A LAGRANGIAN GENERALISATION OF THE NOTION OF A STATIONARY LORENTZIAN METRIC

Erasmo Caponio
Politecnico di Bari (Italy)

September 22th,
Workshop on Astro-particles and Gravity
at Cairo University, Egypt

Based on the work

Mathematics > Differential Geometry

[Submitted on 20 Jun 2022]

A variational setting for an indefinite Lagrangian with an affine Noether charge

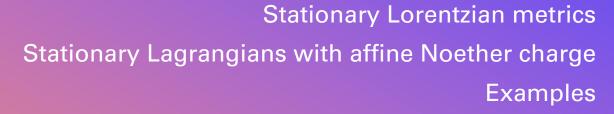
Erasmo Caponio, Dario Corona

We introduce a variational setting for the action functional of an autonomous and indefinite Lagrangian on a finite dimensional manifold. Our basic assumption is the existence of an infinitesimal symmetry whose Noether charge is the sum of a one-form and a function. Our setting includes different types of Lorentz-Finsler Lagrangians admitting a timelike Killing vector field.

Comments: 42 pages, AMSLaTeX

Subjects: Differential Geometry (math.DG)
Cite as: arXiv:2206.09650 [math.DG]

OUTLINE



On the local expression of **L**On the local injectivity of the Legendre transform



(H,g) dim
$$M = mu + L$$

g Lorentzian $(-,+,...,+)$

Let $K \in \mathcal{H}(M)$ a killing vector field

timelike (i.e. $g(k,k) < 0$)

 $L_{K} g = 0 \implies in \text{ some coordinate system}$
 $A = 0 \implies adapted \text{ To } K, (U,t,x_{....$

$$y \in \mathcal{H}(M)$$
, $y_p \neq 0$ $\forall p \in M$
 g_R Riemannian metric on M
 $g := g_R - 2 \left(\frac{y}{|Y|_R}\right)^{\frac{1}{2}} \otimes \left(\frac{y}{|Y|_R}\right)^{\frac{1}{2}}$ is Lorentzian

For $y = k$, (recola that k is timelike $= \forall k_p \neq 0$)

 $g_R := g + 2 \left(\frac{k}{|K|}\right)^{\frac{1}{2}} \otimes \left(\frac{k}{|K|}\right)^{\frac{1}{2}}$ is Riemannian

The Noether charge associated with, is

$$\frac{34}{34}(.)[k] = 29(.)k) = 3$$

Notice that it is a 1-form on M

STATIONARY LAGRANGIANS WITH AFFINE NOETHER CHARGE

L: TM -> |R | L = L(9,9), 9 \in 1, 9 \in 1, 9 \in 1, M

L invariant by the action of a 1-parameter group

of book differs with infinitesimal jenerator
$$K \in \mathcal{H}(n)$$
:

 $\mathcal{H}(\pi) \ni K^c := K^{i} \frac{\partial}{\partial q^i} + 9^{i} \frac{\partial K^{i}}{\partial q^i} \frac{\partial}{\partial q^j}$

The flow of K^c is $Y^c(t, 9, 9) = (Y(t, 9), QY(t, 9)[9])$
 $K^c(L) = 0 \iff \frac{d}{dt} L(Y^c(t, 9, 9)) = 0$

We coll K as infinitesimal symmetry for L

$$N: TH \to \mathbb{R}, \ N(q_{1}\dot{q}):=\frac{2L}{3\dot{q}}(q_{1}\dot{q})[K]$$

Assume that:

$$+ N(9,9) = Q(9) + Q(9)$$

$$+ \left[\frac{\alpha(k)}{\alpha(k)} < 0 \right]$$
Let us define
$$L_c := L - \frac{\alpha^2}{\alpha(k)}$$

Lo: TS -7 IR,
$$W \in \Lambda_1(S)$$
, $d: S \rightarrow IR$, $g: S \rightarrow IR$, g

$$N((k,t),(v,t)) = 2(w(v) - \beta dt) + d(x) \left(Q(k) = -2\beta \langle 0 \rangle\right)$$

Here
$$L_c((x,t),(\nu,\tau)) = L_0(x,\nu) + \left(\frac{1}{\sqrt{\beta(x)}}\omega(\nu) - \sqrt{\beta(x)}\tau\right)^2$$

which is strongly courex

$$(1-b)$$
 a sheard cone is $L_0 = F^2 + W_0 + V$

1-6) a special core is $L_0 = F^2 + W_0 + V$ with F Finsh metric, $W_0 \in \Lambda_1(5)$

and V: S-> R

This case generalises static Lorentz-Finsler netric corresponding to W=0, d=0, $W_0=0$, V=0

 $+\frac{1}{\beta(x)}\omega^2(\nu) + \frac{d(x)}{2}\tau.$

Introduced in

C. Lämmerzahl, V. Perlick and W. Hasse: Observable effects in a class of spherically symmetric static Finsler spacetimes. Phys. Rev. D, 86 (2012), 104042.

and studied also in

E. Caponio and G. Stancarone: Standard static Finsler space-times. Int. J. Geom. Methods Mod. Phys., 13 (2016), 1650040.

They also generalises a class of stationary Lorentz-Finsler spacetimes studied in

E. Caponio and G. Stancarone: On Finsler spacetimes with a time-like Killing vector field. Classical Quantum Gravity, 35 (2018), 085007.

that corresponds to the case d = 0, $w_0 = 0$, V = 0

(g) Interchanging the role of L and Lc

Let L_b be a strongly convex Lagrangian admittin an infinitenimal symmetry K such that $N_b := \frac{2L_b(\cdot)[K]}{2g}$ is pointwise affine $N_b = Q_b + d$ and $a_b(k) > 0$ Then L: Lb - aba(k) has infiniterimal symmetry, $N = -Q_b + d$ and $L_c = L_L$

Let F:TM->R be a Finsler netzic on M adwitting k as an infinitesimal symmetry s.t. $K_{x}\neq 0$, $\forall x \in M$ and $N_{F} = Q_{F}$ Let $W_0 \in \Lambda_1(M)$ and $V: M \rightarrow \mathbb{R}$ invariant by the flow of K $L:=F^2+W_0+V-Q_F^2(K)=2F^2(K)>0$ In this case $L_b = F + W_o + V$ and $N_b = N_F + W_o(K)$ hence $Q_b(K) = Q_F(K) > 0$

22/09/2022

3)

Beem's Lorentz-Finsler metrics

J. K. Beem: Indefinite Finsler spaces and timelike spaces. Canad. J. Math., 22 (1970), pp. 1035–1039.

- LF: TH->R, LFEC2(TH.0), LF(x, NS) = 2/2(x,v)
 V(x,v) & TH.0:

 V(x,v) & TH.0:
 - JLF (x,v), \alpha, \beta=0,..., m, is non-degenerate of index 1
- K is an infinitesimal symmetry for LF $L_F(K) < 0$ and $N_{LF} = Q_{L_F} + d_{L_F}$

 $L_{c}:=L_{F}-\alpha_{L_{F}}/\alpha_{L_{F}}(k)$ is then strongly convex This example con be generalized by replecing LF + W1 + V, W1 being k-invariant 3)-b) Au portionler if F:TM->R is 2 standard Finsler metric on M and WEA, (M); if K is su infinite simul symmetry for F with $N_F = a_F$ and w is k-invariant then L=:= F'-w' is Beem provident F'(k)-w'(k)<0

ON THE LOCAL EXPRESSION OF L

0

We want to show that L can be always expassed to cally 25 & Lans wangian in Example 1)

- i.e. for each pEM there exist
 - · Up CM, open neighborourd of p
- L.: TS,--, R, w∈ Λ₁(S_p), d: S,--, R,
 β: S,--, β>0 5.t.

$$L \circ \phi \left((x,t), (v,z) \right) = L_{o}(x,v) + 2 \left(\omega(v) + \frac{d(x)}{2} \right) z - \beta (x) z^{2}$$

SOME CLASSES OF EXAMPLES

Let them Q < TI be the rout m distribution gennoted by $\ker Q$ (healt that Q(k)<0). let p e M and Sp be a hypersurface s.t. pesp, Tpsp=Op and kp is trousversal to S_p for all $q \in S_p$ (i.e. $T_q \Pi = T_q S_p \oplus \lfloor K_q \rfloor$) Recall that $L_c = L - Q/Q(K)$ thus $\frac{\partial L}{\partial \dot{q}} \left(q_1 \dot{q} \right) = \frac{\partial L_c}{\partial \dot{q}} \left(q_1 \dot{q} \right) + \frac{2}{A(K)} Q(\dot{q}) Q \text{ and}$ $\left(\frac{2 (q_1 \dot{q}_2)}{3 \dot{q}} - \frac{2 (\dot{q}_1 \dot{q}_1)}{3 \dot{q}} \left[\dot{q}_2 - \dot{q}_1 \right] = \left(\frac{2 L_c(q_1 \dot{q}_1)}{3 \dot{q}} \left(\dot{q}_1 \dot{q}_1 \right) \right) \left[\dot{q}_2 - \dot{q}_1 \right] + 2 Q \left(\dot{q}_2 - \dot{q}_1 \right) / Q(K)$

$$\begin{split} & \left(\frac{2(1,i_{1})}{2i_{1}} - \frac{2(1,i_{1})}{2i_{1}} - \frac{2(1,i_{1})}{2i_{1}} - \frac{2(1,i_{1})}{2i_{1}} - \frac{2(1,i_{1})}{2i_{1}} - \frac{2(1,i_{1})}{2i_{1}} + 2Q^{2}(i_{1}i_{2})/Q(\kappa) \right) \\ & \text{Let} \quad \mathbb{R} \quad \ni \lambda_{o} = \min_{\substack{1 \leq S_{p} \\ 1 \leq S_{p$$

22/09/2022

and then for all (9,9) E TSp $L(q, \dot{q} + \zeta K_{4}) = L_{0}(q, \dot{q}) + (\Omega(\dot{q}) + d(q))\zeta + \frac{1}{2}\Omega(K_{4})\zeta^{2}$ This HWETq II, qe Sp, W= 9 + TWKy for some 9 ETSp and $L(q, w) = L_0(q, \dot{q}) + (\alpha(\dot{q}) - d(q)) \tau_w + \frac{1}{2} \alpha(k_q) \tau_w$ which is of the stated type, i.e.: $L_{o}(x,v) + 2\left(\omega(v) + \frac{d(x)}{2}\right) \tau - \beta(x) z^{2},$ by letting $W := \frac{Q}{2} | T_{SP}$, $\beta = -\frac{1}{2}Q(K|S_P)$

and then for all (9,9) E TSp $L(q, \dot{q} + \zeta K_{4}) = L_{o}(q, \dot{q}) + (\Omega(\dot{q}) + d(q))\zeta + \frac{1}{2}\Omega(K_{4})\zeta^{2}$ This YWETAM, 9ESP, W=9+TWK9 for some 9ETSP and L(q, w) = Lo(q, q) + (a(q) + d(q)) Tw + 2 a(kq) Tw which is of the stated type Finally by using the flows I of K, we con construct the differ $\phi: S_p \times I \rightarrow U_p$ and obtaining the above expression be $L \circ \phi$ thouks to the K-invariance of L

ON THE LOCAL INJECTIVITY OF THE LEGENDRE TRANSFORM

We wont to show that (9,9) ETM -> (9, 3/91/ETH* is locally injective We con then assume that bushly 1 15 given as $L\left(\left(x,t\right),\left(v,\tau\right)\right)=L_{0}\left(x,v\right)+2\left(w(v)+\frac{d(x)}{2}\right)\tau-\beta(x)\tau^{2}$ $(9,1) \cong ((x,t),(v,z))$ If Lo admits mont duivatives w.r.t. outside the zero nection there I'm

Since Wo = 0 = P ||W|| << 1 ou Sp (up to take a smaller Sp)
and then being p>0 the above moteix is non-obeginerate
This night be useful for modified dispersion relations, see e.g.

Physics Letters B 780 (2018) 246-250

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Redshift and lateshift from homogeneous and isotropic modified dispersion relations

Christian Pfeifer

22/09/2022

THANKS FOR YOUR ATTENTION!

Erasmo Caponio erasmo.caponio@poliba.it https://eracap.github.io

