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Modifying gravity

The simplest modification of the Einstein-Hilbert action is...

[A. Golovnev, M.J. Guzman (2022) arXiv:2203.16610].
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Mathematical framework: (co)frames

• Local coordinates {xµ} at P.

• They naturally define a basis

vectors eµ = ∂/∂xµ = ∂µ

• The basis 1-forms θµ = dxµ are

dual to the eµ.

• In 4D, a linear combination of

the θµ gives us an arbitrary

frame, tetrad, or vierbein

θa = θaµdx
µ

• Completeness relation

θa(eb) = δab, orthonormality

condition ηab = gµνe
µ
a e

ν
b that

defines the metric tensor

gµν = ηabθ
a
µθ

b
ν .

2



Mathematical framework: linear connection

The connection Γαµν defines the parallel transport of a vector along a

curve in a manifold. Generically it has three parts:

It is related with the spin connection ωa
bµ by the tetrad postulate

∂µθ
a
ν + ωa

bµθ
b
ν − Γρµνθ

a
ρ = 0 (1)
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Metric teleparallel framework

• A teleparallel framework is the one for which the linear connection

has vanishing Riemann curvature Rµ
ναβ = 0.

• In this setup we can still fix either the non-metricity tensor, or the

torsion tensor, to zero. In the former case, the connection can be

written in term of Lorentz matrices as

ωa
bµ = −

(
Λ−1

)c
b∂µΛc

a. (2)

• Consequently, the torsion tensor is

T a
µν = ∂µθ

a
ν − ∂νθ

a
µ + ωa

bµθ
b
ν − ωa

bνθ
b
µ. (3)

• A useful object for later is the torsion scalar T:

T = −1

4
TρµνT

ρµν − 1

2
TρµνT

µρν + T ρ
µρT

σµ
σ.
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The teleparallel equivalent of general relativity

The action for the teleparallel equivalent of general relativity is [Aldrovandi,

Pereira (2013)]

STEGR =
1

2κ

∫
d4x θT,

contains T, which satisfies the identity

θT = −θR+ ∂µ(θT
ν µ
ν ).

Here R depends exclusively on the metric, which is invariant under local

Lorentz transformations of the tetrad

θa −→ θa
′
= Λa′

a(x)θ
a.

This is not true for ∂µ(θT
ν µ
ν ), which is a harmless boundary term.

Then, it is said that TEGR is a Lorentz pseudo-invariant theory.

TEGR encompasses the same degrees of freedom than GR

[Ferraro, Guzman (2016) arXiv: 1609.06766].
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Teleparallel gravity (1928-1931)

• Einstein’s attempts to build a unified theory of gravitational and

electromagnetical fields on the mathematical framework of

teleparallelism, is an episode that lasted for three years from summer

1928 until spring 1931.

• The tetrad field was introduced to get sixteen components instead

of only ten for the symmetric metric tensor, and to exploit the

additional degrees of freedom to accomodate the electromagnetic

field.

• The mathematical structures had been developed before by Cartan

and Weitzenboeck, purely in mathematical concepts.

• Einstein’s pursuit of the approach triggered a more general

discussion that involved a few other contemporary physicists and

mathematicians, and it continued to be investigated further even

when Einstein no longer took active part in the discussions.

See Sauer (2004) arXiv:physics/0405142
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The geometrical trinity of gravity

[adapted from Beltran-Jimenez, Heisenberg, Koivisto (2019)]
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Hamiltonian formalism

Some motivations for studying the Hamiltonian formalism of the theory

are:

• allows a non-ambiguous identification of gauge symmetries and

counting of physical degrees of freedom

• crucial in approaches to canonical quantum gravity

• assessing the well-posedness of the Cauchy problem, therefore the

viability of any theory

• theoretical basis for numerical modified general relativity.

In particular, Hamilton’s equations correspond 1-to-1 to the 3+1

Lagrangian decomposition. We make partial use of Dirac’s algorithm.
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Dirac algorithm part 1
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Dirac algorithm part 2
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ADM split in the tetrad

• We would like to perform a suitable 3+1 decomposition in the

tetrad, reproducing the typical ADM split in the metric

gµν =

(
−α2 + βiβjγij βi

βj γij

)
gµν =

(
− 1

α2
βi

α2

βj

α2 γ ij − βiβj

α2

)
.

(4)

• However, there are infinite possible representations. We begin by

splitting the components θAµ as

θA0 = αξA + βiθAi , θAiθ
B
jηAB = γij , (5)

where ξA is a vector satisfying the following properties

ηABξ
AξB = ξAξ

A = −1, ηABξ
BeAi = ξAθ

A
i = 0. (6)
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ADM split in the tetrad

• The requirement that ξAθ
A
i = 0 indicates that ξA should be

proportional to purely spatial components of the tetrad, i.e.

ξA ∝ ϵABCDe
B
1e

C
2e

D
3 (7)

• For the inverse components, the decomposition reads

eA
0 = − 1

α
ξA, eA

i = θA
i + ξA

βi

α
(8)

• The object θA
i is the shorthand notation for θA

i = ηABγ
ijθB j

• This ADM decomposition in the tetrad, although not unique,

recovers unambiguosly the ADM metric.
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ADM Lagrangian

After performing the ADM split in the tetrad, we obtain the following

form of the TEGR Lagrangian

LTEGR =

√
γ

2α
M i j

A BT
A
0iT

B
0j

−
√
γ

α
TA

0iT
B
kl ·
[
M i l

A Bβ
k +

α

κ
γ il

(
1

2
ξBθA

k − ξAθB
k

)]
+ LS ,

(9)

where the Hessian is

M i j
A B = − 1

κ

(
1

2
γ ijηAB +

1

2
ξAξBγ

ij +
1

2
θA

jθB
i − θA

iθB
j

)
, (10)

and a term independent from time derivatives of the tetrad is

LS =

√
γ

α
TA

ijT
B
klβ

i

[
1

2
M j l

A Bβ
k +

α

κ
γjl

(
1

2
ξBθA

k − ξAθB
k

)]
+
α
√
γ

2κ
3T.

(11)
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Canonical momenta in TEGR

• Given that TA
0i = ∂0e

A
i + . . ., the canonical momenta can be

obtained through variation wrt TA
0i , that is,

πA
i =

∂L

∂TA
0i

=

√
γ

α

[
M ij

ABT
B
0j − TB

kl(M
il
ABβ

k +
α

κ

(
1

2
ξBθA

k − ξAθB
k

)
)

]
.

(12)

• Since the TEGR Lagrangian does not depend on ∂0e
A
0, the primary

constraint πA
0 = 0 appears.

• Additional primary constraints are obtained from the contraction

ei [BπA]
i + boundary term = 0
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Irreducible decomposition

We consider useful to decompose the momenta and velocity under

irreducible parts under the rotation group O(3)

θ̇Ai =
Vθ̇iξ

A + Aθ̇jiγ
kjθAk +

Sθ̇jiγ
kjθAk +

Tθ̇θAi , (13)

πA
i = VπiξA + AπjiγkjθA

k + SπjiγkjθA
k + TπθA

i . (14)

The superscripts are for Vectorial, Antisymmetric, Symmetric trace-free

and Trace parts [Blixt, Hohmann, Pfeifer 1811.11137] .

The decomposition allows to invert the Hessian by blocks, obtain the

velocities in term of the momenta, and write the Hamiltonian

H = θ̇AiπA
i − L.
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Hamiltonian for TEGR

We obtain that the Hamiltonian for TEGR has the following form

HTEGR = α

[
− κ

16
√
γ

[
πA

iπB
lθAkθ

B
jγ

jkγli + πA
iπB

jθAjθ
B
i

−πA
iπB

jθAiθ
B
j

]
−

√
γ

2κ
3T− ξA∂iπA

i

]
+ βj

[
−θAj∂iπA

i − πA
iTA

ij

]
+ primary constraints

(15)

Let us compare with the Hamiltonian for GR

H =
√
γ

{
α

[
−(3)R +

πijπij

γ
− 1

2

π2

γ

]
− 2βjDi

(
πij

√
γ

)
+ 2Di

(
βj

πij

√
γ

)}
.

(16)
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Derivation of Hamilton’s equations

We recall that the momenta for GR and TEGR are defined as

πij =
∂L

∂γ̇ij
, πi

A =
∂L

∂θ̇Ai

, (17)

therefore it is easy to see that they are dependent from each other, since

γ̇ij = ηAB(θ̇
A
iθ

B
j + θAi θ̇

B
j). (18)

In particular,

πA
i = 2ηABθ

B
jπ

ij (19)

Hamilton’s equations for TEGR are then obtained as

θ̇Ai = {θAi ,H} =
δH

δπA
i
, π̇A

i = {πA
i ,H} = − δH

δθAi
. (20)
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Hamilton’s equations for TEGR

Our computations give [Blixt, Guzman, Pati, in preparation]

−π̇A
i =

δH

δθAi

=
ακ

8
√
γ

(
πA

iπB
jθB j − πA

jπB
iθB j − γ ilγjkπA

jπB
kθB l − βi∂jπA

j + αξAγ
ikθBk∂jπB

j
)

+
ακ

16
√
γ
θAiπB

jπD
k (θBkθ

D
j − θB jθ

D
k + γjkγ

lnθB lθ
D
n)

+
ακ

8
√
γ
ηAC

(
γlmπB

lπD
mθBnθ

D
kθ

C
jγ

k[iγj]n − γmnθBmθ
C
jθ

D
nπD

(iπB
j)
)
+ O(∂iθ)

(21)

θ̇Ai =
δH

δπA
i
=

[
αξA + βkθAk

]
∂x
i δ(x − y)− βkTA

ikδ(x − y)

κα

8
√
γ

[
πB

jθA[iθ
B
j] − γijγ

klπB
jθA(kθ

B
l) + πC

kθA[iθ
C
k]

]
δ(x − y)

(22)
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Hamilton’s equations for GR

In comparison, in general relativity it is known that

γ̇ij =
δH

δπij
= 2γ−1/2α

(
πij −

1

2
γijπ

)
+ 2D(iβj), (23)

and

π̇ij =− δH

δγij
= −α

√
γ

(
(3)R ij − 1

2
(3)Rγ ij

)
+

1

2
αγ−1/2γ ij

(
πklπkl −

1

2
π2

)
− 2αγ−1/2

(
πikπk

j − 1

2
ππij

)
+

√
γ(D iD jα− γ ijDkDkα) +

√
γDk(γ

−1/2βkπij)− 2πk(iDkβ
j).

(24)
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Discussion and conclusions

• Hamilton’s equations in TEGR are generically more complicated

than GR ones

• ADM decomposition of Einstein’s equations aren’t strongly

hyperbolic, a reformulation called BSSN it is. It is widely used in

numerical relativity for strong gravity regimes as merge of black

holes.

• Such study in TEGR is not present in the literature. Some authors

[Capozziello, Finch, Levi-Said, Magro 2108.03075] claim that in TEGR

simulations should be computationally more efficient. We suspect it

could be exactly the opposite.

• We have also obtained Hamilton’s equations for the covariant

version of TEGR.
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