \mathcal{L}_{\mu}$$

$$T = -\frac{2}{3}T_{\text{vec}} + \frac{3}{2}T_{\text{ax}} + \frac{2}{3}T_{\text{ten}} = -\mathring{R} + \underbrace{\mathring{\nabla}_{\mu}(2T_{\sigma}^{\ \sigma\mu})}_{B}$$

Geometric fields

$$\vartheta^{a}{}_{\mu}(x), \Lambda^{a}{}_{b}(x) \Rightarrow \omega^{a}{}_{b\mu} \text{ and } \Gamma^{\rho}{}_{\mu\nu}, \text{ Torsion } T^{\sigma}{}_{\mu\nu} = \Gamma^{\sigma}{}_{\nu\mu} - \Gamma^{\sigma}{}_{\mu\nu}$$

The torsion scalars

$$\mathbf{\mathfrak{v}}_{\mu} = T^{\rho}{}_{\rho\mu}, \quad \mathbf{\mathfrak{a}}_{\mu} = \frac{1}{6} \epsilon_{\mu\nu\rho\sigma} T^{\nu\rho\sigma}, \quad \mathbf{t}_{\mu\nu\rho} = T_{(\mu\nu)\rho} + \frac{1}{3} (g_{\rho(\mu} \mathbf{\mathfrak{v}}_{\nu)} - g_{\nu\mu} \mathbf{\mathfrak{v}}_{\rho})$$
$$T_{\text{vec}} = \mathbf{\mathfrak{v}}_{\mu} \mathbf{\mathfrak{v}}^{\mu}, \quad T_{\text{ax}} = \mathbf{\mathfrak{a}}_{\mu} \mathbf{\mathfrak{a}}^{\mu}, \quad T_{\text{ten}} = \mathbf{t}_{\mu\nu\rho} \mathbf{t}^{\mu\nu\rho}$$

Teleparallel theories of gravity $S[\theta] = \int d^4x |\theta| f(T^{\sigma}_{\mu\nu}, \partial T^{\sigma}_{\mu\nu}, \dots)$

- No extra derivative terms \Rightarrow Field eq. second order
- Field equations decay into symmetric and antisymmetric parts

$$E_{\mu\nu} = e^a{}_\nu g_{\mu\sigma} E_a{}^\sigma = \kappa \theta \Theta_{\mu\nu}$$

$$E_{(\mu\nu)} = e^a{}_{(\nu}g_{\mu)\sigma}E_a{}^{\sigma} = \kappa\Theta_{(\mu\nu)} \qquad E_{[\mu\nu]} = e^a{}_{[\nu}g_{\mu]\sigma}E_a{}^{\sigma} = \kappa\Theta_{[\mu\nu]}$$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

Teleparallel Killing equations:

$$(\mathscr{L}_X \theta)^a{}_{\mu} = -\lambda^a{}_b \theta^b{}_{\mu}, \quad (\mathscr{L}_X \omega)^a{}_{b\mu} = \partial_{\mu} \lambda^a$$

and the torsion scalar

$$T = -\frac{2}{3}T_{\text{vec}} + \frac{3}{2}T_{\text{ax}} + \frac{2}{3}T_{\text{ten}} = -\mathring{R} + \underbrace{\mathring{\nabla}_{\mu}(2T_{\sigma}^{\ \sigma\mu})}_{B}$$

Most prominent theories in the literature

Geometric fields

$$\vartheta^{a}{}_{\mu}(x), \Lambda^{a}{}_{b}(x) \Rightarrow \omega^{a}{}_{b\mu} \text{ and } \Gamma^{\rho}{}_{\mu\nu}, \text{ Torsion } T^{\sigma}{}_{\mu\nu} = \Gamma^{\sigma}{}_{\nu\mu} - \Gamma^{\sigma}{}_{\mu\nu}$$

The torsion scalars

$$\mathbf{\mathfrak{v}}_{\mu} = T^{\rho}{}_{\rho\mu}, \quad \mathbf{\mathfrak{a}}_{\mu} = \frac{1}{6} \epsilon_{\mu\nu\rho\sigma} T^{\nu\rho\sigma}, \quad \mathbf{t}_{\mu\nu\rho} = T_{(\mu\nu)\rho} + \frac{1}{3} (g_{\rho(\mu} \mathbf{\mathfrak{v}}_{\nu)} - g_{\nu\mu} \mathbf{\mathfrak{v}}_{\rho})$$
$$T_{\text{vec}} = \mathbf{\mathfrak{v}}_{\mu} \mathbf{\mathfrak{v}}^{\mu}, \quad T_{\text{ax}} = \mathbf{\mathfrak{a}}_{\mu} \mathbf{\mathfrak{a}}^{\mu}, \quad T_{\text{ten}} = \mathbf{t}_{\mu\nu\rho} \mathbf{t}^{\mu\nu\rho}$$

Teleparallel theories of gravity $S[\theta] = \int d^4x |\theta| f(T^{\sigma}_{\mu\nu}, \partial T^{\sigma}_{\mu\nu}, \dots)$

- No extra derivative terms \Rightarrow Field eq. second order
- Field equations decay into symmetric and antisymmetric parts

$$E_{\mu\nu} = e^a{}_\nu g_{\mu\sigma} E_a{}^\sigma = \kappa \theta \Theta_{\mu\nu}$$

$$E_{(\mu\nu)} = e^a{}_{(\nu}g_{\mu)\sigma}E_a{}^{\sigma} = \kappa\Theta_{(\mu\nu)} \qquad E_{[\mu\nu]} = e^a{}_{[\nu}g_{\mu]\sigma}E_a{}^{\sigma} = \kappa\Theta_{[\mu\nu]}$$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

Teleparallel Killing equations:

$$(\mathscr{L}_X \theta)^a{}_{\mu} = -\lambda^a{}_b \theta^b{}_{\mu}, \quad (\mathscr{L}_X \omega)^a{}_{b\mu} = \partial_{\mu} \lambda^a$$

and the torsion scalar

$$\mathbb{T} = -\frac{2}{3}T_{\text{vec}} + \frac{3}{2}T_{\text{ax}} + \frac{2}{3}T_{\text{ten}} = -\overset{\circ}{R} + \underbrace{\overset{\circ}{\nabla}_{\mu}(2T_{\sigma}^{\sigma\mu})}_{B}$$

Most prominent theories in the literature

• Teleparallel equivalent of general relativity TEGR $S[\theta] = \int d^4x \, |\theta| \, T = \int d^4x \, |\theta| \, (-\mathring{R} + B)$

Geometric fields

$$\vartheta^{a}{}_{\mu}(x), \Lambda^{a}{}_{b}(x) \Rightarrow \omega^{a}{}_{b\mu} \text{ and } \Gamma^{\rho}{}_{\mu\nu}, \text{ Torsion } T^{\sigma}{}_{\mu\nu} = \Gamma^{\sigma}{}_{\nu\mu} - \Gamma^{\sigma}{}_{\mu\nu}$$

The torsion scalars

$$\mathbf{\mathfrak{v}}_{\mu} = T^{\rho}{}_{\rho\mu}, \quad \mathbf{\mathfrak{a}}_{\mu} = \frac{1}{6} \epsilon_{\mu\nu\rho\sigma} T^{\nu\rho\sigma}, \quad \mathbf{t}_{\mu\nu\rho} = T_{(\mu\nu)\rho} + \frac{1}{3} (g_{\rho(\mu} \mathbf{\mathfrak{v}}_{\nu)} - g_{\nu\mu} \mathbf{\mathfrak{v}}_{\rho})$$
$$T_{\text{vec}} = \mathbf{\mathfrak{v}}_{\mu} \mathbf{\mathfrak{v}}^{\mu}, \quad T_{\text{ax}} = \mathbf{\mathfrak{a}}_{\mu} \mathbf{\mathfrak{a}}^{\mu}, \quad T_{\text{ten}} = \mathbf{t}_{\mu\nu\rho} \mathbf{t}^{\mu\nu\rho}$$

Teleparallel theories of gravity $S[\theta] = \begin{bmatrix} d^4x | \theta | f(T^{\sigma}_{\mu\nu}, \partial T^{\sigma}_{\mu\nu}, \dots) \end{bmatrix}$

- No extra derivative terms \Rightarrow Field eq. second order
- Field equations decay into symmetric and antisymmetric parts

$$E_{\mu\nu} = e^a{}_\nu g_{\mu\sigma} E_a{}^\sigma = \kappa \theta \Theta_{\mu\nu}$$

$$E_{(\mu\nu)} = e^a{}_{(\nu}g_{\mu)\sigma}E_a{}^{\sigma} = \kappa\Theta_{(\mu\nu)} \qquad E_{[\mu\nu]} = e^a{}_{[\nu}g_{\mu]\sigma}E_a{}^{\sigma} = \kappa\Theta_{[\mu\nu]}$$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

Teleparallel Killing equations:

$$(\mathscr{L}_X \theta)^a{}_{\mu} = -\lambda^a{}_b \theta^b{}_{\mu}, \quad (\mathscr{L}_X \omega)^a{}_{b\mu} = \partial_{\mu} \lambda^a{}_{\mu}$$

and the torsion scalar

$$\mathbb{T} = -\frac{2}{3}T_{\text{vec}} + \frac{3}{2}T_{\text{ax}} + \frac{2}{3}T_{\text{ten}} = -\mathring{R} + \underbrace{\mathring{\nabla}_{\mu}(2T_{\sigma}^{\sigma\mu})}_{B}$$

Most prominent theories in the literature

- Teleparallel equivalent of general relativity TEGR $S[\theta] = \int d^4x \, |\theta| \, T = \int d^4x \, |\theta| \, (-\mathring{R} + B)$
- New General Relativity

$$S[\theta] = \int d^4x \left| \theta \right| \left(a_1 T_{\text{vec}} + a_2 T_{\text{ax}} + a_3 T_{\text{ten}} \right)$$

Geometric fields

$$\vartheta^{a}{}_{\mu}(x), \Lambda^{a}{}_{b}(x) \Rightarrow \omega^{a}{}_{b\mu} \text{ and } \Gamma^{\rho}{}_{\mu\nu}, \text{ Torsion } T^{\sigma}{}_{\mu\nu} = \Gamma^{\sigma}{}_{\nu\mu} - \Gamma^{\sigma}{}_{\mu\nu}$$

The torsion scalars

$$\mathbf{\mathfrak{v}}_{\mu} = T^{\rho}{}_{\rho\mu}, \quad \mathbf{\mathfrak{a}}_{\mu} = \frac{1}{6} \epsilon_{\mu\nu\rho\sigma} T^{\nu\rho\sigma}, \quad \mathbf{t}_{\mu\nu\rho} = T_{(\mu\nu)\rho} + \frac{1}{3} (g_{\rho(\mu} \mathbf{\mathfrak{v}}_{\nu)} - g_{\nu\mu} \mathbf{\mathfrak{v}}_{\rho})$$
$$T_{\text{vec}} = \mathbf{\mathfrak{v}}_{\mu} \mathbf{\mathfrak{v}}^{\mu}, \quad T_{\text{ax}} = \mathbf{\mathfrak{a}}_{\mu} \mathbf{\mathfrak{a}}^{\mu}, \quad T_{\text{ten}} = \mathbf{t}_{\mu\nu\rho} \mathbf{t}^{\mu\nu\rho}$$

Teleparallel theories of gravity $S[\theta] = \int d^4x |\theta| f(T^{\sigma}_{\mu\nu}, \partial T^{\sigma}_{\mu\nu}, \dots)$

- No extra derivative terms \Rightarrow Field eq. second order
- Field equations decay into symmetric and antisymmetric parts

$$E_{\mu\nu} = e^a{}_\nu g_{\mu\sigma} E_a{}^\sigma = \kappa \theta \Theta_{\mu\nu}$$

$$E_{(\mu\nu)} = e^a{}_{(\nu}g_{\mu)\sigma}E_a{}^{\sigma} = \kappa\Theta_{(\mu\nu)} \qquad E_{[\mu\nu]} = e^a{}_{[\nu}g_{\mu]\sigma}E_a{}^{\sigma} = \kappa\Theta_{[\mu\nu]}$$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

Teleparallel Killing equations:

$$(\mathscr{L}_X \theta)^a{}_{\mu} = -\lambda^a{}_b \theta^b{}_{\mu}, \quad (\mathscr{L}_X \omega)^a{}_{b\mu} = \partial_{\mu} \lambda^a{}_{\mu}$$

and the torsion scalar

$$\mathbb{T} = -\frac{2}{3}T_{\text{vec}} + \frac{3}{2}T_{\text{ax}} + \frac{2}{3}T_{\text{ten}} = -\mathring{R} + \underbrace{\mathring{\nabla}_{\mu}(2T_{\sigma}^{\sigma\mu})}_{B}$$

Most prominent theories in the literature

- Teleparallel equivalent of general relativity TEGR $S[\theta] = \int d^4x \, |\theta| \, T = \int d^4x \, |\theta| \, (-\mathring{R} + B)$
- New General Relativity

$$S[\theta] = \int d^4x \, |\, \theta \,| \, (a_1 T_{\text{vec}} + a_2 T_{\text{ax}} + a_3 T_{\text{ten}})$$

$$S[\theta] = \int d^4x \, |\, \theta \,| f(T, B, \phi, X)$$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The torsion scalars

$$\mathbf{\mathfrak{v}}_{\mu} = T^{\rho}{}_{\rho\mu}, \quad \mathbf{\mathfrak{a}}_{\mu} = \frac{1}{6} \epsilon_{\mu\nu\rho\sigma} T^{\nu\rho\sigma}, \quad \mathbf{t}_{\mu\nu\rho} = T_{(\mu\nu)\rho} + \frac{1}{3} (g_{\rho(\mu} \mathbf{\mathfrak{v}}_{\nu)} - g_{\nu\mu} \mathbf{\mathfrak{v}}_{\rho})$$
$$T_{\text{vec}} = \mathbf{\mathfrak{v}}_{\mu} \mathbf{\mathfrak{v}}^{\mu}, \quad T_{\text{ax}} = \mathbf{\mathfrak{a}}_{\mu} \mathbf{\mathfrak{a}}^{\mu}, \quad T_{\text{ten}} = \mathbf{t}_{\mu\nu\rho} \mathbf{t}^{\mu\nu\rho}$$

$f(T,B,\Phi,X)$ -Gravity and antisymmetric field eqs in spherical symmetry

$$S[\theta] = \int d^4x \, |\, \theta \,| f(T, B, \Phi, X) \,, \, X = \frac{1}{2} \partial_\mu \Phi \partial^\mu \Phi \,, T = TEGR$$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

Teleparallel Killing equations:

$$(\mathscr{L}_X \theta)^a{}_{\mu} = -\lambda^a{}_b \theta^b{}_{\mu}, \quad (\mathscr{L}_X \omega)^a{}_{b\mu} = \partial_{\mu} \lambda^a$$

$$\mathbb{T} = -\frac{2}{3}T_{\text{vec}} + \frac{3}{2}T_{\text{ax}} + \frac{2}{3}T_{\text{ten}} = -\mathring{R} + \underbrace{\mathring{\nabla}_{\mu}(2T_{\sigma}^{\sigma\mu})}_{B}$$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The torsion scalars

$$\mathbf{\mathfrak{v}}_{\mu} = T^{\rho}{}_{\rho\mu}, \quad \mathbf{\mathfrak{a}}_{\mu} = \frac{1}{6} \epsilon_{\mu\nu\rho\sigma} T^{\nu\rho\sigma}, \quad \mathbf{t}_{\mu\nu\rho} = T_{(\mu\nu)\rho} + \frac{1}{3} (g_{\rho(\mu} \mathbf{\mathfrak{v}}_{\nu)} - g_{\nu\mu} \mathbf{\mathfrak{v}}_{\rho})$$
$$T_{\text{vec}} = \mathbf{\mathfrak{v}}_{\mu} \mathbf{\mathfrak{v}}^{\mu}, \quad T_{\text{ax}} = \mathbf{\mathfrak{a}}_{\mu} \mathbf{\mathfrak{a}}^{\mu}, \quad T_{\text{ten}} = \mathbf{t}_{\mu\nu\rho} \mathbf{t}^{\mu\nu\rho}$$

 $f(T,B,\Phi,X)$ -Gravity and antisymmetric field eqs in spherical symmetry

$$\begin{split} S[\theta] &= \int d^4 x \, |\, \theta \, |\, f(T,B,\Phi,X) \,, \, X = \frac{1}{2} \partial_\mu \Phi \partial^\mu \Phi , \, T = TEGR \\ E_{[tr]} &= 0 \Leftrightarrow C_3 C_5 (f'_T + f'_B) = 0 \\ E_{[\vartheta \varphi]} &= 0 \Leftrightarrow C_1 C_6 (f'_T + f'_B) = 0 \end{split}$$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

Teleparallel Killing equations:

$$(\mathscr{L}_X \theta)^a{}_{\mu} = -\lambda^a{}_b \theta^b{}_{\mu}, \quad (\mathscr{L}_X \omega)^a{}_{b\mu} = \partial_{\mu} \lambda^a$$

$$\mathbb{T} = -\frac{2}{3}T_{\text{vec}} + \frac{3}{2}T_{\text{ax}} + \frac{2}{3}T_{\text{ten}} = -\mathring{R} + \underbrace{\mathring{\nabla}_{\mu}(2T_{\sigma}^{\sigma\mu})}_{B}$$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The torsion scalars

$$\mathbf{\mathfrak{v}}_{\mu} = T^{\rho}{}_{\rho\mu}, \quad \mathbf{\mathfrak{a}}_{\mu} = \frac{1}{6} \epsilon_{\mu\nu\rho\sigma} T^{\nu\rho\sigma}, \quad \mathbf{t}_{\mu\nu\rho} = T_{(\mu\nu)\rho} + \frac{1}{3} (g_{\rho(\mu} \mathbf{\mathfrak{v}}_{\nu)} - g_{\nu\mu} \mathbf{\mathfrak{v}}_{\rho})$$
$$T_{\text{vec}} = \mathbf{\mathfrak{v}}_{\mu} \mathbf{\mathfrak{v}}^{\mu}, \quad T_{\text{ax}} = \mathbf{\mathfrak{a}}_{\mu} \mathbf{\mathfrak{a}}^{\mu}, \quad T_{\text{ten}} = \mathbf{t}_{\mu\nu\rho} \mathbf{t}^{\mu\nu\rho}$$

 $f(T,B,\Phi,X)$ -Gravity and antisymmetric field eqs in spherical symmetry

$$\begin{split} S[\theta] &= \int d^4 x \, |\, \theta \, |\, f(T,B,\Phi,X) \,, \, X = \frac{1}{2} \partial_\mu \Phi \partial^\mu \Phi , \, T = TEGR \\ E_{[tr]} &= 0 \Leftrightarrow C_3 C_5 (f'_T + f'_B) = 0 \\ E_{[\vartheta \varphi]} &= 0 \Leftrightarrow C_1 C_6 (f'_T + f'_B) = 0 \end{split}$$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

Teleparallel Killing equations:

$$(\mathscr{L}_X \theta)^a{}_{\mu} = -\lambda^a{}_b \theta^b{}_{\mu}, \quad (\mathscr{L}_X \omega)^a{}_{b\mu} = \partial_{\mu} \lambda^a$$

and the torsion scalar

$$\mathbb{T} = -\frac{2}{3}T_{\text{vec}} + \frac{3}{2}T_{\text{ax}} + \frac{2}{3}T_{\text{ten}} = -\overset{\circ}{R} + \overset{\circ}{\underbrace{\nabla_{\mu}(2T_{\sigma}^{\sigma\mu})}}_{B}$$

• $C_3 = 0 = C_6$ coordinate choices $C_2 = 0$, $C_5 = \xi r \ (\xi = \pm 1)$ $\theta^{a}_{\pm\mu} = \begin{pmatrix} C_{1} & 0 & 0 & 0 \\ 0 & C_{4}\sin\vartheta\cos\varphi & r\xi\cos\vartheta\cos\varphi & -r\xi\sin\vartheta\sin\varphi \\ 0 & C_{4}\sin\vartheta\sin\varphi & r\xi\cos\vartheta\sin\varphi & r\xi\sin\vartheta\cos\varphi \\ 0 & C_{4}\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix}$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The torsion scalars

$$\mathbf{\mathfrak{v}}_{\mu} = T^{\rho}{}_{\rho\mu}, \quad \mathbf{\mathfrak{a}}_{\mu} = \frac{1}{6} \epsilon_{\mu\nu\rho\sigma} T^{\nu\rho\sigma}, \quad \mathbf{t}_{\mu\nu\rho} = T_{(\mu\nu)\rho} + \frac{1}{3} (g_{\rho(\mu} \mathbf{\mathfrak{v}}_{\nu)} - g_{\nu\mu} \mathbf{\mathfrak{v}}_{\rho})$$
$$T_{\text{vec}} = \mathbf{\mathfrak{v}}_{\mu} \mathbf{\mathfrak{v}}^{\mu}, \quad T_{\text{ax}} = \mathbf{\mathfrak{a}}_{\mu} \mathbf{\mathfrak{a}}^{\mu}, \quad T_{\text{ten}} = \mathbf{t}_{\mu\nu\rho} \mathbf{t}^{\mu\nu\rho}$$

 $f(T,B,\Phi,X)$ -Gravity and antisymmetric field eqs in spherical symmetry

$$\begin{split} S[\theta] &= \int d^4 x \, |\, \theta \, |\, f(T,B,\Phi,X) \,, \, X = \frac{1}{2} \partial_\mu \Phi \partial^\mu \Phi , \, T = TEGR \\ E_{[tr]} &= 0 \Leftrightarrow C_3 C_5 (f'_T + f'_B) = 0 \\ E_{[\vartheta \varphi]} &= 0 \Leftrightarrow C_1 C_6 (f'_T + f'_B) = 0 \end{split}$$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

Teleparallel Killing equations:

$$(\mathscr{L}_X \theta)^a{}_{\mu} = -\lambda^a{}_b \theta^b{}_{\mu}, \quad (\mathscr{L}_X \omega)^a{}_{b\mu} = \partial_{\mu} \lambda^a$$

and the torsion scalar

$$\mathbb{T} = -\frac{2}{3}T_{\text{vec}} + \frac{3}{2}T_{\text{ax}} + \frac{2}{3}T_{\text{ten}} = -\mathring{R} + \underbrace{\mathring{\nabla}_{\mu}(2T_{\sigma}^{\sigma\mu})}_{B}$$

• $C_1 = 0 = C_5$, coordinate choices $C_4 = 0$, $C_6 = \chi r \ (\chi = \pm 1)$

$$\theta^{a}_{\pm\mu} = \begin{pmatrix} 0 & iC_{2} & 0 & 0 \\ iC_{3}\sin\vartheta\cos\varphi & 0 & -r\chi\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\cos\varphi \\ iC_{3}\sin\vartheta\sin\varphi & 0 & r\chi\cos\varphi & r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ iC_{3}\cos\vartheta & 0 & 0 & r\chi\sin^{2}\vartheta \end{pmatrix}$$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The torsion scalars

$$\mathbf{\mathfrak{v}}_{\mu} = T^{\rho}{}_{\rho\mu}, \quad \mathbf{\mathfrak{a}}_{\mu} = \frac{1}{6} \epsilon_{\mu\nu\rho\sigma} T^{\nu\rho\sigma}, \quad \mathbf{t}_{\mu\nu\rho} = T_{(\mu\nu)\rho} + \frac{1}{3} (g_{\rho(\mu} \mathbf{\mathfrak{v}}_{\nu)} - g_{\nu\mu} \mathbf{\mathfrak{v}}_{\rho})$$
$$T_{\text{vec}} = \mathbf{\mathfrak{v}}_{\mu} \mathbf{\mathfrak{v}}^{\mu}, \quad T_{\text{ax}} = \mathbf{\mathfrak{a}}_{\mu} \mathbf{\mathfrak{a}}^{\mu}, \quad T_{\text{ten}} = \mathbf{t}_{\mu\nu\rho} \mathbf{t}^{\mu\nu\rho}$$

 $f(T,B,\Phi,X)$ -Gravity and antisymmetric field eqs in spherical symmetry

$$\begin{split} S[\theta] &= \int d^4 x \, |\, \theta \, |\, f(T,B,\Phi,X) \,, \, X = \frac{1}{2} \partial_\mu \Phi \partial^\mu \Phi , \, T = TEGR \\ E_{[tr]} &= 0 \Leftrightarrow C_3 C_5 (f'_T + f'_B) = 0 \\ E_{[\vartheta \varphi]} &= 0 \Leftrightarrow C_1 C_6 (f'_T + f'_B) = 0 \end{split}$$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

Teleparallel Killing equations:

$$(\mathscr{L}_X \theta)^a{}_{\mu} = -\lambda^a{}_b \theta^b{}_{\mu}, \quad (\mathscr{L}_X \omega)^a{}_{b\mu} = \partial_{\mu} \lambda^a$$

$$\mathbb{T} = -\frac{2}{3}T_{\text{vec}} + \frac{3}{2}T_{\text{ax}} + \frac{2}{3}T_{\text{ten}} = -\mathring{R} + \underbrace{\mathring{\nabla}_{\mu}(2T_{\sigma}^{\sigma\mu})}_{B}$$

•
$$C_3 = 0 = C_6$$
 coordinate choices $C_2 = 0$, $C_5 = \xi r \ (\xi = \pm 1)$
 $\theta_{\pm\mu}^a = \begin{pmatrix} C_1 & 0 & 0 & 0 \\ 0 & C_4 \sin \vartheta \cos \varphi & r\xi \cos \vartheta \cos \varphi & -r\xi \sin \vartheta \sin \varphi \\ 0 & C_4 \sin \vartheta \sin \varphi & r\xi \cos \vartheta \sin \varphi & r\xi \sin \vartheta \cos \varphi \\ 0 & C_4 \cos \vartheta & -r\xi \sin \vartheta & 0 \end{pmatrix}$
• $C_1 = 0 = C_5$, coordinate choices $C_4 = 0$, $C_6 = \chi r \ (\chi = \pm 1)$
 $\theta_{\pm\mu}^a = \begin{pmatrix} 0 & iC_2 & 0 & 0 \\ iC_3 \sin \vartheta \cos \varphi & 0 & -r\chi \sin \varphi & -r\chi \sin \vartheta \cos \vartheta \cos \varphi \\ iC_3 \sin \vartheta \sin \varphi & 0 & r\chi \cos \varphi & r\chi \sin \vartheta \cos \vartheta \sin \varphi \\ iC_3 \cos \vartheta & 0 & 0 & r\chi \sin^2 \vartheta \end{pmatrix}$
 $g = A^2 dt^2 - B^2 dr^2 - r^2 (d\vartheta^2 + sin^2 \vartheta d\varphi^2)$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The torsion scalars

$$\mathbf{\mathfrak{v}}_{\mu} = T^{\rho}{}_{\rho\mu}, \quad \mathbf{\mathfrak{a}}_{\mu} = \frac{1}{6} \epsilon_{\mu\nu\rho\sigma} T^{\nu\rho\sigma}, \quad \mathbf{t}_{\mu\nu\rho} = T_{(\mu\nu)\rho} + \frac{1}{3} (g_{\rho(\mu} \mathbf{\mathfrak{v}}_{\nu)} - g_{\nu\mu} \mathbf{\mathfrak{v}}_{\rho})$$
$$T_{\text{vec}} = \mathbf{\mathfrak{v}}_{\mu} \mathbf{\mathfrak{v}}^{\mu}, \quad T_{\text{ax}} = \mathbf{\mathfrak{a}}_{\mu} \mathbf{\mathfrak{a}}^{\mu}, \quad T_{\text{ten}} = \mathbf{t}_{\mu\nu\rho} \mathbf{t}^{\mu\nu\rho}$$

 $f(T,B,\Phi,X)$ -Gravity and antisymmetric field eqs in spherical symmetry

$$S[\theta] = \int d^4x \, |\, \theta \,| f(T, B, \Phi, X) \,, \, X = \frac{1}{2} \partial_\mu \Phi \partial^\mu \Phi, \, T = TEGR$$

$$\begin{split} E_{[tr]} &= 0 \Leftrightarrow C_3 C_5 (f_T' + f_B') = 0 \\ E_{[\vartheta \varphi]} &= 0 \Leftrightarrow C_1 C_6 (f_T' + f_B') = 0 \end{split}$$

• setting $f'_T = f'_R = 0$ yields TEGR or f(R)

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

Teleparallel Killing equations:

$$(\mathscr{L}_X \theta)^a{}_{\mu} = -\lambda^a{}_b \theta^b{}_{\mu}, \quad (\mathscr{L}_X \omega)^a{}_{b\mu} = \partial_{\mu} \lambda^a$$

$$\mathbb{T} = -\frac{2}{3}T_{\text{vec}} + \frac{3}{2}T_{\text{ax}} + \frac{2}{3}T_{\text{ten}} = -\mathring{R} + \underbrace{\mathring{\nabla}_{\mu}(2T_{\sigma}^{\sigma\mu})}_{B}$$

•
$$C_3 = 0 = C_6$$
 coordinate choices $C_2 = 0$, $C_5 = \xi r \ (\xi = \pm 1)$
 $\theta^a_{\pm\mu} = \begin{pmatrix} C_1 & 0 & 0 & 0 \\ 0 & C_4 \sin \vartheta \cos \varphi & r\xi \cos \vartheta \cos \varphi & -r\xi \sin \vartheta \sin \varphi \\ 0 & C_4 \sin \vartheta \sin \varphi & r\xi \cos \vartheta \sin \varphi & r\xi \sin \vartheta \cos \varphi \\ 0 & C_4 \cos \vartheta & -r\xi \sin \vartheta & 0 \end{pmatrix}$
• $C_1 = 0 = C_5$, coordinate choices $C_4 = 0$, $C_6 = \chi r \ (\chi = \pm 1)$
 $\theta^a_{\pm\mu} = \begin{pmatrix} 0 & iC_2 & 0 & 0 \\ iC_3 \sin \vartheta \cos \varphi & 0 & -r\chi \sin \varphi & -r\chi \sin \vartheta \cos \vartheta \cos \varphi \\ iC_3 \sin \vartheta \sin \varphi & 0 & r\chi \cos \varphi & r\chi \sin \vartheta \cos \vartheta \sin \varphi \\ iC_3 \cos \vartheta & 0 & 0 & r\chi \sin^2 \vartheta \end{pmatrix}$
 $g = A^2 dt^2 - B^2 dr^2 - r^2 (d\vartheta^2 + sin^2 \vartheta d\varphi^2)$

- Teleparallelism 1.
 - Teleparallel Geometry
 - Symmetry
 - Teleparallale Gravity
- 2. Black Holes in $f(T,B,\phi)$ teleparallel gravity
 - Born-Infeld f(T)-gravity
 - Teleparallel perturbations of GR
 - Scalar-Torsion gravity
- Conclusion and Outlook 3.

Geometric fields

 $\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$

Weitze
$$(\theta^a_{\ \mu}, \phi^a)$$

enböck gauge

$$\delta^a_b) \Rightarrow \omega^a{}_{b\mu} = 0, \ \Gamma^\mu{}_{\nu\rho} = e_a{}^\mu \partial_\rho \theta^a{}_{\nu},$$

$$S[\theta] = \int d^4x \, |\, \theta| \, f(T, B, q)$$

Geometric fields

 $\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$

The theory

C. Pfeifer, ZARM, Workshop on Astro-particles and Gravity at Cairo University 2022

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

$$S[\theta] = \int d^4x \, |\, \theta| \, f(T, B, q)$$

Geometric fields

$$\theta^{a}{}_{\mu}(x), \Lambda^{a}{}_{b}(x) \Rightarrow \omega^{a}{}_{b\mu} \text{ and } \Gamma^{\rho}{}_{\mu\nu}, \text{ Torsion } T^{\sigma}{}_{\mu\nu} = \Gamma^{\sigma}{}_{\nu\mu} - \Gamma^{\sigma}{}_{\mu\nu}$$

$$f = \hat{\lambda} \left(\sqrt{1 + \frac{T}{\hat{\lambda}}} - 1 \right)$$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$$

$$S[\theta] = \int d^4x \, |\, \theta| \, f(T, B, q)$$

Geometric fields

 $\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$

The theory

$$f = \hat{\lambda} \left(\sqrt{1 + \frac{T}{\hat{\lambda}}} - 1 \right)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$$

$$S[\theta] = \int d^4x \, |\, \theta| \, f(T, B, q)$$

Geometric fields

 $\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$

The theory

$$f = \hat{\lambda} \left(\sqrt{1 + \frac{T}{\hat{\lambda}}} - 1 \right)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

C. Pfeifer, ZARM, Workshop on Astro-particles and Gravity at Cairo University 2022

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$$

$$S[\theta] = \int d^4x \, |\, \theta| \, f(T, B, q)$$

Geometric fields

 $\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$

The theory

$$f = \hat{\lambda} \left(\sqrt{1 + \frac{T}{\hat{\lambda}}} - 1 \right)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

$$\begin{aligned} & \text{Real} \\ \theta_{1\mu}^{a} = \begin{pmatrix} \mathscr{A}(r) & 0 & 0 & 0 \\ 0 & \mathscr{B}(r)\sin\vartheta\cos\varphi & \xi r\cos\vartheta\cos\varphi & -r\xi\sin\vartheta\sin\varphi \\ 0 & \mathscr{B}(r)\sin\vartheta\sin\varphi & \xi r\cos\vartheta\sin\varphi & \xi r\sin\vartheta\cos\varphi \\ 0 & \mathscr{B}(r)\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix} & \xi = \pm i \\ \\ & \text{Complex} \\ \theta_{2\mu}^{a} = \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\cos\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} & \chi = \pm i \\ \end{aligned}$$
With metric
$$ds^{2} = -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2}$$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$$

$$S[\theta] = \int d^4x \, |\, \theta| \, f(T, B, q)$$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The theory

$$f = \hat{\lambda} \left(\sqrt{1 + \frac{T}{\hat{\lambda}}} - 1 \right)$$

• Spherically symmetric tetrads solving the antisymmetric field equations
$$\theta_{2\mu}^{a} = \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\varphi\cos\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm 1$$

With metric
$$ds^{2} = -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2}$$

C. Pfeifer, ZARM, Workshop on Astro-particles and Gravity at Cairo University 2022

Weitzenböck gauge $(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$

f(T,B, ϕ) gravity

$$S[\theta] = \int d^4x \, |\, \theta| \, f(T, B, q)$$

e solution

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The theory

$$f = \hat{\lambda} \left(\sqrt{1 + \frac{T}{\hat{\lambda}}} - 1 \right)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

Non-perturbative solution

$$\mathscr{A}(r)^{2} = 1 - \frac{2M}{r} - \frac{2M}{r\lambda} \mathscr{T}, \, \mathscr{B}(r)^{2} = \frac{r^{4}\lambda^{4}}{16M^{4}\mathscr{A}(r)^{2}} \left(1 + \frac{\lambda^{2}r^{2}}{4M^{2}}\right)^{-2}$$
$$\mathscr{T} = \tan^{-1}\left(\frac{\lambda r}{2M}\right), \qquad \lambda = M\sqrt{\lambda}$$

$$\begin{aligned} & \text{Complex} \\ \theta_{2\mu}^{a} = \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\cos\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm 1 \end{aligned}$$
With metric
$$& ds^{2} = -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2} \end{aligned}$$

C. Pfeifer, ZARM, Workshop on Astro-particles and Gravity at Cairo University 2022

Weitzenböck gauge $(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$

$$S[\theta] = \int d^4x \, |\, \theta| \, f(T, B, q)$$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

$$f = \hat{\lambda} \left(\sqrt{1 + \frac{T}{\hat{\lambda}}} - 1 \right)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

$$\mathscr{A}(r)^{2} = 1 - \frac{2M}{r} - \frac{2M}{r\lambda} \mathscr{T}, \, \mathscr{B}(r)^{2} = \frac{r^{4}\lambda^{4}}{16M^{4}\mathscr{A}(r)^{2}} \left(1 + \frac{\lambda^{2}r^{2}}{4M^{2}}\right)^{-2}$$
$$\mathscr{T} = \tan^{-1}\left(\frac{\lambda r}{2M}\right), \qquad \lambda = M\sqrt{\lambda}$$

• Schwarzschild limit for $\lambda \to \infty$

$$\begin{aligned} & \text{Complex} \\ \theta_{2\mu}^{a} = \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\cos\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm \end{aligned}$$
With metric
$$& ds^{2} = -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2} \end{aligned}$$

C. Pfeifer, ZARM, Workshop on Astro-particles and Gravity at Cairo University 2022

Weitzenböck gauge $(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$

f(T,B, ϕ) gravity $d^4x \,|\, \theta \,| f(T, B, \phi)$ $S[\theta] =$

e solution

Geometric fields

$$\theta^{a}{}_{\mu}(x), \Lambda^{a}{}_{b}(x) \Rightarrow \omega^{a}{}_{b\mu} \text{ and } \Gamma^{\rho}{}_{\mu\nu}, \text{ Torsion } T^{\sigma}{}_{\mu\nu} = \Gamma^{\sigma}{}_{\nu\mu} - \Gamma^{\sigma}{}_{\mu\nu}$$

The theory

$$f = \hat{\lambda} \left(\sqrt{1 + \frac{T}{\hat{\lambda}}} - 1 \right)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

$$\mathscr{A}(r)^{2} = 1 - \frac{2M}{r} - \frac{2M}{r\lambda} \mathscr{T}, \, \mathscr{B}(r)^{2} = \frac{r^{4}\lambda^{4}}{16M^{4}\mathscr{A}(r)^{2}} \left(1 + \frac{\lambda^{2}r^{2}}{4M^{2}}\right)^{-2}$$
$$\mathscr{T} = \tan^{-1}\left(\frac{\lambda r}{2M}\right), \qquad \lambda = M\sqrt{\lambda}$$

- •

$$\gamma = -1,$$

$$\begin{aligned} & \theta_{2\mu}^{a} = \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\cos\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm 1 \end{aligned}$$
With metric

$$ds^2 = -\mathscr{A}^2 dt^2 + \mathscr{B}^2 dr^2 + r^2 d\Omega^2$$

Weitzenböck gauge $(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$

e solution

Schwarzschild limit for $\lambda \to \infty$

• weak field expansion PPN parameters

$$\beta - 1 = \frac{8}{(2\lambda - \pi)^2}$$
$$\Rightarrow \lambda \gtrsim 140$$

$$S[\theta] = \int d^4x \, |\, \theta| \, f(T, B, q)$$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The theory

$$f = \hat{\lambda} \left(\sqrt{1 + \frac{T}{\hat{\lambda}}} - 1 \right)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

$$\begin{aligned} & \mathcal{C} omplex\\ \theta_{2\mu}^{a} = \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0\\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\cos\varphi\\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi\\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm 1 \end{aligned}$$

With metric
$$ds^2 = -\mathscr{A}^2 dt^2 + \mathscr{B}^2 dr^2 + r^2 d\Omega^2$$

Non-perturbative solution

$$\mathcal{A}(r)^{2} = 1 - \frac{2M}{r} - \frac{2M}{r\lambda} \mathcal{T}, \ \mathcal{B}(r)^{2} = \frac{r^{4}\lambda^{4}}{16M^{4}d(r)^{2}} \left(1 + \frac{\lambda^{2}r^{2}}{4M^{2}}\right)^{-2}$$

$$\mathcal{T} = \tan^{-1}\left(\frac{\lambda r}{2M}\right), \quad \lambda = M\sqrt{\lambda}$$
• Schwarzschild limit for $\lambda \to \infty$
• weak field expansion PPN parameters
$$\gamma = -1, \quad \beta - 1 = \frac{8}{(2\lambda - \pi)^{2}}$$

$$\Rightarrow \lambda \gtrsim 140$$
• marginally stable and marginally bound orbits
$$q = -1, \quad \beta - 1 = \frac{8}{(2\lambda - \pi)^{2}}$$

$$\gamma = -1,$$

f(T,B, ϕ) gravity

 $S[\theta] =$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The theory

$$f = \hat{\lambda} \left(\sqrt{1 + \frac{T}{\hat{\lambda}}} - 1 \right)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

$$\mathcal{O}_{2\mu}^{a} = \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0\\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\cos\varphi\\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi\\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix}$$

With metric

$$ds^{2} = -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2}$$

Non-perturbative solution

$$\mathscr{A}(r)^{2} = 1 - \frac{2M}{r} - \frac{2M}{r\lambda} \mathscr{T}, \, \mathscr{B}(r)^{2} = \frac{r^{4}\lambda^{4}}{16M^{4}\mathscr{A}(r)^{2}} \left(1 + \frac{\lambda^{2}r^{2}}{4M^{2}}\right)^{-2}$$
$$\mathscr{T} = \tan^{-1}\left(\frac{\lambda r}{2M}\right), \qquad \lambda = M\sqrt{\lambda}$$

- Schwarzschild limit for $\lambda \to \infty$

$$\gamma = -1,$$

- orbits
- •

 $\chi = \pm 1$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

• weak field expansion PPN parameters

$$\beta - 1 = \frac{8}{(2\lambda - \pi)^2}$$

 $\Rightarrow \lambda \gtrsim 140$ marginally stable and marginally bound

Equipotential surfaces of Thick Disc models

 $\lambda = 140$

**f(T,B,
$$\phi$$
) gravity**

$$S[\theta] = \int d^4x |\theta| f(T, B, \phi)$$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The theory

$$f = \hat{\lambda} \left(\sqrt{1 + \frac{T}{\hat{\lambda}}} - 1 \right)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

 $\chi = \pm 1$

Non-perturbative solution

$$\mathscr{A}(r)^{2} = 1 - \frac{2M}{r} - \frac{2M}{r\lambda} \mathscr{T}, \, \mathscr{B}(r)^{2} = \frac{r^{4}\lambda^{4}}{16M^{4}\mathscr{A}(r)^{2}} \left(1 + \frac{\lambda^{2}r^{2}}{4M^{2}}\right)^{-2}$$
$$\mathscr{T} = \tan^{-1}\left(\frac{\lambda r}{2M}\right), \qquad \lambda = M\sqrt{\hat{\lambda}}$$

- Schwarzschild limit for $\lambda \to \infty$ •

$$\gamma = -1,$$

ulletorbits

$$\lambda =$$

 $\theta^a_{2\mu} =$

Complex

 $i\mathscr{A}(r)\sin\vartheta\cos\varphi$

 $i\mathscr{A}(r)\sin\vartheta\sin\varphi$

 $i\mathscr{A}(r)\cos\vartheta$

 $i\mathscr{B}(r)$

$$ds^2 = -\mathscr{A}^2 dt^2 + \mathscr{B}^2 dr^2 + r^2 d\Omega^2$$

 $\chi r \cos \varphi$

0

C. Pfeifer, ZARM, Workshop on Astro-particles and Gravity at Cairo University 2022

 $-\chi r \sin \varphi - r\chi \sin \vartheta \cos \vartheta \cos \varphi$

 $-r\chi\sin\vartheta\cos\vartheta\sin\varphi$

 $\chi r \sin^2 \vartheta$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

• weak field expansion PPN parameters

$$\beta - 1 = \frac{8}{(2\lambda - \pi)^2}$$

 $\Rightarrow \lambda \gtrsim 140$ marginally stable and marginally bound

> Irfaces of Thick Disc models $140 \text{ vs } \lambda = 10$

**f(T,B,
$$\phi$$
) gravity**
 $S[\theta] = \int d^4x |\theta| f(T, B)$

Teleparallelism - Black Holes in $f(T,B,\phi)$ gravity - Conclusion 68

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The theory

$$f = \hat{\lambda} \left(\sqrt{1 + \frac{T}{\hat{\lambda}}} - 1 \right)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

$$\begin{aligned} & \theta_{2\mu}^{a} = \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0\\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\cos\varphi\\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi\\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \end{aligned}$$

$$ds^2 = -\mathscr{A}^2 dt^2 + \mathscr{B}^2 dr^2 + r^2 d\Omega^2$$

Non-perturbative solution

$$\mathscr{A}(r)^{2} = 1 - \frac{2M}{r} - \frac{2M}{r\lambda} \mathscr{T}, \, \mathscr{B}(r)^{2} = \frac{r^{4}\lambda^{4}}{16M^{4}\mathscr{A}(r)^{2}} \left(1 + \frac{\lambda^{2}r^{2}}{4M^{2}}\right)^{-2}$$
$$\mathscr{T} = \tan^{-1}\left(\frac{\lambda r}{2M}\right), \qquad \lambda = M\sqrt{\lambda}$$

- Schwarzschild limit for $\lambda \to \infty$

$$\gamma = -1,$$

- orbits
- •

 $\chi = \pm 1$

$$\lambda =$$

C. Pfeifer, ZARM, Workshop on Astro-particles and Gravity at Cairo University 2022

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

• weak field expansion PPN parameters

$$\beta - 1 = \frac{8}{(2\lambda - \pi)^2}$$

 $\Rightarrow \lambda \gtrsim 140$ marginally stable and marginally bound

Equipotential surfaces of Thick Disc models $140 \text{ vs } \lambda \to \infty$

**f(T,B,
$$\phi$$
) gravity**
 $S[\theta] = \int d^4x |\theta| f(T, B, \phi)$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The theory

$$f = \hat{\lambda} \left(\sqrt{1 + \frac{T}{\hat{\lambda}}} - 1 \right)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

$$\begin{aligned} & \mathcal{C} \text{omplex} \\ \theta^{a}_{2\mu} = \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\cos\vartheta \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\vartheta \end{aligned}$$

$$\begin{array}{c} -\chi r \sin \varphi & -r\chi \sin \vartheta \cos \vartheta \cos \varphi \\ \chi r \cos \varphi & -r\chi \sin \vartheta \cos \vartheta \sin \varphi \\ 0 & \chi r \sin^2 \vartheta \end{array} \right) \qquad \chi = \pm 1$$

With metric
$$ds^2 = -\mathscr{A}^2 dt^2 + \mathscr{B}^2 dr^2 + r^2 d\Omega^2$$

0

 $i\mathscr{A}(r)\cos\vartheta$

Non-perturbative solution

$$\mathscr{A}(r)^{2} = 1 - \frac{2M}{r} - \frac{2M}{r\lambda} \mathscr{T}, \, \mathscr{B}(r)^{2} = \frac{r^{4}\lambda^{4}}{16M^{4}\mathscr{A}(r)^{2}} \left(1 + \frac{\lambda^{2}r^{2}}{4M^{2}}\right)^{-2}$$
$$\mathscr{T} = \tan^{-1}\left(\frac{\lambda r}{2M}\right), \qquad \lambda = M\sqrt{\lambda}$$

- Schwarzschild limit for $\lambda \to \infty$ •

$$\gamma = -1,$$

- orbits

$$\lambda =$$

torus with cusp, tori, bound structures, inner surfaces

C. Pfeifer, ZARM, Workshop on Astro-particles and Gravity at Cairo University 2022

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

• weak field expansion PPN parameters

$$\beta - 1 = \frac{8}{(2\lambda - \pi)^2}$$

 $\Rightarrow \lambda \gtrsim 140$ marginally stable and marginally bound

Equipotential surfaces of Thick Disc models 140 vs $\lambda \to \infty$

$$f(\mathbf{T},\mathbf{B},\boldsymbol{\phi}) \text{ gravity}$$

$$S[\theta] = \int d^4x |\theta| f(T, B, \phi)$$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The theory

$$f = \hat{\lambda} \left(\sqrt{1 + \frac{T}{\hat{\lambda}}} - 1 \right)$$

Non-perturbative solution

$$\mathscr{A}(r)^{2} = 1 - \frac{2M}{r} - \frac{2M}{r\lambda} \mathscr{T}, \, \mathscr{B}(r)^{2} = \frac{r^{4}\lambda^{4}}{16M^{4}\mathscr{A}(r)^{2}} \left(1 + \frac{\lambda^{2}r^{2}}{4M^{2}}\right)^{-2}$$
$$\mathscr{T} = \tan^{-1}\left(\frac{\lambda r}{2M}\right), \qquad \lambda = M\sqrt{\lambda}$$

- Schwarzschild limit for
$$\lambda \to \infty$$

$$\gamma = -1,$$

orbits

$$\lambda =$$

With metric

 $\theta^a_{2\,\mu} =$

Complex

 $i\mathscr{A}(r)\sin\vartheta\cos\varphi$

 $i\mathscr{A}(r)\sin\vartheta\sin\varphi$

 $i\mathscr{A}(r)\cos\vartheta$

 $i\mathscr{B}(r)$

$$ds^2 = -\mathscr{A}^2 dt^2 + \mathscr{B}^2 dr^2 + r^2 d\Omega^2$$

0

 $\chi r \cos \varphi$

0

In spherical symmetry: no strong effect of λ on accretion discs.

C. Pfeifer, ZARM, Workshop on Astro-particles and Gravity at Cairo University 2022

0

 $-r\chi\sin\vartheta\cos\vartheta\sin\varphi$

 $\chi r \sin^2 \vartheta$

 $\chi = \pm 1$

 $-\chi r \sin \varphi - r\chi \sin \vartheta \cos \vartheta \cos \varphi$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

ansion PPN parameters

$$\beta - 1 = \frac{8}{(2\lambda - \pi)^2}$$

 $\Rightarrow \lambda \gtrsim 140$ marginally stable and marginally bound

> Irfaces of Thick Disc models 140 vs $\lambda \to \infty$

f(T,B, ϕ) gravity $d^4x \,|\, \theta \,| f(T, B, \phi)$ $S[\theta] \Rightarrow$

Geometric fields

 $\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$

Weitze
$$(\theta^a_{\mu}, \phi^a)$$

The theory

enböck gauge

$$\delta^a_b) \Rightarrow \omega^a{}_{b\mu} = 0, \ \Gamma^\mu{}_{\nu\rho} = e_a{}^\mu \partial_\rho \theta^a{}_{\nu},$$

$$S[\theta] = \int d^4x \, |\, \theta| \, f(T, B, q)$$

Geometric fields

$$\theta^{a}{}_{\mu}(x), \Lambda^{a}{}_{b}(x) \Rightarrow \omega^{a}{}_{b\mu} \text{ and } \Gamma^{\rho}{}_{\mu\nu}, \text{ Torsion } T^{\sigma}{}_{\mu\nu} = \Gamma^{\sigma}{}_{\nu\mu} - \Gamma^{\sigma}{}_{\mu\nu}$$

The theory

$$f(T,B) = T + \frac{\epsilon}{2}(\alpha T^2 + \beta B^2 + \gamma BT)$$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$$

$$S[\theta] = \int d^4x \, |\, \theta| \, f(T, B, q)$$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The theory

$$f(T,B) = T + \frac{\epsilon}{2} (\alpha T^2 + \beta B^2 + \gamma BT)$$

 Spherically symmetric tetrads solving the antisymmetric field equations

$$\begin{aligned} \text{Real} \\ \theta_{1\mu}^{a} &= \begin{pmatrix} \mathscr{A}(r) & 0 & 0 & 0 \\ 0 & \mathscr{B}(r)\sin\vartheta\cos\varphi & \xi r\cos\vartheta\cos\varphi & -r\xi\sin\vartheta\sin\varphi \\ 0 & \mathscr{B}(r)\sin\vartheta\sin\varphi & \xi r\cos\vartheta\sin\varphi & \xi r\sin\vartheta\cos\varphi \\ 0 & \mathscr{B}(r)\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix} \qquad \xi = \pm 1 \\ \end{aligned}$$

$$\begin{aligned} \mathcal{E}_{2\mu}^{a} &= \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\cos\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm 1 \end{aligned}$$

$$\begin{aligned} \text{With metric} \\ ds^{2} &= -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2} \end{aligned}$$

C. Pfeifer, ZARM, Workshop on Astro-particles and Gravity at Cairo University 2022

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$$

$$S[\theta] = \int d^4x \, |\, \theta| \, f(T, B, q)$$

Geometric fields

$$\theta^{a}{}_{\mu}(x), \Lambda^{a}{}_{b}(x) \Rightarrow \omega^{a}{}_{b\mu} \text{ and } \Gamma^{\rho}{}_{\mu\nu}, \text{ Torsion } T^{\sigma}{}_{\mu\nu} = \Gamma^{\sigma}{}_{\nu\mu} - \Gamma^{\sigma}{}_{\mu\nu}$$

The theory

$$f(T,B) = T + \frac{\epsilon}{2}(\alpha T^2 + \beta B^2 + \gamma BT)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

Real

$$\theta_{1\mu}^{a} = \begin{pmatrix} \mathscr{A}(r) & 0 & 0 & 0 \\ 0 & \mathscr{B}(r)\sin\vartheta\cos\varphi & \xi r\cos\vartheta\cos\varphi & -r\xi\sin\vartheta\sin\varphi \\ 0 & \mathscr{B}(r)\sin\vartheta\sin\varphi & \xi r\cos\vartheta\sin\varphi & \xi r\sin\vartheta\cos\varphi \\ 0 & \mathscr{B}(r)\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix} \qquad \xi = \pm \begin{pmatrix} \xi = \pm r \\ 0 & \mathfrak{B}(r)\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix} \qquad \xi = \pm \begin{pmatrix} 0 & \mathfrak{B}(r) & 0 & 0 \\ \mathfrak{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\cos\varphi \\ \mathfrak{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ \mathfrak{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm \begin{pmatrix} \Psi = \frac{1}{2} & \Psi =$$

Perturbative solutions

C. Pfeifer, ZARM, Workshop on Astro-particles and Gravity at Cairo University 2022

Weitzenböck gauge $(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$

$$S[\theta] = \int d^4x \, |\, \theta| \, f(T, B, q)$$

Geometric fields

$$\theta^{a}{}_{\mu}(x), \Lambda^{a}{}_{b}(x) \Rightarrow \omega^{a}{}_{b\mu} \text{ and } \Gamma^{\rho}{}_{\mu\nu}, \text{ Torsion } T^{\sigma}{}_{\mu\nu} = \Gamma^{\sigma}{}_{\nu\mu} - \Gamma^{\sigma}{}_{\mu\nu}$$

The theory

$$f(T,B) = T + \frac{\epsilon}{2}(\alpha T^2 + \beta B^2 + \gamma BT)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

Real

$$\theta_{1\mu}^{a} = \begin{pmatrix} \mathscr{A}(r) & 0 & 0 & 0 \\ 0 & \mathscr{B}(r)\sin\vartheta\cos\varphi & \xi r\cos\vartheta\cos\varphi & -r\xi\sin\vartheta\sin\varphi \\ 0 & \mathscr{B}(r)\sin\vartheta\sin\varphi & \xi r\cos\vartheta\sin\varphi & \xi r\sin\vartheta\cos\varphi \\ 0 & \mathscr{B}(r)\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix} \qquad \xi = \pm \\ Complex
\theta_{2\mu}^{a} = \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm \\ With metric
ds^{2} = -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2}$$

Perturbative solutions

$$\mathscr{A}^{2}(r) = 1 - \frac{2M}{r} + \epsilon a(r), \, \mathscr{B}^{2}(r) = \left(1 - \frac{2M}{r}\right)^{-1} + \epsilon b(r)$$

C. Pfeifer, ZARM, Workshop on Astro-particles and Gravity at Cairo University 2022

Weitzenböck gauge

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu}, \qquad f(T,B,\phi) \text{ gravit}$$

$$S[$$

gravity

$$S[\theta] = \int d^4x |\theta| f(T, B, d)$$

Geometric fields

$$\theta^{a}{}_{\mu}(x), \Lambda^{a}{}_{b}(x) \Rightarrow \omega^{a}{}_{b\mu} \text{ and } \Gamma^{\rho}{}_{\mu\nu}, \text{ Torsion } T^{\sigma}{}_{\mu\nu} = \Gamma^{\sigma}{}_{\nu\mu} - \Gamma^{\sigma}{}_{\mu\nu}$$

The theory

$$f(T,B) = T + \frac{\epsilon}{2}(\alpha T^2 + \beta B^2 + \gamma BT)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

Real

$$\theta_{1\mu}^{a} = \begin{pmatrix} \mathscr{A}(r) & 0 & 0 & 0 \\ 0 & \mathscr{B}(r)\sin\vartheta\cos\varphi & \xi r\cos\vartheta\cos\varphi & -r\xi\sin\vartheta\sin\varphi \\ 0 & \mathscr{B}(r)\sin\vartheta\sin\varphi & \xi r\cos\vartheta\sin\varphi & \xi r\sin\vartheta\cos\varphi \\ 0 & \mathscr{B}(r)\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix} \qquad \xi = \pm \\ \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\cos\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm \\ \end{pmatrix}$$
With metric

$$ds^{2} = -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2}$$

Perturbative solutions

$$\mathcal{A}^{2}(r) = 1 - \frac{2M}{r} + \epsilon a(r), \, \mathcal{B}^{2}(r) = \left(1 - \frac{2M}{r}\right)^{-1} + \epsilon b(r)$$

C. Pfeifer, ZARM, Workshop on Astro-particles and Gravity at Cairo University 2022

Weitzenböck gauge $(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$

f(T,B, ϕ) gravity $d^4x \,|\, \theta \,| f(T, B, \phi)$ $S[\theta] =$

complex and real tetrad

Geometric fields

$$\theta^{a}{}_{\mu}(x), \Lambda^{a}{}_{b}(x) \Rightarrow \omega^{a}{}_{b\mu} \text{ and } \Gamma^{\rho}{}_{\mu\nu}, \text{ Torsion } T^{\sigma}{}_{\mu\nu} = \Gamma^{\sigma}{}_{\nu\mu} - \Gamma^{\sigma}{}_{\mu\nu}$$

$$f(T,B) = T + \frac{\epsilon}{2}(\alpha T^2 + \beta B^2 + \gamma BT)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

$$\begin{aligned} \text{Real} \\ \theta_{1\mu}^{a} &= \begin{pmatrix} \mathscr{A}(r) & 0 & 0 & 0 \\ 0 & \mathscr{B}(r)\sin\vartheta\cos\varphi & \xi r\cos\vartheta\cos\varphi & -r\xi\sin\vartheta\sin\varphi \\ 0 & \mathscr{B}(r)\sin\vartheta\sin\varphi & \xi r\cos\vartheta\sin\varphi & \xi r\sin\vartheta\cos\varphi \\ 0 & \mathscr{B}(r)\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix} \qquad \xi = \pm 1 \\ \end{aligned}$$

$$\begin{aligned} \mathcal{C} \text{omplex} \\ \theta_{2\mu}^{a} &= \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm 1 \end{aligned}$$

$$\begin{aligned} \text{With metric} \\ ds^{2} &= -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2} \end{aligned}$$

Perturbative solutions

$$\mathscr{A}^{2}(r) = 1 - \frac{2M}{r} + \epsilon a(r), \, \mathscr{B}^{2}(r) = \left(1 - \frac{2M}{r}\right)^{-1} + \epsilon b(r)$$

- ullet
- complex: independent of χ lacksquare
- real: dependent on ξ

Weitzenböck gauge $(\theta^{a}_{\mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$

f(T,B, ϕ) gravity

$$S[\theta] = \int d^4x \, |\, \theta| \, f(T, B, q)$$

exists for the complex and real tetrad

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

$$f(T,B) = T + \frac{\epsilon}{2}(\alpha T^2 + \beta B^2 + \gamma BT)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

Real

$$\theta_{1\mu}^{a} = \begin{pmatrix} \mathscr{A}(r) & 0 & 0 & 0 \\ 0 & \mathscr{B}(r)\sin\theta\cos\varphi & \xi r\cos\theta\cos\varphi & -r\xi\sin\theta\sin\varphi \\ 0 & \mathscr{B}(r)\sin\theta\sin\varphi & \xi r\cos\theta\sin\varphi & \xi r\sin\theta\cos\varphi \\ 0 & \mathscr{B}(r)\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix} \qquad \xi = \pm 1$$
Complex

$$\theta_{2\mu}^{a} = \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\theta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\theta\cos\varphi\sin\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm 1$$
With metric

$$ds^{2} = -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2}$$

Perturbative solutions

$$\mathscr{A}^{2}(r) = 1 - \frac{2M}{r} + \epsilon a(r), \, \mathscr{B}^{2}(r) = \left(1 - \frac{2M}{r}\right)^{-1} + \epsilon b(r)$$

- ullet
- complex: independent of χ lacksquare
- real: dependent on ξ

Deflection of light

f(T,B, ϕ) gravity

 $S[\theta] =$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

exists for the complex and real tetrad

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

$$f(T,B) = T + \frac{\epsilon}{2}(\alpha T^2 + \beta B^2 + \gamma BT)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

Real

$$\theta_{1\mu}^{a} = \begin{pmatrix} \mathscr{A}(r) & 0 & 0 & 0 \\ 0 & \mathscr{B}(r)\sin\theta\cos\varphi & \xi r\cos\theta\cos\varphi & -r\xi\sin\theta\sin\varphi \\ 0 & \mathscr{B}(r)\sin\theta\sin\varphi & \xi r\cos\theta\sin\varphi & \xi r\sin\theta\cos\varphi \\ 0 & \mathscr{B}(r)\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix} \qquad \xi = \pm 1$$
Complex

$$\theta_{2\mu}^{a} = \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\theta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\theta\cos\varphi\sin\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm 1$$
With metric

$$ds^{2} = -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2}$$

Perturbative solutions

$$\mathscr{A}^{2}(r) = 1 - \frac{2M}{r} + \epsilon a(r), \, \mathscr{B}^{2}(r) = \left(1 - \frac{2M}{r}\right)^{-1} + \epsilon b(r)$$

- ullet
- complex: independent of χ ullet
- real: dependent on ξ

Deflection of light

f(T,B, ϕ) gravity

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$$

exists for the complex and real tetrad

Μ

$$\Delta \varphi_{\text{real}} = \frac{4M}{r_0} + \epsilon \left(\frac{(\xi - 1)(M(4(44 - 9\pi)\alpha + 8(29 - 6\pi)\beta + 6(34 - 7\pi)\gamma) + \pi r_0(6\alpha + 8\beta))}{2\xi r_0^3} + \frac{2\xi r_0^3}{r_0^2} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 18$$

Teleparallelism - Black Holes in f(T,B, ϕ) gravity - Conclusion 80

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

$$f(T,B) = T + \frac{\epsilon}{2}(\alpha T^2 + \beta B^2 + \gamma BT)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

Real

$$\theta_{1\mu}^{a} = \begin{pmatrix} \mathscr{A}(r) & 0 & 0 & 0 \\ 0 & \mathscr{B}(r)\sin\vartheta\cos\varphi & \xi r\cos\vartheta\cos\varphi & -r\xi\sin\vartheta\sin\varphi \\ 0 & \mathscr{B}(r)\sin\vartheta\sin\varphi & \xi r\cos\vartheta\sin\varphi & \xi r\sin\vartheta\cos\varphi \\ 0 & \mathscr{B}(r)\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix} \qquad \xi = \pm 1$$
Complex

$$\theta_{2\mu}^{a} = \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm 1$$
With metric

$$ds^{2} = -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2}$$

Perturbative solutions

$$\mathscr{A}^{2}(r) = 1 - \frac{2M}{r} + \epsilon a(r), \, \mathscr{B}^{2}(r) = \left(1 - \frac{2M}{r}\right)^{-1} + \epsilon b(r)$$

- ullet
- complex: independent of χ lacksquare
- real: dependent on ξ

Deflection of light

f(T,B, ϕ) gravity

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$$

exists for the complex and real tetrad

 $S[\theta] =$

Μ

$$\Delta \varphi_{\text{real}} = \frac{4M}{r_0} + \epsilon \left(\frac{(\xi - 1)(M(4(44 - 9\pi)\alpha + 8(29 - 6\pi)\beta + 6(34 - 7\pi)\gamma) + \pi r_0(6\alpha + 8\beta))}{2\xi r_0^3} - \frac{4M}{r_0} + \epsilon \left(\frac{\pi (3\alpha + 5\beta + 4\gamma)}{r_0^2} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 27\pi)\alpha + 2(85 - 18\beta))}{3r_0^3} + \frac{2M((128 - 18\beta))}$$

Teleparallelism - Black Holes in f(T,B, ϕ) gravity - Conclusion 81

Geometric fields

$$\theta^{a}{}_{\mu}(x), \Lambda^{a}{}_{b}(x) \Rightarrow \omega^{a}{}_{b\mu} \text{ and } \Gamma^{\rho}{}_{\mu\nu}, \text{ Torsion } T^{\sigma}{}_{\mu\nu} = \Gamma^{\sigma}{}_{\nu\mu} - \Gamma^{\sigma}{}_{\mu\nu}$$

$$f(T,B) = T + \frac{\epsilon}{2}(\alpha T^2 + \beta B^2 + \gamma BT)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

$$\mathsf{Real}$$

$$\theta_{1\mu}^{a} = \begin{pmatrix} \mathscr{A}(r) & 0 & 0 & 0 \\ 0 & \mathscr{B}(r)\sin\vartheta\cos\varphi & \xi r\cos\vartheta\cos\varphi & -r\xi\sin\vartheta\sin\varphi \\ 0 & \mathscr{B}(r)\sin\vartheta\sin\varphi & \xi r\cos\vartheta\sin\varphi & \xi r\sin\vartheta\cos\varphi \\ 0 & \mathscr{B}(r)\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix} \qquad \xi = \pm 1$$

$$\mathsf{Complex}$$

$$\theta_{2\mu}^{a} = \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm 1$$
With metric
$$ds^{2} = -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2}$$

Perturbative solutions

$$\mathscr{A}^{2}(r) = 1 - \frac{2M}{r} + \epsilon a(r), \, \mathscr{B}^{2}(r) = \left(1 - \frac{2M}{r}\right)^{-1} + \epsilon b(r)$$

- ullet
- complex: independent of χ lacksquare
- real: dependent on ξ

sensitive

- to complex vs real tetrad
- choice of ξ

f(T,B, ϕ) gravity

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$$

exists for the complex and real tetrad

Deflection of light, order of correction

$$\Delta \varphi_{\text{real}} = \frac{4M}{r_0} + \epsilon \left(\frac{(\xi - 1)(M(4(44 - 9\pi)\alpha + 8(29 - 6\pi)\beta + 6(34 - 7\pi)\gamma) + \pi r_0(6\alpha + 2\xi r_0^3))}{2\xi r_0^3} \right)$$
$$\Delta \varphi_{\text{emplx}} = \frac{4M}{r_0} + \epsilon \left(\frac{\pi (3\alpha + 5\beta + 4\gamma)}{r_0^2} + \frac{2M((128 - 27\pi)\alpha + (212 - 45\pi)\beta + 2(85\pi)\beta)}{3r_0^3} \right)$$

 $S[\theta] \Rightarrow$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

$$f(T,B) = T + \frac{\epsilon}{2}(\alpha T^2 + \beta B^2 + \gamma BT)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

$$\begin{aligned} \text{Real} \\ \theta_{1\mu}^{a} &= \begin{pmatrix} \mathscr{A}(r) & 0 & 0 & 0 \\ 0 & \mathscr{B}(r)\sin\vartheta\cos\varphi & \xi r\cos\vartheta\cos\varphi & -r\xi\sin\vartheta\sin\varphi \\ 0 & \mathscr{B}(r)\sin\vartheta\sin\varphi & \xi r\cos\vartheta\sin\varphi & \xi r\sin\vartheta\cos\varphi \\ 0 & \mathscr{B}(r)\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix} \qquad \xi = \pm 1 \\ \end{aligned}$$

$$\begin{aligned} \mathcal{C} \text{omplex} \\ \theta_{2\mu}^{a} &= \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\cos\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm 1 \end{aligned}$$

$$\begin{aligned} \text{With metric} \\ ds^{2} &= -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2} \end{aligned}$$

Perturbative solutions

$$\mathscr{A}^{2}(r) = 1 - \frac{2M}{r} + \epsilon a(r), \, \mathscr{B}^{2}(r) = \left(1 - \frac{2M}{r}\right)^{-1} + \epsilon b(r)$$

• real: dependent on ξ

sensitive

- to complex vs real tetrad
- choice of ξ

f(T,B, ϕ) gravity

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$$

complex and real tetrad pendent of χ

Deflection of light, order of correction

Similar for Shapiro delay & perihelion shift. \Rightarrow Constraints on parameters

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

$$f(T,B) = T + \frac{\epsilon}{2}(\alpha T^2 + \beta B^2 + \gamma BT)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

$$\begin{aligned} \text{Real} \\ \theta_{1\mu}^{a} &= \begin{pmatrix} \mathscr{A}(r) & 0 & 0 & 0 \\ 0 & \mathscr{B}(r)\sin\vartheta\cos\varphi & \xi r\cos\vartheta\cos\varphi & -r\xi\sin\vartheta\sin\varphi \\ 0 & \mathscr{B}(r)\sin\vartheta\sin\varphi & \xi r\cos\vartheta\sin\varphi & \xi r\sin\vartheta\cos\varphi \\ 0 & \mathscr{B}(r)\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix} \qquad \xi = \pm 1 \\ \end{aligned}$$

$$\begin{aligned} \text{Complex} \\ \theta_{2\mu}^{a} &= \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm 1 \end{aligned}$$

$$\begin{aligned} \text{With metric} \\ ds^{2} &= -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2} \end{aligned}$$

Perturbative solutions

$$\mathscr{A}^{2}(r) = 1 - \frac{2M}{r} + \epsilon a(r), \, \mathscr{B}^{2}(r) = \left(1 - \frac{2M}{r}\right)^{-1} + \epsilon b(r)$$

sensitive

- to complex vs real tetrad
- choice of ξ

Similar for Shapiro delay & perihelion shift. \Rightarrow Constraints on parameters

f(T,B, ϕ) gravity

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$$

complex and real tetrad ependent of χ

ent on ξ

Deflection of light, order of correction

ullet real tetrad with $\xi=1$ least constraint

Geometric fields

 $\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$

C. Pfeifer, ZARM, Workshop on Astro-particles and Gravity at Cairo University 2022

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

$$S[\theta] = \int d^4x \, |\, \theta| \, f(T, B, q)$$

Geometric fields

$$\theta^{a}{}_{\mu}(x), \Lambda^{a}{}_{b}(x) \Rightarrow \omega^{a}{}_{b\mu} \text{ and } \Gamma^{\rho}{}_{\mu\nu}, \text{ Torsion } T^{\sigma}{}_{\mu\nu} = \Gamma^{\sigma}{}_{\nu\mu} - \Gamma^{\sigma}{}_{\mu\nu}$$

The theory

 $f(T, B, \phi) = -A(\phi)T + 2\beta X + C(\phi)B - 2\kappa^2 V(\phi)$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

$$S[\theta] = \int d^4x \, |\, \theta| \, f(T, B, q)$$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The theory

$$f(T, B, \phi) = -A(\phi)T + 2\beta X + C(\phi)B - 2\kappa^2 V(\phi)$$

 Spherically symmetric tetrads solving the antisymmetric field equations

$$\begin{aligned} & \text{Real} \\ \theta_{1\mu}^{a} = \begin{pmatrix} \mathscr{A}(r) & 0 & 0 & 0 \\ 0 & \mathscr{B}(r)\sin\vartheta\cos\varphi & \xi r\cos\vartheta\cos\varphi & -r\xi\sin\vartheta\sin\varphi \\ 0 & \mathscr{B}(r)\sin\vartheta\sin\varphi & \xi r\cos\vartheta\sin\varphi & \xi r\sin\vartheta\cos\varphi \\ 0 & \mathscr{B}(r)\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix} & \xi = \pm \\ & \text{Complex} \\ \theta_{2\mu}^{a} = \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\cos\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} & \chi = \pm \end{aligned}$$
With metric
$$ds^{2} = -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2}$$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$$

$$S[\theta] = \int d^4x \, |\, \theta| \, f(T, B, q)$$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The theory

$$f(T, B, \phi) = -A(\phi)T + 2\beta X + C(\phi)B - 2\kappa^2 V(\phi)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

Solutions (numerous exist)

C. Pfeifer, ZARM, Workshop on Astro-particles and Gravity at Cairo University 2022

Weitzenböck gauge $(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$

$$S[\theta] = \int d^4x \, |\, \theta| \, f(T, B, q)$$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The theory

$$f(T, B, \phi) = -A(\phi)T + 2\beta X + C(\phi)B - 2\kappa^2 V(\phi)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

Real

$$\theta_{1\mu}^{a} = \begin{pmatrix} \mathscr{A}(r) & 0 & 0 & 0 \\ 0 & \mathscr{B}(r)\sin\vartheta\cos\varphi & \xi r\cos\vartheta\cos\varphi & -r\xi\sin\vartheta\sin\varphi \\ 0 & \mathscr{B}(r)\sin\vartheta\sin\varphi & \xi r\cos\vartheta\sin\varphi & \xi r\sin\vartheta\cos\varphi \\ 0 & \mathscr{B}(r)\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix} \qquad \xi = \pm 1$$
Complex

$$\theta_{2\mu}^{a} = \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm 1$$
With metric

$$ds^{2} = -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2}$$

Solutions (numerous exist)

Example 1: (real tet • C = 0, V = 0,

C. Pfeifer, ZARM, Workshop on Astro-particles and Gravity at Cairo University 2022

Weitzenböck gauge $(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$

$$S[\theta] = \left| d^4x \, |\, \theta \,|\, f(T, B, q) \right|$$

trad)
,
$$A = -\frac{1}{8}\beta\psi^2$$

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The theory

$$f(T, B, \phi) = -A(\phi)T + 2\beta X + C(\phi)B - 2\kappa^2 V(\phi)$$

 Spherically symmetric tetrads solving the antisymmetric field equations

Real

$$\theta_{1\mu}^{a} = \begin{pmatrix} \mathscr{A}(r) & 0 & 0 & 0 \\ 0 & \mathscr{B}(r)\sin\vartheta\cos\varphi & \xi r\cos\vartheta\cos\varphi & -r\xi\sin\vartheta\sin\varphi \\ 0 & \mathscr{B}(r)\sin\vartheta\sin\varphi & \xi r\cos\vartheta\sin\varphi & \xi r\sin\vartheta\cos\varphi \\ 0 & \mathscr{B}(r)\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix} \qquad \xi = \pm 1$$
Complex

$$\theta_{2\mu}^{a} = \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\cos\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm 1$$
With metric

$$ds^{2} = -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2}$$

Solutions (numerous exist)

E

Example 1: (real tetrad)
•
$$C = 0$$
, $V = 0$, $A = -\frac{1}{8}\beta\psi^2$
ields the BBMB solution
 $ds^2 = \left(1 - \frac{K}{r}\right)^2 dt^2 - \left(1 - \frac{K}{r}\right)^{-2} dr^2 - r^2 d\Omega^2$
 $\psi(r) = -\frac{2\psi_0\sqrt{r}}{K\sqrt{r-K}}$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$$

$$S[\theta] = \int d^4x \, |\, \theta| \, f(T, B, q)$$

Born-Infeld gravity - Perturbations of GR - Scalar-Torsion gravity

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The theory

$$f(T, B, \phi) = -A(\phi)T + 2\beta X + C(\phi)B - 2\kappa^2 V(\phi)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

$$\begin{aligned} \text{Real} \\ \theta_{1\mu}^{a} &= \begin{pmatrix} \mathscr{A}(r) & 0 & 0 & 0 \\ 0 & \mathscr{B}(r)\sin\vartheta\cos\varphi & \xi r\cos\vartheta\cos\varphi & -r\xi\sin\vartheta\sin\varphi \\ 0 & \mathscr{B}(r)\sin\vartheta\sin\varphi & \xi r\cos\vartheta\sin\varphi & \xi r\sin\vartheta\cos\varphi \\ 0 & \mathscr{B}(r)\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix} \qquad \xi = \pm 1 \\ \\ \begin{array}{c} \text{Complex} \\ \theta_{2\mu}^{a} &= \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\cos\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm 1 \end{aligned}$$

$$\begin{aligned} \text{With metric} \\ ds^{2} &= -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2} \end{aligned}$$

Solutions (numerous exist)

Example 1: (real tetrad) • C = 0, V = 0, $A = -\frac{1}{8}\beta\psi^2$ yields the BBMB solution $ds^{2} = \left(1 - \frac{K}{r}\right)^{2} dt^{2} - \left(1 - \frac{K}{r}\right)^{-2} dr^{2} - r^{2} d\Omega^{2}$ $\psi(r) = -\frac{2\psi_0\sqrt{r}}{K\sqrt{r-K}}$

Example 2: (complex tetrad) • $C = \frac{\beta}{4}\psi^2$, $V \neq 0$, A = 0

[Bahamonde, Faraji, Hackmann, CP 2022; Bahamonde, Golovnev, Guzman, Said, CP 2022; Bahamonde, Ducobu, CP 2022]

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$$

$$S[\theta] = \int d^4x \, |\, \theta| \, f(T, B, q)$$

Born-Infeld gravity - Perturbations of GR - Scalar-Torsion gravity

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The theory

$$f(T, B, \phi) = -A(\phi)T + 2\beta X + C(\phi)B - 2\kappa^2 V(\phi)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

$$\begin{aligned} \text{Real} \\ \theta_{1\mu}^{a} &= \begin{pmatrix} \mathscr{A}(r) & 0 & 0 & 0 \\ 0 & \mathscr{B}(r)\sin\vartheta\cos\varphi & \xi r\cos\vartheta\cos\varphi & -r\xi\sin\vartheta\sin\varphi \\ 0 & \mathscr{B}(r)\sin\vartheta\sin\varphi & \xi r\cos\vartheta\sin\varphi & \xi r\sin\vartheta\cos\varphi \\ 0 & \mathscr{B}(r)\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix} \qquad \xi = \pm 1 \\ \\ \begin{array}{c} \text{Complex} \\ \theta_{2\mu}^{a} &= \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\cos\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm 1 \end{aligned}$$

With metric
$$ds^{2} &= -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2}$$

Solutions (numerous exist)

Example 1: (real tet • C = 0, V = 0, yields the BBMB so $ds^2 = \left(1 - \frac{K}{r}\right)^2 dt^2$ $\psi(r)$ $K\sqrt{r-K}$ Example 2: (complex tetrad) • $C = \frac{\beta}{4}\psi^2$, $V \neq 0$, A = 0yields scalrized Schwarzschild (a)-dS

$$ds^{2} = \left(1 - \frac{2M}{r} - \Lambda r^{2}\right) dt^{2} - \left(1 - \frac{2M}{r} - \Lambda r^{2}\right)^{-1} dr^{2} - r^{2} d\Omega^{2}$$
$$\psi(r) = e^{\frac{r^{3}\psi_{0}}{3}}$$

[Bahamonde, Faraji, Hackmann, CP 2022; Bahamonde, Golovnev, Guzman, Said, CP 2022; Bahamonde, Ducobu, CP 2022]

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu}\partial_{\rho}\theta^{a}_{\ \nu},$$

$$S[\theta] = \left| d^4x \left| \theta \right| f(T, B, q) \right|$$

trad)

$$A = -\frac{1}{8}\beta\psi^{2}$$
Solution

$$A^{2} - \left(1 - \frac{K}{r}\right)^{-2} dr^{2} - r^{2} d\Omega^{2}$$

$$A = -\frac{2\psi_{0}\sqrt{r}}{r}$$

Born-Infeld gravity - Perturbations of GR - Scalar-Torsion gravity

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The theory

$$f(T, B, \phi) = -A(\phi)T + 2\beta X + C(\phi)B - 2\kappa^2 V(\phi)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

$$\begin{aligned} \text{Real} \\ \theta_{1\mu}^{a} &= \begin{pmatrix} \mathscr{A}(r) & 0 & 0 & 0 \\ 0 & \mathscr{B}(r)\sin\vartheta\cos\varphi & \xi r\cos\vartheta\cos\varphi & -r\xi\sin\vartheta\sin\varphi \\ 0 & \mathscr{B}(r)\sin\vartheta\sin\varphi & \xi r\cos\vartheta\sin\varphi & \xi r\sin\vartheta\cos\varphi \\ 0 & \mathscr{B}(r)\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix} \qquad \xi = \pm 1 \\ \\ \begin{array}{c} \text{Complex} \\ \theta_{2\mu}^{a} &= \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\cos\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm 1 \end{aligned}$$

With metric
$$ds^{2} &= -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2}$$

Solutions (numerous exist)

Example 1: (real tetrad) • C = 0, V = 0, $A = -\frac{1}{8}\beta\psi^2$ yields the BBMB solution $ds^2 = \left(1 - \frac{K}{r}\right)^2 dt^2$ $\psi(r)$ Example 2: (complex tetrad) • $C = \frac{\beta}{4}\psi^2$, $V \neq$ yields scalrized Schwarzschild (a)-dS

$$ds^{2} = \left(1 - \frac{2M}{r} - \Lambda r^{2}\right) dt^{2} - \left(1 - \frac{2M}{r} - \Lambda r^{2}\right)^{-1} dr^{2} - r^{2} d\Omega^{2}$$
$$\psi(r) = e^{\frac{r^{3}\psi_{0}}{3}}$$

[Bahamonde, Faraji, Hackmann, CP 2022; Bahamonde, Golovnev, Guzman, Said, CP 2022; Bahamonde, Ducobu, CP 2022]

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

f(T,B, ϕ) gravity

$$f[\theta] = \int d^4x \, |\, \theta| \, f(T, B, q)$$

$$e^{2} - \left(1 - \frac{K}{r}\right)^{-2} dr^{2} - r^{2} d\Omega^{2}$$
$$e^{2} = -\frac{2\psi_{0}\sqrt{r}}{K\sqrt{r-K}}$$

$$=0, \quad A=0$$

No-hair theorem

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The theory

$$f(T, B, \phi) = -A(\phi)T + 2\beta X + C(\phi)B - 2\kappa^2 V(\phi)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

$$\begin{aligned} \text{Real} \\ \theta_{1\mu}^{a} &= \begin{pmatrix} \mathscr{A}(r) & 0 & 0 & 0 \\ 0 & \mathscr{B}(r)\sin\vartheta\cos\varphi & \xi r\cos\vartheta\cos\varphi & -r\xi\sin\vartheta\sin\varphi \\ 0 & \mathscr{B}(r)\sin\vartheta\sin\varphi & \xi r\cos\vartheta\sin\varphi & \xi r\sin\vartheta\cos\varphi \\ 0 & \mathscr{B}(r)\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix} \qquad \xi = \pm 1 \\ \\ \begin{array}{c} \text{Complex} \\ \theta_{2\mu}^{a} &= \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\cos\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm 1 \end{aligned}$$

With metric
$$ds^{2} &= -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2}$$

Solutions (numerous exist)

Example 1: (real tet • C = 0, V = 0,yields the BBMB so $ds^2 = \left(1 - \frac{K}{r}\right)^2 dt^2$ $\psi(r)$ Example 2: (complex tetrad) • $C = \frac{\beta}{4}\psi^2$, $V \neq 0$, A = 0yields scalrized Schwarzschild (a)-dS

$$ds^{2} = \left(1 - \frac{2M}{r} - \Lambda r^{2}\right) dt^{2} - \left(1 - \frac{2M}{r} - \Lambda r^{2}\right)^{-1} dr^{2} - r^{2} d\Omega^{2}$$
$$\psi(r) = e^{\frac{r^{3}\psi_{0}}{3}}$$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

f(T,B, ϕ) gravity

$$S[\theta] = \int d^4x \, |\, \theta| \, f(T, B, q)$$

trad)

$$A = -\frac{1}{8}\beta\psi^{2}$$
Solution

$$A^{2} - \left(1 - \frac{K}{r}\right)^{-2} dr^{2} - r^{2} d\Omega^{2}$$

$$A = -\frac{2\psi_{0}\sqrt{r}}{K\sqrt{r-K}}$$

No-hair theorem

No spherically symmetric asymptotically flat scalarized solutions exist if

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The theory

$$f(T, B, \phi) = -A(\phi)T + 2\beta X + C(\phi)B - 2\kappa^2 V(\phi)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

$$\begin{aligned} \text{Real} \\ \theta_{1\mu}^{a} &= \begin{pmatrix} \mathscr{A}(r) & 0 & 0 & 0 \\ 0 & \mathscr{B}(r)\sin\vartheta\cos\varphi & \xi r\cos\vartheta\cos\varphi & -r\xi\sin\vartheta\sin\varphi \\ 0 & \mathscr{B}(r)\sin\vartheta\sin\varphi & \xi r\cos\vartheta\sin\varphi & \xi r\sin\vartheta\cos\varphi \\ 0 & \mathscr{B}(r)\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix} \qquad \xi = \pm 1 \\ \\ \begin{array}{c} \text{Complex} \\ \theta_{2\mu}^{a} &= \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\cos\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm 1 \end{aligned}$$

With metric
$$ds^{2} &= -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2}$$

Solutions (numerous exist)

Example 1: (real tet • C = 0, V = 0,yields the BBMB so $ds^2 = \left(1 - \frac{K}{r}\right)^2 dt^2$ $\psi(r)$ Example 2: (complex tetrad) • $C = \frac{\beta}{4}\psi^2$, $V \neq 0$, A = 0yields scalrized Schwarzschild (a)-dS

$$ds^{2} = \left(1 - \frac{2M}{r} - \Lambda r^{2}\right) dt^{2} - \left(1 - \frac{2M}{r} - \Lambda r^{2}\right)^{-1} dr^{2} - r^{2} d\Omega^{2}$$
$$\psi(r) = e^{\frac{r^{3}\psi_{0}}{3}}$$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

f(T,B, ϕ) gravity

$$[\theta] = \int d^4x \, |\, \theta| \, f(T, B, \phi)$$

trad)

$$A = -\frac{1}{8}\beta\psi^{2}$$
Solution

$$A^{2} - \left(1 - \frac{K}{r}\right)^{-2} dr^{2} - r^{2} d\Omega^{2}$$

$$A = -\frac{2\psi_{0}\sqrt{r}}{K\sqrt{r-K}}$$

No-hair theorem

No spherically symmetric asymptotically flat scalarized solutions exist if

1.
$$A = \alpha \phi^m$$
, $C = 0$, $\frac{2}{\beta(m-2)} \left(2mV - \psi V' \right)$

≤ 0

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The theory

$$f(T, B, \phi) = -A(\phi)T + 2\beta X + C(\phi)B - 2\kappa^2 V(\phi)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

$$\begin{aligned} \text{Real} \\ \theta_{1\mu}^{a} &= \begin{pmatrix} \mathscr{A}(r) & 0 & 0 & 0 \\ 0 & \mathscr{B}(r)\sin\vartheta\cos\varphi & \xi r\cos\vartheta\cos\varphi & -r\xi\sin\vartheta\sin\varphi \\ 0 & \mathscr{B}(r)\sin\vartheta\sin\varphi & \xi r\cos\vartheta\sin\varphi & \xi r\sin\vartheta\cos\varphi \\ 0 & \mathscr{B}(r)\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix} \qquad \xi = \pm 1 \\ \\ \begin{array}{c} \text{Complex} \\ \theta_{2\mu}^{a} &= \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\cos\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm 1 \end{aligned}$$

With metric
$$ds^{2} &= -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2}$$

Solutions (numerous exist)

Example 1: (real tet • C = 0, V = 0,yields the BBMB so $ds^2 = \left(1 - \frac{K}{r}\right)^2 dt^2$ $\psi(r)$ Example 2: (complex tetrad) • $C = \frac{\beta}{4}\psi^2$, $V \neq 0$, A = 0yields scalrized Schwarzschild (a)-dS

$$ds^{2} = \left(1 - \frac{2M}{r} - \Lambda r^{2}\right) dt^{2} - \left(1 - \frac{2M}{r} - \Lambda r^{2}\right)^{-1} dr^{2} - r^{2} d\Omega^{2}$$
$$\psi(r) = e^{\frac{r^{3}\psi_{0}}{3}}$$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

f(T,B, ϕ) gravity

$$[\theta] = \int d^4x \, |\, \theta| f(T, B, \phi)$$

trad)

$$A = -\frac{1}{8}\beta\psi^{2}$$
Solution

$$C^{2} - \left(1 - \frac{K}{r}\right)^{-2} dr^{2} - r^{2}d\Omega^{2}$$

$$C = -\frac{2\psi_{0}\sqrt{r}}{K\sqrt{r-K}}$$

No-hair theorem

No spherically symmetric asymptotically flat scalarized solutions exist if

1.
$$A = \alpha \phi^{m}, C = 0, \frac{2}{\beta(m-2)} (2mV - \psi V')$$

2.
$$A = \alpha \phi^2$$
, $C = \frac{c_1}{2} \phi^2 + c_2$ and
either $\phi V' > 4V$ or $\phi V' < 4V$

≤ 0

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The theory

$$f(T, B, \phi) = -A(\phi)T + 2\beta X + C(\phi)B - 2\kappa^2 V(\phi)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

$$\begin{aligned} \text{Real} \\ \theta_{1\mu}^{a} &= \begin{pmatrix} \mathscr{A}(r) & 0 & 0 & 0 \\ 0 & \mathscr{B}(r)\sin\vartheta\cos\varphi & \xi r\cos\vartheta\cos\varphi & -r\xi\sin\vartheta\sin\varphi \\ 0 & \mathscr{B}(r)\sin\vartheta\sin\varphi & \xi r\cos\vartheta\sin\varphi & \xi r\sin\vartheta\cos\varphi \\ 0 & \mathscr{B}(r)\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix} \qquad \xi = \pm 1 \\ \\ \begin{array}{c} \text{Complex} \\ \theta_{2\mu}^{a} &= \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\cos\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm 1 \end{aligned}$$

With metric
$$ds^{2} &= -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2}$$

Solutions (numerous exist)

Example 1: (real tet • C = 0, V = 0,yields the BBMB so $ds^2 = \left(1 - \frac{K}{r}\right)^2 dt^2$ $\psi(r)$ Example 2: (complex tetrad) • $C = \frac{\beta}{4}\psi^2$, $V \neq 0$, A = 0yields scalrized Schwarzschild (a)-dS

$$ds^{2} = \left(1 - \frac{2M}{r} - \Lambda r^{2}\right) dt^{2} - \left(1 - \frac{2M}{r} - \Lambda r^{2}\right)^{-1} dr^{2} - r^{2} d\Omega^{2}$$
$$\psi(r) = e^{\frac{r^{3}\psi_{0}}{3}}$$

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

f(T,B, ϕ) gravity

$$[\theta] = \int d^4x \, |\theta| f(T, B, \phi)$$

trad)

$$A = -\frac{1}{8}\beta\psi^{2}$$
Solution

$$C^{2} - \left(1 - \frac{K}{r}\right)^{-2} dr^{2} - r^{2}d\Omega^{2}$$

$$C = -\frac{2\psi_{0}\sqrt{r}}{K\sqrt{r-K}}$$

No-hair theorem

No spherically symmetric asymptotically flat scalarized solutions exist if

I.
$$A = \alpha \phi^m$$
, $C = 0$, $\frac{2}{\beta(m-2)} \left(2mV - \psi V' \right)$

2.
$$A = \alpha \phi^2$$
, $C = \frac{c_1}{2} \phi^2 + c_2$ and
either $\phi V' > 4V$ or $\phi V' < 4V$

3.
$$A = \alpha$$
, $C = c_1 \ln(\phi) + c_2$ and $\frac{\phi V'}{\beta} \leq 0$

≤ 0

Geometric fields

$$\theta^{a}_{\mu}(x), \Lambda^{a}_{b}(x) \Rightarrow \omega^{a}_{b\mu} \text{ and } \Gamma^{\rho}_{\mu\nu}, \text{ Torsion } T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} - \Gamma^{\sigma}_{\mu\nu}$$

The theory

$$f(T, B, \phi) = -A(\phi)T + 2\beta X + C(\phi)B - 2\kappa^2 V(\phi)$$

• Spherically symmetric tetrads solving the antisymmetric field equations

$$\begin{aligned} \text{Real} \\ \theta_{1\mu}^{a} &= \begin{pmatrix} \mathscr{A}(r) & 0 & 0 & 0 \\ 0 & \mathscr{B}(r)\sin\vartheta\cos\varphi & \xi r\cos\vartheta\cos\varphi & -r\xi\sin\vartheta\sin\varphi \\ 0 & \mathscr{B}(r)\sin\vartheta\sin\varphi & \xi r\cos\vartheta\sin\varphi & \xi r\sin\vartheta\cos\varphi \\ 0 & \mathscr{B}(r)\cos\vartheta & -r\xi\sin\vartheta & 0 \end{pmatrix} \qquad \xi = \pm 1 \\ \\ \begin{array}{c} \text{Complex} \\ \theta_{2\mu}^{a} &= \begin{pmatrix} 0 & i\mathscr{B}(r) & 0 & 0 \\ i\mathscr{A}(r)\sin\vartheta\cos\varphi & 0 & -\chi r\sin\varphi & -r\chi\sin\vartheta\cos\vartheta\cos\varphi \\ i\mathscr{A}(r)\sin\vartheta\sin\varphi & 0 & \chi r\cos\varphi & -r\chi\sin\vartheta\cos\vartheta\sin\varphi \\ i\mathscr{A}(r)\cos\vartheta & 0 & 0 & \chi r\sin^{2}\vartheta \end{pmatrix} \qquad \chi = \pm 1 \end{aligned}$$

With metric
$$ds^{2} &= -\mathscr{A}^{2}dt^{2} + \mathscr{B}^{2}dr^{2} + r^{2}d\Omega^{2}$$

Solutions (numerous exist)

Example 1: (real tet • C = 0, V = 0, yields the BBMB so $ds^2 = \left(1 - \frac{K}{r}\right)^2 dt^2$ $\psi(r)$ Example 2: (complex tetrad) • $C = \frac{\beta}{4}\psi^2$, $V \neq 0$, A = 0yields scalrized Schwarzschild (a)-dS

$$ds^{2} = \left(1 - \frac{2M}{r} - \Lambda r^{2}\right) dt^{2} - \left(1 - \frac{2M}{r} - \Lambda r^{2}\right)^{-1} dr^{2} - r^{2} d\Omega^{2}$$
$$\psi(r) = e^{\frac{r^{3}\psi_{0}}{3}}$$

4

Weitzenböck gauge

$$(\theta^{a}_{\ \mu}, \delta^{a}_{b}) \Rightarrow \omega^{a}_{\ b\mu} = 0, \ \Gamma^{\mu}_{\ \nu\rho} = e_{a}^{\ \mu} \partial_{\rho} \theta^{a}_{\ \nu},$$

f(T,B, ϕ) gravity

$$[\theta] = \int d^4x \, |\theta| f(T, B, q)$$

trad)

$$A = -\frac{1}{8}\beta\psi^{2}$$
Solution

$$^{2} - \left(1 - \frac{K}{r}\right)^{-2} dr^{2} - r^{2} d\Omega^{2}$$

$$= -\frac{2\psi_{0}\sqrt{r}}{K\sqrt{r-K}}$$

No-hair theorem

No spherically symmetric asymptotically flat scalarized solutions exist if

I.
$$A = \alpha \phi^m$$
, $C = 0$, $\frac{2}{\beta(m-2)} \left(2mV - \psi V' \right)$

2.
$$A = \alpha \phi^2$$
, $C = \frac{c_1}{2} \phi^2 + c_2$ and
either $\phi V' > 4V$ or $\phi V' < 4V$

3.
$$A = \alpha$$
, $C = c_1 \ln(\phi) + c_2$ and $\frac{\phi V'}{\beta} \leq 0$

$$A = \alpha, C = \frac{\gamma}{m+1} \phi^{m+1} \text{ and}$$

either $\frac{1}{\beta} \left(\psi V' - (m+1)\gamma \psi^m T^r \psi' \right) \leq$
or $\frac{(m+1)}{m-1} \frac{1}{\beta} \left(\alpha \mathring{R} + \kappa^2 (\psi V - 4V) \right) \leq$

- Teleparallelism 1.
 - Teleparallel Geometry
 - Symmetry
 - Teleparallale Gravity
- 2. Black Holes in $f(T,B,\phi)$ teleparallel gravity
 - Born-Infeld f(T)-gravity
 - Teleparallel perturbations of GR
 - Scalar-Torsion gravity
- Conclusion and Outlook 3.

Teleparallelism - Black Holes in f(T,B, ϕ) gravity - Conclusion 100

Geometric fields

Geometric fields

Lorentz transformations as gauge transformations

Affine connection, metric and torsion (in coordinate basis), are invariant, possible choice ($\theta^a_{\mu}, \delta^a_b$) Weitzenböck gauge.

Geometric fields

Lorentz transformations as gauge transformations

Affine connection, metric and torsion (in coordinate basis), are invariant, possible choice ($\theta^a_{\mu}, \delta^a_b$) Weitzenböck gauge.

Teleparallel theories of gravity $S[\theta] = \int d^4x |\theta| f(T^{\sigma}_{\mu\nu}, \partial T^{\sigma}_{\mu\nu}, \dots)$ $f = T, \quad f = f(T, B, \phi), \quad f = \hat{\lambda} \left(\sqrt{1 + \frac{T}{\hat{\lambda}}} - 1 \right), \quad f = f(T, B) = T + \frac{\epsilon}{2} (\alpha T^2 + \beta B^2 + \gamma BT), \quad f(T, B, \phi) = -A(\phi)T + 2\beta X + C(\phi)B - 2\kappa^2 V(\phi)$

Geometric fields

Lorentz transformations as gauge transformations

Affine connection, metric and torsion (in coordinate basis), are invariant, possible choice ($\theta^a_{\mu}, \delta^a_b$) Weitzenböck gauge.

Teleparallel theories of gravity $S[\theta] = \int d^4x |\theta| f(T^{\sigma}_{\mu\nu}, \partial T^{\sigma}_{\mu\nu}, \dots)$ f = T, $f = f(T, B, \phi)$, $f = \hat{\lambda}\left(\sqrt{1 + \frac{T}{\hat{\lambda}}} - 1\right)$, $f = f(T, B) = T + \frac{\epsilon}{2}$

Black Holes

• Born-Infeld gravity: non-perturbative solutions exist, thick accretion disc has been constructed, constraint on $\hat{\lambda}$ from weak field limit

$$f(T,B,\phi) = -A(\phi)T + 2\beta X + C(\phi)B - 2\kappa^2 V$$

Geometric fields

Lorentz transformations as gauge transformations

Affine connection, metric and torsion (in coordinate basis), are invariant, possible choice ($\theta^a_{\mu}, \delta^a_b$) Weitzenböck gauge.

Teleparallel theories of gravity $S[\theta] = \int d^4x |\theta| f(T^{\sigma}_{\mu\nu}, \partial T^{\sigma}_{\mu\nu}, \dots)$ f = T, $f = f(T, B, \phi)$, $f = \hat{\lambda} \left(\sqrt{1 + \frac{T}{\hat{\lambda}}} - 1 \right)$, f = f(T, B) = T - 1

Black Holes

- Born-Infeld gravity: non-perturbative solutions exist, thick accretion disc has been constructed, constraint on $\hat{\lambda}$ from weak field limit
- Teleparallel perturbations of GR can be constraint by effects like light deflection and time delays, real tetrad with $\xi = 1$

$$f(T,B,\phi) = -A(\phi)T + 2\beta X + C(\phi)B - 2\kappa^2 V$$

Geometric fields

Lorentz transformations as gauge transformations

Affine connection, metric and torsion (in coordinate basis), are invariant, possible choice ($\theta^a_{\mu}, \delta^a_b$) Weitzenböck gauge.

Teleparallel theories of gravity $S[\theta] = \int d^4x |\theta| f(T^{\sigma}_{\mu\nu}, \partial T^{\sigma}_{\mu\nu}, \dots)$ f = T, $f = f(T, B, \phi)$, $f = \hat{\lambda} \left(\sqrt{1 + \frac{T}{\hat{\lambda}}} - 1 \right)$, f = f(T, B) = T-

Black Holes

- Born-Infeld gravity: non-perturbative solutions exist, thick accretion disc has been constructed, constraint on $\hat{\lambda}$ from weak field limit
- Teleparallel perturbations of GR can be constraint by effects like light deflection and time delays, real tetrad with $\xi = 1$
- Scalarized black holes exist, a first no-hair theorem has been established

$$f(T,B,\phi) = -A(\phi)T + 2\beta X + C(\phi)B - 2\kappa^2 V$$

Geometric fields

Lorentz transformations as gauge transformations

Affine connection, metric and torsion (in coordinate basis), are invariant, possible choice ($\theta^a_{\mu}, \delta^a_b$) Weitzenböck gauge.

Teleparallel theories of gravity $S[\theta] = \int d^4x |\theta| f(T^{\sigma}_{\mu\nu}, \partial T^{\sigma}_{\mu\nu}, \dots)$ f = T, $f = f(T, B, \phi)$, $f = \hat{\lambda} \left(\sqrt{1 + \frac{T}{\hat{\lambda}}} - 1 \right)$, $f = f(T, B) = T + \frac{\epsilon}{2}$

Black Holes

- Born-Infeld gravity: non-perturbative solutions exist, thick accretion disc has been constructed, constraint on $\hat{\lambda}$ from weak field limit
- Teleparallel perturbations of GR can be constraint by effects like light deflection and time delays, real tetrad with $\xi = 1$
- Scalarized black holes exist, a first no-hair theorem has been established

Black Holes to be continued

- axially symmetric scalarized black holes are under investigation, no teleparallel generaization of Kerr has been found
- impact on accretion discs in axial symmetry?

$$f(T,B,\phi) = -A(\phi)T + 2\beta X + C(\phi)B - 2\kappa^2 V$$

Geometric fields

Lorentz transformations as gauge transformations

Affine connection, metric and torsion (in coordinate basis), are invariant, possible choice ($\theta^a_{\mu}, \delta^a_b$) Weitzenböck gauge.

Teleparallel theories of gravity $S[\theta] = \int d^4x |\theta| f(T^{\sigma}_{\mu\nu}, \partial T^{\sigma}_{\mu\nu}, \dots)$ f = T, $f = f(T, B, \phi)$, $f = \hat{\lambda} \left(\sqrt{1 + \frac{T}{\hat{\lambda}}} - 1 \right)$, $f = f(T, B) = T + \frac{\epsilon}{2}$

Black Holes

- Born-Infeld gravity: non-perturbative solutions exist, thick accretion disc has been constructed, constraint on $\hat{\lambda}$ from weak field limit
- Teleparallel perturbations of GR can be constraint by effects like light deflection and time delays, real tetrad with $\xi = 1$
- Scalarized black holes exist, a first no-hair theorem has been established

Black Holes to be continued

- axially symmetric scalarized black holes are under investigation, no teleparallel generaization of Kerr has been found
- impact on accretion discs in axial symmetry?

Thank you for your attention

$$f(T,B,\phi) = -A(\phi)T + 2\beta X + C(\phi)B - 2\kappa^2 V$$

Selected (incomplete) Bibliography

Black Holes in f(T,B) Gravity: Exact and Perturbed Solutions	Bahamonde, Golovnev, Guzman, Said, Pfeifer	2110.04087	JCAP 01 (2022) 037
Exploring Axial Symmetry in Modified Teleparallel Gravity	Bahamonde, Gigante Valcarel, Järv, Pfeifer	2012.09193	PRD 103 (2021)
General Teleparallel Quadratic Gravity	Jimenez, Heisenberg, Iosifidis, Koivisto, Jimenez-Cano	1909.09045	Phys.Lett.B 805 (2020)
Gravitational energy-momentum density in TP gravity	Andrade, Guillen, Pereira	gr-qc/0003100	Phys. Rev. Lett. 84 (200)
Modified teleparallel gravity: inflation without inflaton	Ferraro, Fiorini	gr-qc/0610067	PRD 75 (2007)
Modified teleparallel theories of gravity in symmetric spacetimes	Hohmann, Järv, Krššák, Pfeifer	1901.05472	PRD 100 (2019)
On Born-Infeld Gravity in Weitzenbock spacetime	Ferraro, Fiorini	0812.1981	PRD 78 (2008)
Photon sphere and perihelion shift in weak f(T) gravity	Bahamonde, Flathmann, Pfeifer	1907.10858	PRD 100 (2019)
Review of the Hamiltonian analysis in teleparallel gravity	Blixt, Guzman, Hohmann, Pfeifer	2012.09180	Vol. 18, No. supp01, 2130005 (2021)
Static spherically symmetric black holes in weak f(T)-gravity	Pfeifer, Schuster	2104.00116	Universe 7 (2021) 5
Teleparallel Gravity	Aldrovandi, Pereira	Book	Springer Netherlands
Teleparallel theories of gravity as analogue of non-linear electrodynamics	Hohmann, Järv, Krššák, Pfeifer	1711.09930	PRD 97 (2018)
Teleparallel Theories of Gravity: Illuminating a full invariant approach	Krssak, van den Hoogen, Pereira, Böhmer, Coley	1810.12932	Class.Quant.Grav. 36 (2019) 18
The coupling of matter and spacetime geometry	Jimenez, Heisenberg, Koivisto	2004.04606	Class.Quant.Grav. 37 (2020) 19
The Geometrical Trinity of Gravity	Jimenez, Heisenberg, Koivisto	1903.06830	Universe 5 (2019) 7
The regular black hole in four dimensional Born-Infeld gravity	Boehmer, Fiorini	1901.02965	CQG 36 (2019)
The teleparallel equivalent of GR	Maluf	1303.3897	Annalen Phys. 525 (2013)
Thick accretion disc configurations in the teleparallel gravity	Bahamonde, Faraji, Hackmann, Pfeifer	2209.00020	und review
Teleparallel Gravity: From Theory to Cosmology	Bahamonde, Dialektopoulos, Escamilla-Rivera, Farrugia, Gakis. Hendrv. Hohmann. Said. Mifsud. di Valentino	2106.13793	und review

