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Conformal Geometry has been studied in different geometries e.g.

e In Riemannian geometry,it is angle-preserving.

e In the Lorentzian context, it preserves causality.

e In Finsler framework, one can consider a much more general
concept of conformal geometry which is call anisotropic
conformal geometry.

e Two pseudo-Finsler metrics are anisotropically conformally
equivalent if and only if they have the same lightcone.?

e In parallelizable manifolds, it is angle-preserving and causality.

M. A. Javaloyes and B. L. Soares, Anisotropic conformal invariance of
lightlike geodesics in pseudo-Finsler manifolds, Class. Quantum Grav. 38
(2021) 025002.

N. Voicu, Conformal maps between pseudo-Finsler spaces, Int. J. Geom.
Methods Mod. Phys. (2018) 15 1850003.
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A brief account of local AP-geometry

Definition

A parallelizable manifold is an n-dimensional smooth manifold M
which admits n independent vector fields A (i = 1,2, ..., n) defined
globally on M. '

Let V¥ (n=1,2,...,n) be the coordinate components of the i-th
vector flied \.

The covariant components of A are given via the relations

NN, = 88, N, = 6. (1)
i i

The metric structure g, ;=\, \, with inverse gi” :=\*\".
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The (built-in) natural connections

The canonical connection

re, =AM, (2)

i

The symmetric connection

~ 1
rgy = E(rgp, + rgy) = ((lpu)' (3)
The dual connection B
I'ff,j o= I'f,‘ﬂ. (4)
The Riemmannian connection
o 1 .
rij = Ega (gGI/,;,L aF 8ep,y — guu,e)- (5)
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Conformal changes of geometric objects of AP-space

Definition

Two AP-spaces (M, )\) and (M, )\) are said to be conformal (or

conformally related) if there exists a positive smooth function p(x)
such that

Locally,

or, equivalently,
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Under the conformal change (6), we have:

@ The Weitzenbdck connections ', and r:; are related by
=«
Fw =T5 +0,pu
@ The torsion tensors A7}, and KSV of '}, and Tiy are related by
—a
/\,uu = /\zu + (5zpl/ - 53p#«) .
@ The symmetric connections Fl‘jy and fz‘u are related by:

Ta Ta 1 @ o
rm/ = r,l,bl/ + 5(6;1,/)1/ + 6VpH)?

Aa 7@ Aa ;Ot
@ The curvature tensors Ry, and R{,, of [, and '}, are related
by:

=, ~ 1 o 1.,
R,uz/a = R;u/a + Euuo{égP#TV + E(sy pgp#}. (7)
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The tensor field 7, := Re s conformally invariant:

avo
?VU = Rove + ﬂw{(sapah, 53Papa} = Tuo-

Lo 1 not conformally

The Ricci-like tensor defined by :E\’\W = ﬁ‘i
invariant:

= ~ (n—1) 1
Ruw = Ry + o \Pup T pPuPv)-
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Under the conformal change (6), we have:

@ The dual connections Ffju and F;j‘l, are related by
Mo =T, + 60 pu-

@ The torsion tensors Kij and /~\,f“y of FZ‘V and Fﬁy are related by

K, =N, — (6%, — 62py) -

@ The curvature tensors ﬁfjw and ﬁﬁ‘w are related by

] D a a 1 a
Ritla = Rzua +uVU{5JpMTV + 51/ p,u pU + Eplt/\ua}v
where 4, {A,L} = A — Ay

@ The Levi-Civita connections ', and T ¢, are related by

C 5 =T+ (00 + 00 0 — 8uup®) -
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Under the conformal change (6), we have:

o o
@ The curvature tensor Rjj,,, of I'}}, is transformed as

R fljuo’ :R;Ojua + L[VO'{(SSSMV - g,uasg}y
where S, == Pusv = PuPv = %gm,p2, p% := p°pe and
S5 == g%S..

@ The contortion tensor 7y, is transformed as
7}01,(1/ = ’Yf:y - 63plt + guupa~

@ The W-tensor W, is transformed as

W @ e o 1
Wp,ua = Wp,ua J'_LLV(T{(S(T/)UML - 26(7pr#« - EAgupN

1 ape a
+§5/L/\(71/p€ - Aoppv}'
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New conformally invariant geometric objects

It should be noted that

In the next three theorems, we assume that (M, \) is an AP-space of
1

dimension n > 2.

Theorem 1
1
The t @ = A% " v
etensors 7o /\W - ﬁ{% G —65Cut,
K#ucr = ( — 1) {5 v,o 5# Cgvl’}’

are conformally invariant. Moreover, the tensors T/, and K, are the

torsion and curvature tensors of a conformal connection on M
« PR « Q
M =T — (- 1)6H (8)
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New conformally invariant geometric objects

The tensor
1
B/?VO' = Z uVU{zAgykr + AZVAge + AZ’VAeap,}
1 o o 1 (0%

“a(n -1y e O Cow + 05 G~ 5y P )
is conformally invariant. Moreover, By, is precisely the curvature
tensor of the conformal connection on M

~ ~ 1
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New conformally invariant geometric objects

The tensor
1

Qﬁuo = o {’Y,uy|cr+’yluo"7€y+ 7u€A€ }

1
—— W, 05 C, 02C o +C%
(n—1)"" { et ulv+gu v
1

(n—1)

(0%

is conformally invariant. Moreover, Q7 is precisely the curvature
tensor of the following conformal connection on M

(65 CuCo — 0 8us C2 + guaCuC")} (10)

oa Oa 1 (0% (e
[ ::r“”_(n—l)(é Co=p il Gy = 3, C% ) (11)
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Further properties of the new invariants:

@ The invariant connection I}, defined by (8) is non-metric and

recurrent metric with recurrence form nzl C,. That is,

2
8uv|lo = n Buv Co-

-1
@ The invariant connection Fij defined by (11) is non-metric,

symmetric and recurrent metric with recurrence form % Cs.

That is,
2

g,ul/ﬁa - n—1

8 Co-
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Thank_ you
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