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Modifying gravity

The simplest modification of the Einstein-Hilbert action is...

Palatini,
Metric-
affine,
f(),
fQ

1
S:Efd4x\/_g R( r/ g ) + SM

extra unimodular FR),
variable G dimensions, gravity,

massive bimetric scalar-
gravity gravity vector-
tensor,

non- mimetic
commutative gravity

Horndeski-

spacetime galileon,

[A. Golovnev, M.J. Guzman (2022) arXiv:2203.16610].



Mathematical framework: (co)frames

e Local coordinates {x"} at P.

e They naturally define a basis
vectors e, = 0/0x" = 0,

e The basis 1-forms " = dx* are
dual to the e,.

e In 4D, a linear combination of
the 6* gives us an arbitrary
frame, tetrad, or vierbein
0 = 05,dx"

e Completeness relation
0%(ep) = 92, orthonormality

condition 7,5, = gu.el'ey that
defines the metric tensor

Euw = TIabQZ 95.




Mathematical framework: linear connection

The connection ['“,,,, defines the parallel transport of a vector along a
curve in a manifold. Generically it has three parts:
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It is related with the spin connection w?;, by the tetrad postulate

8ﬂeau + Wabuaby - rp/ﬂ/eap =0 (1)



Metric teleparallel framework

e A teleparallel framework is the one for which the linear connection
has vanishing Riemann curvature R*,,3 = 0.

e In this setup we can still fix either the non-metricity tensor, or the
torsion tensor, to zero. In the former case, the connection can be
written in term of Lorentz matrices as

wlpy = — (A_l)c bOuN?. (2)
e Consequently, the torsion tensor is

T2, =007, —8,0° , +w*,,0°, —w 0%, (3)
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e A useful object for later is the torsion scalar T:
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The teleparallel equivalent of general relativity

The action for the teleparallel equivalent of general relativity is [Aldrovandi,
Pereira (2013)]

1
STEGR = */d‘lx 0T,
2K
contains T, which satisfies the identity
0T = —60R +0,(0T",*).

Here R depends exclusively on the metric, which is invariant under local
Lorentz transformations of the tetrad

07 — 07 = N7 (x)6°.

This is not true for 0,,(0T",#), which is a harmless boundary term.
Then, it is said that TEGR is a Lorentz pseudo-invariant theory.
TEGR encompasses the same degrees of freedom than GR

[Ferraro, Guzman (2016) arXiv: 1609.06766].



Teleparallel gravity (1928-1931)

e Einstein's attempts to build a unified theory of gravitational and
electromagnetical fields on the mathematical framework of
teleparallelism, is an episode that lasted for three years from summer
1928 until spring 1931.

e The tetrad field was introduced to get sixteen components instead
of only ten for the symmetric metric tensor, and to exploit the
additional degrees of freedom to accomodate the electromagnetic
field.

e The mathematical structures had been developed before by Cartan
and Weitzenboeck, purely in mathematical concepts.

e Einstein’s pursuit of the approach triggered a more general
discussion that involved a few other contemporary physicists and
mathematicians, and it continued to be investigated further even
when Einstein no longer took active part in the discussions.

See Sauer (2004) arXiv:physics/0405142



The geometrical trinity of gravity
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Hamiltonian formalism

Some motivations for studying the Hamiltonian formalism of the theory
are:

e allows a non-ambiguous identification of gauge symmetries and
counting of physical degrees of freedom

e crucial in approaches to canonical quantum gravity

e assessing the well-posedness of the Cauchy problem, therefore the
viability of any theory

e theoretical basis for numerical modified general relativity.

In particular, Hamilton's equations correspond 1-to-1 to the 341
Lagrangian decomposition. We make partial use of Dirac’s algorithm.



Dirac algorithm part 1

H,=H+u"é,

primary Hamiltonian

¢m(q,p) =0

m=1,....M

primary constraints

{qn’ pn’} = (ssl

Poisson brackets



Dirac algorithm part 2

full set of
constraints

oi(q,p) =0

j=1. M+K=J]

(11)’71 = {Hp-(sbm} ; 0

end when
Nno new

¢ appear @k(Q-p) =0
k=M+1,..M+K

secondary constraints

b =0

first class
constraints Ya
{’)/(1-, O,} ~ 0

generators
of gauge
transform.

Xa second class
if not first class
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ADM split in the tetrad

e We would like to perform a suitable 3+1 decomposition in the
tetrad, reproducing the typical ADM split in the metric

g - —062 + /8’/817/] ﬂi gy,y _ _@% % o
v — f = .. i .
8 g Vi 5 -7

(4

(e

e However, there are infinite possible representations. We begin by
splitting the components GAN as

0% = ac® + 0%, 646%mas =y, (5)
where ¢4 is a vector satisfying the following properties

nagEEP = €at? = -1, magtBet; = a0 = 0. (6)
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ADM split in the tetrad

e The requirement that £46”; = 0 indicates that &4 should be
proportional to purely spatial components of the tetrad, i.e.

B D
€a < eapcpeBre€rels (7)

e For the inverse components, the decomposition reads
i

1 . .
el = ——&a, ea =04+ EAli (8)
a a

e The object 04’ is the shorthand notation for 64" = nagvy¥65;

e This ADM decomposition in the tetrad, although not unique,
recovers unambiguosly the ADM metric.
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ADM Lagrangian

After performing the ADM split in the tetrad, we obtain the following
form of the TEGR Lagrangian

Yoagij
Lteor = f/\/’ 1T T8y

2«
- g TAi TP - {Mi;\l g8  + %’Y” <;§BGAk - anBkﬂ +Ls,
(9)
where the Hessian is
Mg = —% (;'YUUAB + %ﬁAEBVU + %9Aj93i - 9Ai98j> ) (10)

and a term independent from time derivatives of the tetrad is

Lo=YTra7e, 5 (Ll gy o (Lepouk — 00 |+ Y o,
o 2 K 2 2K

(11)
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Canonical momenta in TEGR

e Given that T#y; = dpe?; + ..., the canonical momenta can be
obtained through variation wrt T4g;, that is,

i oL al i —B B i ok a1 k k
™ = A = e Mas T 0j = T u(MagB" + — | 5€804" —&abs™ )| -
(12)

e Since the TEGR Lagrangian does not depend on dyge”y, the primary
constraint 4% = 0 appears.

e Additional primary constraints are obtained from the contraction
eigT4] + boundary term =0

14



Irreducible decomposition

We consider useful to decompose the momenta and velocity under
irreducible parts under the rotation group ¢/(3)

04 = V0:eA + 207907 + 50,7904 + 7007, (13)

7TAi = V?TifA + A?Tjiﬁ/ijAk + Swj"wj&Ak + T?TGAi. (14)
The superscripts are for Vectorial, Antisymmetric, Symmetric trace-free
and Trace parts [Blixt, Hohmann, Pfeifer 1811.11137] .

The decomposition allows to invert the Hessian by blocks, obtain the
velocities in term of the momenta, and write the Hamiltonian
H = QA,"]TAi — L
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Hamiltonian for TEGR

We obtain that the Hamiltonian for TEGR has the following form

K , . o
Hrecr = a [—M [ma'm5'0%16° 7 v + ma' w5 0765,
_WAIWngAiij] = ?31‘ = an,-ﬂ'A’] (15)
K

+5 [*9Aj5i7TAi = 7rA"TA,-J-] + primary constraints
Let us compare with the Hamiltonian for GR

H= _O)pR 7T"j7rij_1772}_ .Di(ﬂ'j> D/(ﬁ”)}
\ﬁ{a{ + S 25 25 W +2 B’\ﬁ( |
16
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Derivation of Hamilton’s equations

We recall that the momenta for GR and TEGR are defined as

o
= ) ™ = —, 17
o T 9gA, {17

]

therefore it is easy to see that they are dependent from each other, since
Jij = nas(0%6%; + 64:0%)). (18)
In particular,
ma' = 2nap0° ;7Y (19)
Hamilton's equations for TEGR are then obtained as

oH
omal’

oH

A [pA 1 — _
67 = {67, H} T

ia = {ma',H} =
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Hamilton’s equations for TEGR

Our computations give [Blixt, Guzman, Pati, in preparation]

. 6H
—TA = SOA.
= (WAiWBjij — w08 — vyl mpk 08 — Biomal + afAVikeBkajWBj>
8V
aK A i _k(pB pD B gD IngB oD
+W9 Tl mp (07 k07 — 6707 + viky"07 167 n)
+ ﬁ’“c (vimms'mp ™08 10P k0 ;i1 — 308 10100 mpimg) + 6(8;6)
(21)
: oH
=5 = [ + B04] D58(x — ) = B*TAud(x — y)
(22)
Y igA LB s — ekl igA B kpA C B
87 [7"8 071i07 ;) — vy T 07 (107 1y + T 070 k]] (x—y)
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Hamilton’s equations for GR

In comparison, in general relativity it is known that

SH

. . 1
Yy =55 =27 (mj - 2%'7T> + 208, (23)

and

i oH _ —ayq (@RI - }(3)R,Y,j n 1a771/2,yij M — 12
o 2 2

2
—1/2( w_j 1 ij)
— 2oy UM = S

+ V(D' D'a — 4 D*Diar) + ADu(y /2 8n) — 2 D, B

(24)
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Discussion and conclusions

e Hamilton's equations in TEGR are generically more complicated
than GR ones

e ADM decomposition of Einstein’s equations aren't strongly
hyperbolic, a reformulation called BSSN it is. It is widely used in
numerical relativity for strong gravity regimes as merge of black
holes.

e Such study in TEGR is not present in the literature. Some authors
[Capozziello, Finch, Levi-Said, Magro 2108.03075] claim that in TEGR
simulations should be computationally more efficient. We suspect it
could be exactly the opposite.

e We have also obtained Hamilton's equations for the covariant
version of TEGR.
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