Higgs self-interactions

... and Higgs-gauge boson interactions

Roberto Salerno Nico Harringer Cesare Cazzaniga

A self-interacting Higgs (as SM predicts) would be unlike anything yet seen in nature. All other interactions change particle identity.

The Higgs cubic (λ_3^{SM}) and quartic (λ_4^{SM}) couplings are the keys to investigate EWSB. The Higgs potential is :

$$\mathscr{L} \subset -\frac{m_h^2}{2}h^2 - \lambda_3^{SM}vh^3 - \lambda_4^{SM}h$$

Link with cosmology

Deviations from SM Higgs self-coupling cause a modified potential that allows a first-order electroweak phase transition and hence an explanation of the observed matter vs anti-matter asymmetry

> We need to probe size of modification down to 1.4, the expected uncertainty of the measurement should be $\mathcal{O}(10\%)$

Does the Higgs interact with itself?

O(50%) precision 2 experiments and various channels

and decay at NLO.

Higher-order corrections to single Higgs processes λ_{HHH} does not enter single Higgs processes at LO but it affects both Higgs production

Higgs self-energy (quadratic in k_{λ})

Universal modifications via wave function renormalisation

Benefit of large single Higgs cross-section

Exploited various Z decays, using the recoil techniques

Profile likelihood as a function of signal strength

VBF production @365 GeV

exchange of vector bosons

E MISSING MASSAGADIU PARTING N ■ ee→vvH(bb)

×1	0 ³	FCC-ee si	mulation (IDEA	A - Delphes)
FCC-ee SIMULATION DELPHES $R = \phi$ view Event: 17, $\sqrt{s} = 240$ GeV $f e^+e^- \rightarrow v\bar{v}H(b\bar{b})$ 2 b - jets, lnjjl < 3 1000 1000 1000 1000 1000 1000 100	0³ Irreducible from Z(ν ν)	FCC-ee si background H(bb) $\sqrt{s} = 365 \text{ GeV}$ $L = 1.5 ab^{-1}$	mulation (IDEA)H(bb)*50
2. Adaptive BDT to reduce the second sec	Jce th	o 150 200		300 350 niss (GeV)
\rightarrow Misaj neodravita ran20k sig. \rightarrow 800 trees. min. node s	and 10 ize of 1	0k back %. a ma	k. even x. dep	ts th of 3
p_{miss}		$p_{Tj,min} = 2$	20 GeV $ \Delta\eta $ NET > 10 Ge	' _{jj} < 3 ≥V
$\frac{\text{MC samples}}{\text{Number of events (normalized)}} \rightarrow \mathbb{N}$	$\nu_e \bar{\nu}_e H(b\bar{b})$ eed for M	$\begin{array}{c} \mathbf{Z}(\nu\bar{\nu})\mathbf{H}(b\bar{b})\\ \mathbf{A}_{2.06}\\ \mathbf{Exploit} \end{array}$	WW ing.f1u!l1eve	ZZ nj.49pplogy
$n_{bj} \ge 2, \Delta \eta < 3, \text{HT} > 20, \text{MET} > 10 \text{ GeV}$	47%	48%	0.09%	5.5%
BD1Ada response ≥ 0.12	42 70	3.4 %	0.002 %	0.00 %

after the BDT

1. Preselection cuts \rightarrow 2 jets + 2 electrons \rightarrow m_{ee} > 80 GeV

 \rightarrow MET > 10 GeV

2. BDT to further reduce the backgrounds

Rank	Variable	Separation	Rank	Variable	
1	$M_{e^+e^-}$	$9.1 \cdot 10^{-1}$	5	M_{jj}	
2	$acol_{e^+e^-}$	$7.1 \cdot 10^{-1}$	6	η_{e_2}	
3	$acol_{jj}$	$7 \cdot 10^{-1}$	7	E_{j1}	
4	n_{bj}	$4.6 \cdot 10^{-1}$	8	η_{j1}	

1D fit with only $\delta \kappa_{\lambda}$ **floating**

$$\kappa_{\lambda} = \frac{\lambda_3^{SM} + \delta\lambda_3}{\lambda_3^{SM}}$$
$$\Rightarrow \delta\kappa_{\lambda} = \kappa_{\lambda} - 1$$

Profile likelihood as function of $\delta \kappa_{\lambda}$

Higgs Self-Coupling

The secondary minimum easily excluded adding a 2nd energy point

The analysis chain has been put in place to measure the Higgs self-coupling from higher-order corrections (NLO) to single Higgs processes

The analyses are being redone (additional channels, improved selection, adding systematics, etc.) using the <u>centrally produced samples</u> within the <u>FCCAnalyses framework</u>.

Shown preliminary (optimistic) results but there are many caveats: • We have only recently started to use the centrally produced samples • Not all the systematic uncertainties are included • Only main backgrounds are considered so less selection cuts included leading to higher signal efficiency

We plan to address these issues systematically and are currently working on: • Hadronic Z decays in inclusive and exclusive reactions, e.g. efficient flavour tagging (bb, cc, etc.)

- Optimal jet angular and energy resolutions
- Angular distributions to better separate HZ and VBF channels

Next Steps

For $\nu_e \nu_{\bar{e}}$ decays of the Z boson, the two production amplitudes interfere. Positive interference term of the same size as their individual cross sections

Need to exploit angular distributions to separate the processes

WW-boson fusion : $ee \rightarrow \nu \nu H(bb)$ THE MISSING MASS METHOD

b-jets.

Drocoloction cute

FCC-ee SIMULATION DELPHES $| R - \phi$ view

Event: 17, $\sqrt{s} = 240$ GeV $| \sim e^+e^- \rightarrow \nu \bar{\nu} H(b\bar{b}) |$

2. Adaptive BDT to reduce the backgrounds → 17 input variables trained with a 20k sig. and 100k back. events \rightarrow 800 trees, min. node size of 1%, a max. depth of 3

Missing momentum from neutrinos

BDT variables and correlations^{W BOSON FUSION B} W BOSON FUSION BDT INPUT VARIABLES **Correlation Matrix (signal)**

Correlation Matrix (signal)

											Linea	ar (corr	elat	ion (coef	ficie	ents	in %	100
	njets_T	-49	1		-20			-26	-19	-8		-1	-22	-13	-3	-1	50	100		100
	nbtag_T	-25			-10	1	1	-13	-10	-3			-11	-6		-1	100	50		80
	massj2_T	20			28			-12	3	55			-1	29		100	-1	-1		
	massj1_T	15			41			-7	46	3		1	35	-8	100			-3		60
	Ej2_T	37	1	1	13		-1	-31	-12	52		2	-29	100	-8	29	-6	-13		40
	Ej1_T	44		-1	63			-7	75	-1			100	-29	35	-1	-11	-22		40
	etaj2_T		-82								-18 <mark>1</mark> (00		-2	1			-1		20
	etaj1_T		70								100-	18								
	ptj2_T	40			53			-16	8	100			-1	52	3	55	-3	-8		0
	ptj1_T	44			89			-4	100	8			75	-12	46	3	-10	-19		
	acol_T	37			-11			100	-4	-16			-7	-31	-7	-12	-13	-26		-20
	HT_T					53	100							-1			1			-40
ıl	MET_T			-1		100	53	ļ									1			
~ '	ptjj_T	56			100			-11	89	53			63	13	41	28	-10	-20	_	-60
	deltaphiji_T			100		-1							-1	1						•••
	deltaetaji_T		100								70 -8	32		1				1		-80
	massjj_T	100			56			37	44	40			44	37	15	20	-25	-49		_100
	mandelt delt Ptil MEHT accuPtit Ptiz etai Ptai Eiz Manman Not-Niet																			

assil acting the the thought the tait and the tait and the tait at tait at the tait at tait at the tait at tait

Final discrimination variable

The missing mass after preselection and BDT cuts

BDT response

MC samples	$\nu_e \bar{\nu}_e \mathcal{H}(b\bar{b})$	$Z(\nu\bar{\nu})H(b\bar{b})$	WW
Number of events (normalized)	$3.05 \cdot 10^4$	$2.06 \cdot 10^4$	$1.61 \cdot 10$
$n_{bj} \ge 2, \Delta \eta < 3, \text{HT} > 20, \text{MET} > 10 \text{ GeV}$	47%	48%	0.09%
BDTAda response ≥ 0.12	42 %	3.4~%	0.002 %

